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Abstract

We explore learning prepositional-
phrase attachment in Dutch, to use it
as a filter in prosodic phrasing. From a
syntactic treebank of spoken Dutch we
extract instances of the attachment of
prepositional phrases to either a govern-
ing verb or noun. Using cross-validated
parameter and feature selection, we
train two learning algorithms, IB1 and
RIPPER, on making this distinction,
based on unigram and bigram lexical
features and a cooccurrence feature de-
rived from WWW counts. We optimize
the learning on noun attachment, since
in a second stage we use the attachment
decision for blocking the incorrect
placement of phrase boundaries before
prepositional phrases attached to the
preceding noun. On noun attachment,
IB1 attains an F-score of 82; RIPPER

an F-score of 78. When used as a filter
for prosodic phrasing, using attachment
decisions from IB1 yields the best im-
provement on precision (by six points
to 71) on phrase boundary placement.

1 Introduction

One of the factors determining the acceptabil-
ity of synthetic speech is the appropriate place-
ment of phrase boundaries, realized typically and
most audibly by pauses (Sanderman, 1996). In-
correct prosodic phrasing may impede the listener

in the correct understanding of the spoken utter-
ance (Sanderman and Collier, 1997). A major
factor causing difficulties in appropriate phrase
boundary placement is the lack of reliable infor-
mation about syntactic structure. Even if there
is no one-to-one mapping between syntax and
prosody, the placement of prosodic phrase bound-
aries is nevertheless dependent on syntactic in-
formation (Selkirk, 1984; Bear and Price, 1990;
van Herwijnen and Terken, 2001b). To cope with
this lack of syntactic information that a speech
synthesis developer may face currently, e.g. in the
absence of a reliable parser, several strategies have
been applied to allocate phrase boundaries. One
strategy is to allocate phrase boundaries on the ba-
sis of punctuation only. In general, however, this
results in too few phrase boundaries (and some in-
correct ones, e.g. in enumerations).

A clear example of information about syntactic
structure being useful for placing phrase bound-
aries is the attachment of prepositional phrases
(PPs). When a PP is attached to the preceding
NP or PP (henceforth referred to as noun attach-
ment), such as in the structure ����� eats pizza with
anchovies, a phrase boundary between pizza and
with is usually considered inappropriate. How-
ever, when a PP is attached to the verb in the clause
(verb attachment), as in the structure ����� eats pizza
with a fork, an intervening phrase boundary be-
tween the PP and its preceding NP or PP (between
pizza and with) is optional, and when placed, usu-
ally judged appropriate (Marsi et al., 1997).

Deciding about noun versus verb attachment of
PPs is a known hard task in parsing, since it is un-



derstood to involve knowing lexical preferences,
verb subcategorization, fixed phrases, but also se-
mantic and pragmatic ”world” knowledge. A typ-
ical current parser (e.g., statistical parsers such
as (Collins, 1996; Ratnaparkhi, 1997; Charniak,
2000)) interleaves PP attachment with all its other
disambiguation tasks. However, because of its in-
teresting complexity, a line of work has concen-
trated on studying the task in isolation (Hindle and
Rooth, 1993; Ratnaparkhi et al., 1994; Brill and
Resnik, 1994; Collins and Brooks, 1995; Franz,
1996; Zavrel et al., 1997). Our study can be seen
as following these lines of isolation studies, pursu-
ing the same process for another language, Dutch.
At present there are no parsers available for Dutch
that disambiguate PP attachment, which leaves the
comparison between PP attachment as an embed-
ded subtask of a full parser with our approach as
future work.

In line with these earlier studies, we assume that
at least two sources of information should be used
as features in training data: (i) lexical features
(e.g. unigrams and bigrams of head words), and
(ii) word cooccurrence strength values (the proba-
bility that two words occur together, within some
defined vicinity). Lexical features may be infor-
mative when certain individual words or bigrams
frequently, or exclusively, occur with either noun
or verb attachment. This may hold for preposi-
tions, but also heads of the involved phrases, as
well as for combinations of these words. Cooccur-
rence strength values may provide additional clues
to informational ties among words; when we in-
vestigate the cooccurrences of nouns and preposi-
tions, and of verbs and prepositions, the cooccur-
rence strength value could also indicate whether
the prepositional phrase is attached to the noun or
to the verb in the syntactic tree.

