Normalized alignment of dependency trees for detecting textual entailment
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Abstract

In this paper, we investigate the usefulness
of normalized alignment of dependency
trees for entailment prediction. Overall,
our approach yields an accuracy of 60%
on the RTE2 test set, which is a signifi-
cant improvement over the baseline. Re-
sults vary substantially across the differ-
ent subsets, with a peak performance on
the summarization data. We conclude that
normalized alignment is useful for detect-
ing textual entailments, but a robust ap-
proach will probably need to include ad-
ditional sources of information.

1 Introduction

The well-known fact that similar information can be
expressed in many different ways is a challenge for
robust NLP applications. It is generally assumed
that the performance of such applications could im-
prove when they would have a better understand-
ing of how different expressions relate to each other,
for instance in terms of paraphrases (same semantic
content, different wording) or entailments (one ex-
pression more specific than the other). An automatic
summarisation tool, for instance, could use semantic
overlap to extract more informative sentences, while
a QA system, to give another example, could use
it to select answer strings, perhaps preferring more
specific answers over more general ones. In a sim-
ilar vein, Information Extraction (IE) and Informa-
tion Retrieval (IR) applications might be able to im-
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prove recall by taking overlap information into ac-
count. In fact, detecting semantic overlap may well
be regarded as a generic NLP task on a par with tasks
such as word sense disambiguation and named entity
recognition.

Recognizing textual entailments (RTE) is a spe-
cific instance of detecting semantic overlap, and is
currently an active area of research (Dagan et al.,
2005). The RTE task is commonly defined as fol-
lows: given a text T (usually consisting of one or
two sentences, the premise) determine whether a
sentence H (the hypothesis) is entailed by T (the
premise). Table 1 shows three randomly selected ex-
amples from the RTE2 development set. !

Various approaches have been proposed to tackle
this problem. One approach is to translate both
T and H into a logical form, and then use a gen-
eral purpose theorem prover to check for entailment
(Bos and Markert, 2005). To do proper theorem
proving, this method requires that formalized back-
ground knowledge is taken into account. A different
approach is to try to compute the amount of “simi-
larity” between T and H, under the assumption that
a higher similarity increases the likelihood of an en-
tailment relation. It is generally assumed that pure
string overlap is not sufficient for detecting entail-
ment, and that using some amount of linguistic in-
formation may be beneficial (Herrera et al., 2005;
Vanderwende et al., 2005). Then the question be-
comes how to align the linguistic analyses of T and
H.

Alignment has been studied extensively in data-

! Available from http: //www.pascal-network.org/
Challenges/RTE2/.



Table 1: Three Text-Hypothesis pairs taken from the IR part of the RTE2 development set. IDs 462 and 759
are examples of textual entailments, while ID 472 is not.

ID = Text and Hypothesis Sentences

462 Y T =The development of agriculture by early humans, roughly 10,000 years ago, was also harmful to many natural
ecosystems as they were systematically destroyed and replaced with artificial versions.
H = Humans existed 10,000 years ago.

472 N T =Compuware claims that Allan Tortorice and Jim Hildner were among several former employees who revealed
trade secrets after they moved to IBM.
H = Trade secrets were stolen.

759 'Y T =Tropical Storm Debby is blamed for several deaths across the Caribbean.

H = A tropical storm has caused loss of life.

driven machine translation (Och and Ney, 2000), ini-
tially at the word level, but current work increasingly
focusses on alignment at higher levels (substrings,
syntactic parser or trees) as well, e.g., Meyers et
al. (1996). Here, following Herrera et al. (2005)
we align sentences at the level of dependency struc-
tures. Dependency trees seem particularly useful for
the purpose of RTE (and more useful than, for in-
stance, phrase structure), because they reflect the se-
mantic content of a sentence more directly, abstract
over word order, and are relatively compact; but see
Gildea (2004) for a dissenting view. Recognizing
textual entailments then becomes a three step proce-
dure: first, for both T and H a dependency analysis
is obtained, then the respective analyses are aligned,
after which it is decided whether T entails H or not.

