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Spelling error detection and
correction: a brief survey

Spelling error detection and correction of electronic text has been a
topic for research from the very earliest days that computers began to
be used to produce text. Kukich (1992), in her survey article that spans
the research work done in the first thirty years or so, calls it ‘a perennial
research challenge’ (p. 377). The present work continues the search for
better ways of using computers to obtain less noisy texts produced by
means of computers.

In this chapter we give an overview of the main issues that arise in
the field of spelling error detection and correction. We illustrate these
issues on the basis of the prior art. We first introduce some terminology
in Section 1.1. In section 1.2 we focus on the issue of what constitutes
a language’s vocabulary. We give an overview of the types of errors one
may encounter and outline different approaches to the string correc-
tion problem in Section 1.3. In Section 1.4 we give a brief historical
overview of research into spelling error detection and correction. We
outline the, as yet incomplete, shift of focus from non-word errors on
their own, in isolation, to errors within the context they appear in.
We also discuss developments in the noisy channel based approach to
spelling correction. We conclude the section with an investigation into
the relationship between errors, their context and the order in which
spelling error correction systems present corrections to the user. In Sec-
tion 1.6 we describe the contributions made by this dissertation. We
conclude the chapter with an overview of the rest of this dissertation.

1



2 TEXT-INDUCED SPELLING CORRECTION

1.1 An introduction to the field and its basic
terminology

This dissertation is about language. The main building blocks of lan-
guage are words. Words can be spoken and heard; they are not the
subject of this dissertation. We focus solely on words that are written
and can be read. More particularly we focus on the fact that things
may go wrong when words are written down. This may result in char-
acter strings that do not in fact exist in the language. We call these
non-words. Following Daelemans (1987) non-words might be loosely
defined as ‘unintentional deviations from some spelling convention’.
Sometimes things go wrong when words are written down in such a
way that the word written down is actually a word which exists in the
language but is in fact out of place as viewed from the context: the
words surrounding this unintended word. This kind of error is called a
real-word error. We do not focus on real-word errors in this work,
though we briefly discuss them further in Section 1.3.1, where we also
give some examples. Apart from that, the present work focuses exclu-
sively on non-word errors.

Writing used to be done mainly by hand, arguably most often using
a pen and paper. When accidentally a word was produced which did
not exist in the language, this was most often without long-term conse-
quence. Since the advent of computers, most writing is arguably done
by means of a keyboard, and the result is a text in electronic format,
which may then be committed to paper, but which is also likely to be
further maintained in electronic format. Eventually enormous amounts
of text thus produced have and are being collected and further dissemi-
nated. All the little everyday accidents of producing text by means of a
keyboard are thereby kept alive and archived like the texts themselves.
It is on these little accidents, their accumulation in huge collections of
electronic text or corpora and on possible ways of reducing their impact
on the quality of these corpora that we focus in this work.

We briefly mention other ways of producing electronic text in Section
1.4.3. This is mainly because interesting ways of reducing the impact
of the typical types of errors introduced by these other text produc-
tion methods have been proposed and because we can use some of the
techniques and heuristics employed there for our own purposes.

In order to be able to study the impact of the accumulation of ‘un-
intentional deviations from the spelling convention’ on the quality of
a corpus, one first needs to get a lever on how one is to decide what
constitutes a deviation and what constitutes the norm in a language.
In the next section, we treat this first step. In a second step, one then
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needs ways of restoring the deviations to the norm. This is the main
topic of this dissertation to which we devote Chapters 3, 4, 5 and 6.
Studying the accumulation of deviations is a subtopic to which we de-
vote Chapter 2. Studying the actual impact of this accumulation we
defer to later work.

In terms of a spelling checking system, deciding which of the words
in the text are acceptable and which are unacceptable given a particular
language constitutes the error detection phase. The correction phase
is where the deviations are restored to the norm. The correction system
often returns several correct words for a particular word which the
detection system decided is unacceptable. The words returned we call
the correction candidates, further abbreviated as: ccs. Most spelling
error correction systems list the CCs they return in a particular order,
with the intention of presenting what is probably the best cC first. This
process is called ranking. We get best-first ranking when the CC at
the top or beginning of the list, presented first to the user, is actually
the word that resolves the typo given the particular context the typo
was in.