In this study, we use two machine learning
algorithms to perform PP attachment. In line
with the case study for English introduced in
Ratnaparkhi et al. (1994), we collect a training set
of Dutch PP attachment instances from a syntac-
tic treebank. Collection of this data is described in
Section 2. We extract lexical head features (uni-
gram and bigram) from the treebank occurrences,
and enrich this data with cooccurrence informa-
tion extracted from the WWW (Section 3). Using

the same features, we analogously build a held-out
test corpus for which prosodic labeling is avail-
able. The setup of the machine learning experi-
ments, involving automatic parameter and feature
selection, is described in Section 4. We give the
results of the cross-validation experiments on the
original data and on the held-out data in Section 5.
Employing the learned PP attachment modules for
filtering phrase break placement is discussed in
Section 6, where we test on the held-out written
text corpus. We discuss our findings in Section 7.

2 Selection of material

From the Corpus Gesproken Nederlands (CGN,
Spoken Dutch Corpus)1, development release 5,
we manually selected 1004 phrases that contain
[NP PP] or [PP PP] sequences. Annotated accord-
ing to protocol (van der Wouden et al., 2002), all
PPs have been classified into noun or verb attach-
ment. This classification yields 398 phrases (40%)
with a verb-attached PP and 606 phrases (60%)
with a noun-attached PP.

Additionally, as held-out corpus for testing the
efficacy of PP attachment information for prosodic
phrasing, we selected 157 sentences from vari-
ous newspaper articles and e-mail messages. We
selected this corpus because part of it had been
annotated earlier on prosodic phrasing through
a consensus transcription of ten phonetic ex-
perts (van Herwijnen and Terken, 2001a). All
selected 157 sentences contain either [NP PP]
or [PP PP] sequences. To obtain a ”gold stan-
dard” we manually classified all PPs into NOUN

and VERB attachment, according to the ”single
constituent test” (Paardekooper, 1977). This test
states that every string of words that can be placed
at the start of a finite main clause, forms a sin-
gle constituent. Thus, if and only if a [NP PP] or
[PP PP] sequence can be fronted, it forms a single
NP containing a noun-attached PP. This classifica-
tion resulted in 66 phrases with a verb-attached PP
and 91 phrases with a noun-attached PP.

1The Spoken Dutch Corpus is a database of contem-
porary Dutch as spoken by adults in the Netherlands
and Flanders. The project is funded by the Flem-
ish and Dutch governments and the Netherlands Orga-
nization for Scientific Research NWO. Its homepage is
http://lands.let.kun.nl/cgn/ehome.htm.



3 Feature engineering

3.1 Lexical features

Analogous to Ratnaparkhi et al. (1994), we (man-
ually) selected the four lexical heads of the phrases
involved in the attachment as features. We used
the manually annotated phrasing and function la-
belling to determine the heads of all involved
phrases. First, the noun of the preceding NP or PP
that the focus PP might be attached to (N1); sec-
ond, the preposition (P) of the PP to be attached;
third, the verbal head (V) of the clause that the
PP is in; and fourth, the noun head of the PP to
be attached. For example, the Dutch sequence �����
[PP met Duits] [PP om de oren] [VP slaan] (blow
someone up over German), N1 is Duits, P is om,
V is slaan, and N2 is oren. In the fixed expression
om de oren slaan, om de oren attaches to slaan.

Subsequently, we added all combinations of two
heads as features2 . There are six possible combi-
nations of the four heads: N1-P, N1-V, ����� . The
example construction is thus stored in the data set
as the following comma-separated 10-feature in-
stance labelled with the VERB attachment class:
Duits, om, slaan, oren, Duits-om,
Duits-slaan, Duits-oren, om-slaan,
om-oren, slaan-oren, VERB

3.2 Cooccurrence strength values

Several metrics are available that estimate to what
extent words or phrases belong together informa-
tionally. Well known examples of such cooc-
currence strength metrics are mutual informa-
tion (Church and Hanks, 1991), chi-square and
log likelihood (Dunning, 1993). Cooccurrence
strength values are typically estimated from a very
large corpus. Often, these corpora are static and
do not contain neologisms and names from later
periods. In this paper, we explore an alternative
by estimating cooccurrence strength values from
the WWW. The WWW can be seen as a dynamic
corpus: it contains new words that are not yet in-
corporated in other (static) corpora. Another ad-
vantage of using the WWW as a corpus is that
it is the largest freely and electronically accessi-
ble corpus (for most languages including Dutch).
Consequently, frequency counts obtained from the

2Note that Ratnaparkhi et al. (1994) allow all combina-
tions of one to four heads as features.