As our starting point we take the alignment al-
gorithm described in Marsi and Krahmer (2005),
which itself is based on an alignment algorithm of
Meyers et al. (1996) developed specifically for ma-
chine translation (MT). In MT, it is assumed that
source and target sentence are closely related; that is,
both express the same information albeit in a differ-
ent language. This “relatedness assumption” is not
generally valid for potential entailments, where the
text usually contains additional information which is
not related to the hypothesis (cf. Table 1). In the case
of an entailment, all information from the hypothe-
sis must normally have an aligned counterpart in the
text (but not vice versa). Besides making the align-
ment asymmetric, special attention will be given to
normalization, both where the depth and width of the
dependency trees as where the structure of the trees
are concerned. Since we are primarily interested in

the possibilities and limitations of normalized align-
ment techniques for RTE, we abstained from includ-
ing other sources in the classification and focussed
entirely on tuning the alignment algorithm.

2 Method

2.1 Preprocessing

Starting from the text-hypothesis pairs in the RTE
XML format, we first preprocess the data in a num-
ber of steps. As the text part may consist of more
than one sentence, we first perform sentence split-
ting using Mxterminator (Reynar and Ratnaparkhi,
1997), a maximum entropy-based end of sentence
classifier trained on the Penn Treebank data. Next,
all sentences are tokenized with the script originally
used for tokenizing the Penn Treebank, with some
tweaks to correctly tokenize large numbers. Next,
we perform part-of-speech tagging and lemmati-
zation. For POS tagging, we use the memory-
based tagger (Daelemans et al., 2003) trained on the
Penn Treebank data, using the Penn Treebank tagset.
For lemmatization, we employ the memory-based
lemmatizer (van den Bosch and Daelemans, 1999)
trained on the CELEX lexicon for English.

This is followed by the syntactic analysis, for
which we relied on the MaltParser system, a data-
driven dependency parser which can be used to in-
duce a parsing model from treebank data and to
parse new data using the induced model (Nivre and
Scholz, 2004). We use MaltParser as trained on the
Penn Treebank (which explains why we use Penn
Treebank tokenization and POS tags). We employ
the arc-eager version of the MaltParser, which de-
livers projective dependency trees.



Finally, the dependency structures are syntacti-
cally normalized to facilitate alignment between T
and H. These normalization rules rely on lemmas,
POS tags and dependency relations. This step in-
volves the following three syntactic transformations.
(1) Auxiliary reduction: To simplify the dependency
trees, auxiliaries of progressive and perfective tense
are removed, and their children are attached to the
remaining content verb. The same goes for modal
verbs, and for do in the do-support function. (2)
Passive to active form: The passive form auxiliary
is removed, the original subject becomes object, and
(where possible) a by-phrase becomes the subject.
This facilitates alignment between passive and ac-
tive sentences. (3) Copula reduction: Copular verbs
are removed by attaching the predicate (i.e., the sub-
tree with dependency relation PRED) as a daughter
to the subject (i.e., the subtree with dependency rela-
tion SUB). The motivation for this rule is to enhance
the alignment of appositive constructions (“The U.S.
president, George Bush”) with their sentential coun-
terparts (“The U.S. president is George Bush”).

The linguistically enriched text-hypothesis pairs
are stored in XML format to serve as input for tree
alignment.

2.2 Tree alignment algorithm

The tree alignment algorithm of Marsi and Krah-
mer (2005), which was adapted from Meyers et al.
(1996), calculates the match between each node in a
dependency tree D against each node in another de-
pendency tree D’. The matching score for each pair
of nodes depends not only on the similarity of the
nodes, but also recursively on the scores of the best
matching pairs of their descendants. For an efficient
implementation, dynamic programming is used to
build up a score matrix, which guarantees that each
score will be calculated only once.

More precisely: given two dependency trees D
and D', for T and H respectively, the algorithm
builds up a score function S (v, v) for matching each
node v in D against each node v’ in D’, which is
stored in a matrix M. The value of S(v,v’) is the
score for the best match between the two subtrees
rooted at v in D and at v' in D’. When a value for
S(v,v") is required, and is not yet in the matrix M,

it is recursively computed by the following formula:

TREEMATCH (v, v')
max; S(v;,v')

max; S(v,v}) — SP

S(v,v") = maz

where v; denotes the ¢-th child of v and v; denotes
the j-th child of v'. The three terms correspond to
the three ways that nodes can be aligned:

1. root node v can be directly aligned to root node
v’ (see below);

2. any of the children of v can be aligned to v';
3. v can be aligned to any of the children of v'.