1.2 The vocabulary

Who is to say what words exist in a language? One person’s view on the
matter may differ widely from another’s. A word perfectly acceptable to
one may be completely unacceptable to another. One way to settle the
issue may be to try and find out whether the word under consideration
is perhaps a one-off accident or is in fact shared by many within the
language community, in which case it may be said to be part of a
convention. We can use corpora to try and find out. Given a corpus of
many millions of running words, some words will have been used many
times, others will occur less often and some perhaps not at all. When
we count how often words are used in a corpus, we in essence compile
a frequency list. In relation to word frequency lists we talk of word
types as contrasted to word tokens. When one derives a frequency
list from a text, the tokens are counted and each distinct type with
its frequency count is added to the list. The word types that make up
the list define the vocabulary as observed in the corpus. The list then
contains all the word forms observed. The word forms retain their
inflections in a frequency list; they are not typically reduced to their
lemma, the word form under which the various inflected forms would
fall in a dictionary. The vocabulary contained in a corpus should not be
taken to constitute the language’s vocabulary: there may actually be
many words in the language that happen not to be in the corpus at all,
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however large this corpus is. The same goes for the vocabulary provided
to a spelling error detection and correction system. Even though such
a system’s dictionary may be very large, it cannot be complete.

1.2.1 Zipf

George Kingsley Zipf was one of the first to apply the statistical method
to language and look at the number of occurrences of words and what
these frequencies tell us about how language works. There is a tremen-
dous body of literature on Zipf’s work. An excellent bibliography cov-
ering all related work dating back as far as the 1890s is maintained
by Wentian Li'. Proponents of Zipf today are Ferrer i Cancho and
Solé (2001), Ferrer i Cancho and Solé (2002), Ferrer i Cancho and Solé
(2003), Ferrer i Cancho (2005a), Ferrer i Cancho et al. (2005) and Fer-
rer i Cancho (2005b). An accessible summary of these papers is to be
in Solé (Forthcoming).2 These works are important in that they ap-
pear largely to vindicate Zipf’s findings, though corrections to Zipf’s
derivations are proposed. Zipf’s own formulations of his findings in the
preface to Zipf (1935) actually suffice for our purposes. On the prob-
ability of seeing a particular word a particular number of times in a
sample of English, he wrote (p. xi-xii):

In any extensive sample of connected English, it will, in all probability,
be found that the most frequent word in the sample will occur on the
average once in approximately every 10 words, the second most fre-
quent word once in every 20 words, the third most frequent word once
in every 30 words, the 100th most frequent word once in every 1000
words, the nth most frequent word once in every 10n words; in brief,
the distribution of English approximates with remarkable precision an
harmonic series.

This has become known as Zipf’s first law, which is an empiri-
cal observation and not a law in a rigorous sense. In the definition of
the National Institute of Standards and Technology or NIST, a United
States federal technology agency, the law reads®:

Definition: The probability of occurrence of words or other items starts
high and tapers off. Thus, a few occur very often while many others
occur rarely.

Formal Definition: Pn ~ 1/n%, where Pn is the frequency of occurrence
of the nth ranked item and a is close to 1.

I http://www.nslij-genetics.org/wli/zipf/
2 http://www.isrl.uiuc.edu/~amag/langev/paper /sole_scalingLaw.html
3 http://www.nist.gov/dads/HTML/zipfslaw.html
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In the formal definition, the nth ranked item is the item that comes
on the nth place in the frequency list, where all items that share the
same frequency, share the same rank. A Zipfian distribution is de-
fined as a distribution of probabilities of occurrence that follows Zipf’s
law.4

On the number of different words to be found in a sample, we read
(p. xii):

[...] one finds in English (or Latin or Chinese) the following striking
correlation. If the number of different words occurring once in a given
sample is taken as z, the number of different words occurring twice,
three times, four times, n times, in the same sample, is respectively
1/22,1/3% 1/42, [...], 1/n® of 2, up to, but not including, the few
most frequently used words; that is, we find an unmistakable progres-
sion according to the inverse square, valid for well over 95% of all the
different words used in the sample.

On the length of words (p. xi):

[...] it can be shown that the length of a word, far from being a random
matter, is closely related to the frequency of its usage - the greater the
frequency, the shorter the word.

This has come to be known as the ‘law of abbreviation’. Zipf appar-
ently never proposed a mathematical function to derive frequency from
word length. This was recently done by Sigurd et al. (2004).