WWW are likely to be much more robust than
those obtained from smaller corpora. If cooc-
currences correlate with PP attachment, then the
WWW could be an interesting robust background
source of information. Recently, this reasoning
was introduced in (Volk, 2000), a study in which
the WWW was used to resolve PP attachment.
Following this, the second step in engineering our
feature set was to add cooccurrence strength val-
ues for Dutch words extracted from the WWW.

We explored three methods in which the cooc-
currence strength value was used to decide be-
tween noun or verb attachment for all 1004
phrases from the CGN. The first method is a
replication of the study by Volk (2000). In this
study cooccurrence strength values were com-
puted for the verb within close vicinity of the
preposition Cooc(VnearP) and for the noun within
close vicinity of the preposition Cooc(NnearP).
Second, we investigated the method in which only
Cooc(NnearP) is used. Third, we tested a variant
on the second method by computing the cooccur-
rence strength value of a noun immediately suc-
ceeded by a preposition Cooc(N P), because there
cannot be a word in between. The general formula
for computing the cooccurrence strength value3 of
two terms is given by function (1) as proposed
by Volk (2000). This method is based on the re-
spective frequency of X and the joint frequency
of X with a given preposition; where P stands for
Preposition and X can be either a Noun or a Verb.

�����������	��
��������� ������

������� ����
 (1)

We restricted the search to documents which
were automatically identified as being written
in Dutch by Altavista. For the Cooc(VnearP)
and Cooc(NnearP) we used the advanced search
function NEAR of the WWW search engine Al-
tavista (Altavista, 2002). This function restricts
the search to the appearance of two designated
words at a maximal distance of 10 words, which
is the default. The search is performed for both
possible orders of appearance of the two desig-

3The notion cooccurrence strength value could also be
referred to as relative frequency estimate of the conditional
probability that a preposition co-occurs with a certain noun
or verb.



Table 1: Performance on PP attachment based on three variants of cooccurrence values.

NOUN attachment VERB attachment
accuracy precision recall F ����� precision recall F �����

NnearP or VnearP 62 71 62 66 51 61 56
NnearP 64 75 61 67 54 71 61
N P 67 84 54 65 55 87 67
baseline 60 60 100 75 - 0 -

nated words. For the Cooc(N P) we used the
search function to search for exact multi-word
phrases: " � noun ��� prep � ". This function re-
stricts the search to the appearance of the two ad-
jacent words in the indicated order. The number of
found documents according to these search meth-
ods was used for freq(X P). The freq(X) was de-
rived from the WWW by performing a separate
search for the single word form.

Method I: cooccurrence NnearP or VnearP
Volk (2000) assumes that the higher value of
Cooc(VnearP) and Cooc(NnearP) decides the at-
tachment. According to this assumption we say
that if Cooc(VnearP) is the higher value, the PP
attaches to the verb. If Cooc(NnearP) is the higher
value, the PP attaches to the noun. When only
Cooc(NnearP) was available (because the phrase
did not contain a verb), the decision for noun
or verb attachment was based on comparison of
Cooc(NnearP) with a threshold of 0.5 (cooccur-
rence strength values are between 0.00 and 1.00).
This is the threshold used by Volk (2000).

For the 1004 phrases derived from the CGN we
computed the accuracy (the percentage of correct
attachment decisions), and precision, recall, and
F � -score4 with 	 � 
 (van Rijsbergen, 1979),
for both noun and verb attachment. The respec-
tive values are given in Table 1. A baseline was
computed, which gives the performance measures
when noun attachment was predicted for all 1004
phrases.