The last two options imply skipping one or more
edges, and leaving one or more nodes unaligned. In
the original formulation of the algorithm (Meyers
et al., 1996), there is a penalty for skipping edges.
We modified the algorithm such that only skipping
nodes in the hypothesis’ dependency tree is penal-
ized by Skip Penalty (0 < SP < 1), whereas skip-
ping nodes in the text’s dependency tree is not.

The function TREEMATCH (v, v') is a measure of
how well the subtrees rooted at v and v" match:

TREEMATCH(v,v') =
PW - PARENTMATCH(v,v') +
(1 — PW) - CHILDMATCH(v,v’)

Here we introduced a weighting factor Parent
Weight (0 < PW < 1) which determines the con-
tribution of the match between the parent nodes rel-
ative to the contribution of the match between child
nodes. The PARENTMATCH function is defined as:

PARENTMATCH (v, v') =

1 if word(v) = word(v')

1 if lemma(v) = lemma(v')
1 if synonym(v,v’)

1 if hypernym(v,v’)
sim(v,v") if sim(v,v") > 0.1

0 otherwise

This basically states that two words are similar if
their lowercase word forms or lemmas are identi-
cal, but also if the word in the text is a synonymn



development

NMOD PRD NMOD NMOD NMOD
The harmful of by ago 0.90
AMOD AMOCAMOD PMOD PMOD AMOD
to as also agriculture humans years 1.00 existed
PMOD SBAR NMOD NMOD 1.00 SUB VMOD
ecosystems destroyed early roughly 1.00 Humans ago
NMOCNMOD VMOCOBJ VMOD VMOD AMOD AMOD
many natural and they replaced systematically 10,000 years
VMOD 1.00 NMOD
with 10,000
PMOD
versions
NMOD
artificial

Figure 1: Normalized alignment (dotted lines) of the dependency trees (straight lines) for T (left) and H
(right) of ID 462, see Table 1. Since the alignment of the respective root nodes is above the optimal threshold
for IR (0.6), this example is classified as an entailment.

of the word in the hypothesis according to WordNet,
or when the hypernym closure of the text word con-
tains the hypothesis word. Finally, a pair of words
is to some degree similar when the pair is found
in Dekang Lin’s dependency-based thesaurus with
a proximity score higher than 0.1.2

The second component of TREEMATCH is the
CHILDMATCH function, which represents how well
the children of node v and v’ can be aligned.

CHILDMATCH(v,v') =
/

v

max ‘ J

p € P(v,v) (.Z

i,5) €Ep

—_ . . /A
7] S (i, v3)

2 Available from http://www.cs.ualberta.ca/
~lindek/downloads.htm

Here P(v,v’) is the set of all possible pairings of
the n children of v against the m children of v/,
which amounts to the power set of {1,...,n} x
{1,...,m}. Notice that this implies the match is
unordered, so we intentionally abstract from the sur-
face word order. The summation ranges over all
pairs, denoted by (4, 7), which appear in a given pair-
ing p € P(v,v’"). Maximizing this summation thus
amounts to finding the optimal alignment of children
of v to children of v'.

The expression [v}|/[v'| represent the number of
tokens dominated by the j-th child node of node v’
in the hypothesis divided by the total number of to-
kens dominated by node v'. This weighting factor
is another extension to the original algorithm. It not



Table 2: Parameter settings for Skip Penalty (SP),
Parent Weight (PW) and Treshold (TH) per task.

Task SP PW TH

IE 06 02 0.6
IR 0.8 0.1 0.6
QA 09 02 06
SUM 09 0.1 04

only guarantees that the value of CHILDMATCH is
normalized (i.e., always between zero and one), but
also has the effect of giving a higher weight to com-
plex child nodes. Without this factor, an aligned ter-
minal node would have the same contribution as a
complex non-terminal child node in which just one
node is aligned.