An authoritative overview of all matters mathematical and statisti-
cal concerning word frequency distributions is given by Baayen (2001).
The main subject of the book is the quest, within lexical statistics, for
the formula that best predicts and fits the empirically observed data,
given a particular corpus. Especially relevant in light of the present
work is the fact that word frequency distributions are Large Number
of Rare Events or LNRE distributions. LNRE distributions, due to
Khmaladze (1987) (non vidi), are characterised by the presence of large
numbers of words with very low probabilities. This entails that when
sampling words the sample size has to be extremely large for the vo-
cabulary size to stop increasing given an even larger sample. Also that
the numbers of hapax legomena, dis legomena, etc. are non-negligible,
statistically. Baayen (2001) reviews the various proposals for extensions
or adjustments to Zipf’s laws made throughout the years in light of the
statistical properties of LNRES.

We refer time and again to Zipfian distributions throughout this
work. In the following two subsections we take a closer look at what
Zipf’s work entails for the size of a language’s vocabulary and for the

4 http://www.nist.gov/dads/HTML/zipfian.html



6 TEXT-INDUCED SPELLING CORRECTION

distribution of words within texts and we describe what the implica-
tions of these entailments are for designing a spelling error detection
and correction system.

1.2.2 The size of the vocabulary

The growth rate of the vocabulary, i.e. how many previously unseen
words are seen given ever larger samples of text in a particular lan-
guage, is one of the key issues addressed in lexical statistics. The growth
rate can be estimated by the ratio of hapax legomena to the number
of tokens (Baayen, 2001) (p. 50). The size of the vocabulary, i.e. the
number of word types, is required by the definition of LNREs, due to
Khmaladze (1987) (non vidi), to be infinite (Baayen, 2001) (p. 56).

Looking for applications and explanations of Zipf’s law, Powers
(1998) studies what happens to the acquisition of new vocabulary by
taking successively double-sized samples from a corpus. He observes
that words tend to enter the vocabulary faster than they tend to re-
peat, as is evident from the fact that the number of words of frequency
1 tends to increase as the size of the sample increases. He concludes
that given that language is productive, and that an unbounded lexicon
model has been indicated (or at least seems possible) in his experi-
ments, this trend may well continue indefinitely, although it does seem
to slow as the sample size is increased.

In another study of Zipf’s Law, Kornai (2002) (p. 83-84) also con-
cludes that there are an infinite number of words in English: ‘This
conclusion was arrived at not on the basis of productive morpholog-
ical processes, but rather by inspecting the characteristic properties
of large corpora, and deriving the open vocabulary result from these
properties.” Nevertheless: ‘results support the conclusion that the main
grammatical source of infinite vocabulary growth is productive genera-
tive morphology, in particular compounding’. If anything at all should
be regarded differently, he argues: ‘it should be numerals, typos, eye-
dialect [e.g. Arrrrrrrnnnnnold), direct quotations from other languages,
and other arguably extragrammatical material that can be seen as con-
taminating the basic vocabulary pattern’.

Implications for spelling error detection and correction If a
language’s vocabulary is infinite, it follows that no dictionary repre-
senting the language can ever be complete. So, the best way we have
of capturing as much of the language’s vocabulary is by deriving the
lexicon from as large a collection of text in the language as possible.
The results obtained by Powers (1998) show that this too will never
be enough, but that nevertheless given a sufficiently large corpus, the
effect of incompleteness grows smaller. The effect should grow smaller
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because words not seen given e.g. a one billion word corpus, are the
more unlikely to be present in a far shorter text to be spelling checked.

It is as if we verbatim followed the ‘recommendations’ by Kornai
(2002) in designing the system we propose. We reasoned we might want
to build a spelling checking system for a language for which there are,
or we have, no resources such as dictionaries available. Dictionaries are
expensive. We refer the reader to Mcllroy (1982) who relates all the
design decisions, tribulations and trials he went through in developing
the English dictionary for the first generation spelling error detector
SPELL, which was also incorporated into the second generation spelling
error corrector ISPELL. McIlroy (1982) notes: ‘The word list for the UNIX
spelling checker, SPELL, was developed from many sources over many
years.” We do not have years to compile our own dictionaries for English
and Dutch. By using corpus-derived lexicons we hope to overcome the
limitations of traditional spelling checking systems’ dictionaries, among
other things the almost complete lack of names. To again quote Mcllroy
(1982): ‘Where does one stop in accepting words? Dictionary makers try
to cover everything but proper nouns in a broad range of fields. Proper
nouns however abound in real text; a spelling checker that ignores them
will be weak indeed’.

Further in line with Kornai (2002) we treat numerals differently. As
we explain in Chapter 3, we do not disregard these but regard whatever
string of digits encountered as a single, arbitrarily chosen, digit.