Method II: cooccurrence NnearP Alterna-
tively, we can base the decision between noun and
verb attachment on Cooc(NnearP) only, compar-
ing the cooccurrence strength value to a thresh-
old. The cooccurrence strength values we found

4F ���� ����������� precision � recall� � � precision � recall

according to this method range from very high
to very low (1.00 - 0.00) and differ significantly
for noun and verb attachment (t=-11.65, p � 0.001,
df=1002).

By computing the performance measures for
several thresholds, using 10-fold cross valida-
tion, we determined that the optimal cooccurrence
threshold should be 0.36 for optimization on noun
attachment. Cooccurrence strength values higher
than the threshold predict that the PP is attached
to the noun. The performance measures obtained
with this method are also given in Table 1.

Method III: cooccurrence N P To simplify
Method II further, we use Cooc(N P) instead of
Cooc(NnearP) to decide between noun and verb
attachment, comparing the cooccurrence strength
value to a threshold. The cooccurrence strength
values we found according to this approach range
from very high to very low (0.99 - 0.00) and dif-
fer significantly for noun and verb attachment (t=-
12.43, p � 0.001, df=1002).

By computing the performance measures for
several thresholds, using 10-fold cross valida-
tion, we determined that the optimal cooccurrence
threshold should be 0.07. The performance mea-
sures obtained with this method are also given
in Table 1.

Preferred method Table 1 shows that
Method III has the best accuracy on PP at-
tachment. Although it is not the best in all
respects, we prefer this method, because it uses
cooccurrence strength values for adjacent nouns
and prepositions in the order in which they appear
in the text (see � 3.2), this in analogy with the fact
that order is meaningful in PP attachment.

Thus, we added the Cooc(N P) feature as the
eleventh feature to our data sets for both corpora.



Table 2: Performance measures on PP attachment in the CGN material by RIPPER and IB1.

NOUN attachment VERB attachment
accuracy precision recall F ����� precision recall F �����

RIPPER (- bigrams) 75 83 75 78 66 78 71
RIPPER (+ bigrams) 72 78 74 76 64 70 67
IB1 (- bigrams) 78 81 83 82 73 69 71
IB1 (+ bigrams) 75 79 81 80 69 67 68
baseline 60 60 100 75 - 0 -

4 Machine learning experiments

We choose to use two machine learning algo-
rithms in our study: rule induction as imple-
mented in RIPPER (Cohen, 1995) (version 1, re-
lease 2.4) and memory-based learning IB1 (Aha et
al., 1991; Daelemans et al., 1999), as implemented
in the TiMBL software package (Daelemans et al.,
2002). Rule induction is an instance of ”eager”
learning, where effort is invested in searching for a
minimal-description-length rule set that covers the
classifications in the training data. The rule set can
then be used for classifying new instances of the
same task. Memory-based learning, in contrast, is
”lazy”; learning is merely the storage of learning
examples in memory, while the effort is deferred
to the classification of new material, which in IB1
essentially follows the

�
-nearest neighbor classi-

fication rule (Cover and Hart, 1967) of searching
for nearest neighbors in memory, and extrapolat-
ing their (majority) class to the new instance.

A central issue in the application of machine
learning is the setting of algorithmic parameters;
both RIPPER and IB1 feature several parameters
of which the values can seriously affect the bias
and result of learning. Also, which parameters are
optimal interacts with which features are selected
and how much data is available. Few reliable rules
of thumb are available for setting parameters. To
estimate appropriate settings, a big search space
needs to be sought through in some way, after
which one can only hope that the estimated best
parameter setting is also good for the test material
– it might be overfitted on the training material.