Finally, there are a number of specific issues
which we mention briefly. During the alignment, all
nodes representing punctuation are discounted. The
skip penalty (SP) and parent weight (PW) parame-
ters have task-specific settings (depicted in Table 2).
Somewhat to our surprise, we found that it is not
beneficial to take dependency relation labels into ac-
count during the matching of child nodes. If the text
consists of multiple sentences, we try to align the
hypothesis to each of these sentences, and pick the
alignment with the highest score. Similarly, if the
dependency analysis of a sentence fails and as a re-
sult is not fully connected (i.e., consists of multiple
trees), we try to align the hypothesis to each of these,
and again pick the alignment with the highest score.
When looking for synonymns, hypernyms and sim-
ilar words in the PARENTMATCH function, we also
look up phrasal verbs, where the most likely verbal
particle is derived from the dependency analysis and
POS tag.

2.3 Entailment prediction

In order to predict whether an entailment relation
holds between the text and hypothesis, we simply
look at whether the top node of the hypothesis de-
pendency tree is aligned, and whether the alignment
strength exceeds a certain treshold value. The tresh-
old (TH) is set differently depending on the task, as
shown in Table 2. These settings were obtained by

Table 3: Percent accuracy on RTE2 development
and test sets, where Dev, uses optimized settings
and Devg uses the submitted settings (same as for
the test set).

Task Dev, Devy, Test
IE 56.0 53.0 520
IR 61.0 58.0 585
QA 60.0 575 625
SUM 72.0 720 69.0
Overall 6225 60.1 60.5

manual optimization on the training set.

3 Results

Table 3 presents the results on the RTE2 develop-
ment and test sets for each of the four subtasks.
The normalized alignment approach yields an over-
all 60% accuracy on the test set, with the results on
the SUM subset clearly best (with an accuracy of
nearly 70%) and those on the IE subset clearly worst
(barely above chance level). Overall, the alignment
algorithm thus significantly outperforms the “always
predict entailment” baseline (50%). Moreover, the
scores on the test set differ only marginally from
those on the training set (in fact, they are slightly
better), which suggests that the approach is not over-
fitted and that the obtained performance level is
fairly robust. Tuning the three parameters for each
subset individually is also beneficial, which indi-
cates that the nature of the alignment is different
across the various subsets.

4 Discussion

The pattern of results seems comparable to the re-
sults reported on the RTE1 test set (Dagan et al.,
2005), in the sense that one subset appears to be eas-
ier than the others (CD in RTE1 and SUM in RTE2).
Presumably, these subsets are easier, because they
rely least on the presence of background knowledge.
In addition, the intuition that a good alignment be-
tween T and H is indicative of entailment seems in-
herently more plausible for the SUM subset than for
the other three.



Even though our approach to alignment clearly
performs better than the baseline strategy, there is
plenty of room for performance gains, which can
be obtained in various ways. First, the dependency
parser could be improved. In the current set up it
erred occasionally; a small number of texts (91) re-
sulted in broken parses (no unique root node), which
obviously makes aligning problematic. Moreover,
the analysis of numbers and dates was not always
adequate, and various additional syntactic transfor-
mations suggest themselves but are not yet imple-
mented.

Still there are clear limits to the applicability of
alignment for entailment detection. A manual anal-
ysis of the test set revealed that in the vast majority
of the cases where T entails H, it was possible to
align the top node of H with some node in T . But in
many cases, the alignment can only be established
on the basis of background knowledge. The prob-
lem can be illustrated with example ID 759 shown
in Figure 1. Arguably, “several deaths” in T can
be aligned with “loss of life” in H, and probably
“blamed” can be aligned with “caused” (but this is
trickier®). It can be argued that for these cases, be-
sides alignment, the classification of semantic rela-
tions between phrases might be beneficial as well
(Marsi and Krahmer, 2005), and we hope to experi-
ment with this in future work.

We believe that the best and most robust results
on the RTE task will be obtained by combining dif-
ferent information sources, see e.g., Bos and Mark-
ert (2005) or Raina et al. (2005). The current paper
argues that normalized alignment could be one of
these information sources.
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