Fortunately, we were able to do a semi-
exhaustive search (testing a selection of sensible
numeric values where in principle there is an in-
finite number of settings), since the CGN data set

is small (1004 instances). For IB1, we varied the
following parameters systematically in all combi-
nations:

� the � in the � -nearest neighbor classification rule: 1, 3,
5, 7, 9, 11, 13, 15, 25, and 45

� the type of feature weighting: none, gain ratio, infor-
mation gain, chi-squared, shared variance

� the similarity metric: overlap, or MVDM with back-off
to overlap at levels 1 (no backoff), 2, and 10

� the type of distance weighting: none, inverse distance,
inverse linear distance, and exponential decay with� ����� � and � �
	�� �

For RIPPER we varied the following parameters:

� the minimal number of instances to be covered by rules:
1, 2, 5, 10, 25, 50

� the class order for which rules are induced: increasing
and decreasing frequency

� allowing negation in nominal tests or not
� the number of rule set optimization steps: 0, 1, 2

We performed the full matrix of all combina-
tions of these parameters for both algorithms in a
nested 10-fold cross-validation experiment. First,
the original data set was split in ten partitions of
90% training material and 10% test material. Sec-
ond, nested 10-fold cross-validation experiments
were performed on each 90% data set, splitting it
again ten times. To each of these 
��� 
�� exper-
iments all parameter variants were applied. Per
main fold, a nested cross-validation average per-
formance was computed; the setting with the av-
erage highest F-score on noun attachment is then
applied to the full 90% training set, and tested on
the 10% test set. As a systematic extra variant, we
performed both the RIPPER and IB1 experiments
with and without the six bigram features (men-
tioned in � 3.1).



Table 3: Performance on PP attachment in newspaper and e-mail material by RIPPER and IB1.

Noun attachment Verb attachment
accuracy precision recall F ����� precision recall F �����

RIPPER (-/+ bigrams) 74 80 74 77 67 74 71
IB1 (- bigrams) 71 72 82 77 70 56 62
IB1 (+ bigrams) 70 72 80 76 67 56 61
baseline 58 58 100 73 - 0 -

5 Results

Internal results: Spoken Dutch Corpus data
Table 2 lists the performance measures produced
by RIPPER and IB1 on the CGN data. For both
algorithms it proved a disadvantage to have the
bigram features; both attain higher F-scores on
noun attachment without them. IB1 produces the
highest F-score, 82, which is significantly higher
than the F-score of RIPPER without bigrams, 78
(t=2.78, p � 0.05, df=19).

For RIPPER, the best overall cross-validated pa-
rameter setting is to allow a minimum of ten cases
to be covered by a rule, induce rules on the most
frequent class first (noun attachment), allow nega-
tion (which is, however, not used effectively), and
run one optimization round. The most common
best rule set (also when including bigram features)
is the following:

1. if P � van then NOUN
2. if cooc(N P)

� � � ��� � 	 then NOUN
3. if P � voor then NOUN
4. if there is no verb then NOUN
5. else VERB

This small number of rules test on the presence
of the two prepositions van (from, of) and voor
(for, before) which often co-occur with noun at-
tachment (on the whole data set, 351 out of 406
occurrences of the two), a high value of Cooc(N P)
similar to the threshold reported earlier (0.07), and
the absence of a verb (which occurs in 27 in-
stances).

The best overall cross-validated setting for IB1
was no feature weighting,

� � 
�
 , and exponen-
tial decay distance weighting with � ��� . It has
been argued in the literature that high

�
and dis-

tance weighting is a sensible combination (Zavrel
et al., 1997). More surprisingly, no feature weight-
ing means that every feature is regarded equally
important.

External results: newspaper and e-mail data
We evaluated the results of applying the overall
best settings on the 157 sentence external newspa-
per and e-mail material. Performances are given
in Table 3. These results roughly correspond
with the previous results; IB1 has lower preci-
sion but higher recall than RIPPER on noun at-
tachment. RIPPER performed the same with and
without bigram features, since its rules do not test
on them. Overall, these results suggest that the
learned models have a reasonably stable perfor-
mance on different data.

6 Contribution to phrase boundary
allocation

In a third experiment we measured the added value
of having PP attachment information available in
a straightforward existing prosodic phrasing al-
gorithm for Dutch (van Herwijnen and Terken,
2001b). This phrasing algorithm uses syntactic in-
formation and sentence length for the allocation
of prosodic phrase boundaries. For a subset (44
phrases) of the held-out corpus, we compared the
allocation of boundaries according to the phras-
ing algorithm and according to the same algorithm
complemented with PP attachment information,
to a consensus transcription of ten phonetic ex-
perts (van Herwijnen and Terken, 2001a). This
consensus transcription was not available for all
157 phrases of the newspaper and e-mail data.

Table 4 shows the performance measures for
this comparison, indicating that the improvement
from PP attachment information is largely in pre-
cision. Indeed, blocking certain incorrect place-
ments of phrase boundaries improves the precision
on boundary placement. IB1 attains the best im-
provement of six points in precision. Although it
incorrectly prevents five intended phrase bound-



Table 4: Performance on phrasing complemented with PP attachment information from RIPPER and IB1
with and without bigram features.

phrasing algorithm accuracy precision recall F �����
phrasing 91 65 81 72
phrasing + RIPPER (-/+ bigrams) 92 70 80 74
phrasing + IB1 (- bigrams) 92 70 79 74
phrasing + IB1 (+ bigrams) 92 71 79 75
phrasing + gold standard 93 72 81 77

aries (when compared to the manual classification
mentioned in � 2), it does in fact correctly pre-
vent unintended boundaries in twelve other cases.
Some examples of the latter are:

1. � � � afschaffing
�
van het laatste recht � � �

2. � � � het grootste deel
�
van Nederland � � �

3. � � � de straatlantaarns
�
langs de provinciale weg � � �

1. � � � abolition
�
of the final right � � �

2. � � � the biggest part
�
of the Netherlands � � �

3. � � � the street lights
�
along the provincial road � � �

Table 4 also shows the performance measures
for the phrasing algorithm complemented with the
”gold standard”. These results indicate the max-
imal attainable improvement of the phrasing al-
gorithm using correct PP attachment information.
The results obtained with IB1 come close to this
maximal attainable improvement, particularly in
terms of precision.

7 Discussion

We have presented experiments on isolated learn-
ing of PP attachment in Dutch, and on using
predicted PP attachment information for filtering
out incorrect placements of prosodic boundaries.
First, PP attachment was learned by the best op-
timized machine learner, IB1 at an accuracy of
78, an F-score of 82 on noun attachment, and 71
on verb attachment. The learners were optimized
(via nested cross-validation experiments and semi-
exhaustive parameter selection) on noun attach-
ment, since that type of attachment typically pre-
vents a prosodic boundary. In general, incorrect
boundaries are considered more problematic to the
listener than omitted boundaries. We show that
small improvements are made in the precision of
boundary allocation; a high precision means few
incorrect boundaries.

Comparing the eager learner RIPPER with the
lazy learner IB1, we saw that RIPPER typically in-
duces a very small number of safe rules, leading to
reasonable precision but relatively low recall. The
bias of IB1 to base classifications on all training
examples available, no matter how low-frequent or
exceptional, resulted in a markedly higher recall of
up to 82 on noun attachment, indicating that there
is more reliable information in local matching on
lexical features and the cooccurrence feature than
RIPPER estimates. However, with a larger training
corpus, we might not have found these differences
in performance between IB1 and RIPPER.

In engineering our feature set we combined dis-
joint ideas on using both lexical (unigram and
bigram) features and cooccurrence strength val-
ues. The lexical features were sparse, since they
only came from the 1004-instance training cor-
pus, while the cooccurrence feature was very ro-
bust and ”unsupervised”, based on the very large
WWW. Within the set of lexical features, the bi-
gram features were sparser than the unigram fea-
tures, and neither of the algorithms benefited from
the bigram features. Thus, given the current data
set, all necessary information was available in the
four unigram features in combination with the
cooccurrence feature. Only the combination of
the five yielded the best performance – individu-
ally the features do carry information, but always
less than the combination. When running nested
cross-validation experiments with IB1 on the four
unigram features, F-scores are lower than the op-
timal 82: 77 (N1), 75 (P), 72 (V), 74 (N2), and 75
Cooc(N P). These results suggest that it is essential
for this experiment to employ features that (1) are
preferably robust counter to sparse, and (2) each
add unique information, either on lexical identity



or on cooccurrence strength.
Although the addition of more sparse and re-

dundant features (bigrams) turned out to be inef-
fective at the current data size, there is no reason
to expect that they will not facilitate performance
on larger data sets to be developed on the near fea-
ture. Besides, it would be interesting to investigate
ways of embedding our approach for predicting PP
attachment within other, more general parsing al-
gorithms.
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