Typos we naturally treat differently, as they are the object of our
attention, but also a source of noise we have to contend with in that
they will be present in our lexicon. We cannot therefore ‘trust’ the
lexicon and require ways of circumventing this noise.

Eye-dialect and direct quotations from other languages may or may
not be integrated in our lexicons, as is explained in Chapter 3. In Chap-
ter 4 we evaluate our approach for both English and Dutch. Direct
quotations from other languages in effect gave rise to the work on mul-
tilingual spelling correction which we present in Chapter 6.

Implications of using corpus-derived lexicons In the above we
have used the terms dictionary and lexicon to refer to the vocabu-
lary available to a spelling error detection and correction system. This
vocabulary is traditionally referred to as the system’s dictionary. The
word dictionary as we use it here complies well with sense 3c of the word
as defined in Webster’s Third New International Dictionary (1981): ‘a
vocabulary of accepted terms’. It is only in Cucerzan and Brill (2004),
as far as we are aware, that this was first made explicit; a spelling cor-
rection system’s dictionary had always been assumed ’trusted’ before.
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Using a corpus to derive the vocabulary no assumption of trust can be
made. Noise in the corpus will find its way into the derived vocabulary.
We therefore refer to the vocabulary available to our system as to its
‘lexicon’, in compliance with the second sense of the word in Webster’s:
‘the vocabulary of a language, of an individual speaker, of a set of doc-
uments, of a body of speech, of a subject, or of an occupational or other
group’. In deriving the system’s vocabulary from a corpus, from ‘a set
of documents’, it can therefore be adapted to the purposes at will, but
for reasons which are made clearer in Chapter 2, cannot be trusted in
the same way as a dictionary.

Recent work by Comeau and Wilbur (2004) explores the possibility
of identifying non-word spelling errors in a large corpus without mak-
ing use of a trusted dictionary. The corpus is MEDLINE, a collection
of more than 12 million references and abstracts covering recent life
science literature. They argue convincingly that it would be unrealistic
to try and maintain a dictionary with all properly spelled words, as
the advance of research and the creativity of the researchers continu-
ally expands the vocabulary. So they use the corpus to try and detect
misspelled words within it. This they do on the basis of a measure
called strength of context, due to Kim and Wilbur (2001). The measure
is a nonnegative real number the size of which reflects how strongly
the word associates with the other words appearing in the documents
in which it occurs. This score is typically low for misspellings as these
occur less frequently than the correct variant and so do not have the
same opportunity to build a consistent, reliable context. Though dif-
ferent from the cooccurrence counts we introduce in Chapter 3 and use
throughout in our approach, the underlying ideas are very similar.

1.2.3 The bursty nature of words

In a study of the effects of lexical specialization on the growth curve
of the vocabulary, Baayen (1996) (p.473) writes: ‘this paper provides
ample evidence that once a word has been used it is much more likely to
be used again than the [random distribution of words] model predicts’.
This is further elaborated in Baayen (2001), where Chapter 5 deals
with the non-random nature of word usage and where adjusted LNRE
models are proposed that can account for the locally concentrated,
underdispersed use of key words.

Kleinberg (2002) studies this phenomenon over time in text collec-
tions such as his personal emails and research paper archives. A ‘burst
of activity’ in the frequency of certain features signals the emergence of
a new topic. Modelling this then allows for the detection and tracking
of topics, e.g. particular news events.
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Curran and Osborne (2002) explore whether a very large corpus
(1.145 billion word tokens) can eliminate the sparseness problems asso-
ciated with estimating unigram probabilities in empirical natural lan-
guage processing. The data sparseness problem is described by Man-
ning and Schiitze (1999) (p. 198-199) as follows:

While there are a limited number of frequent events in language, there
is a seemingly never ending tail to the probability distribution of rarer
and rarer events, and we can never collect enough data to get to the
end of the tail.

This is in fact another paraphrase of Zipf’s first Law as well as a com-
mentary on it. The tail consists of hapax legomena: words that have
been seen only once in the whole corpus and, however large the corpus:
‘hapax legomena often constitute half of the types, but only a fraction of
the tokens’. (Manning and Schiitze, 1999) (p.199). Curran and Osborne
(2002) study the convergence to the gold-standard unigram probability
for words given ever larger subpartitions of the whole corpus, the gold-
standard being the unigram probability as measured given the whole
corpus. Most interesting, they find, is the convergence behaviour of
‘rare but not necessarily unusual words, which is where using a large
corpus should be most beneficial in terms of reducing sparseness’ (p.
128). An example of such words is tightness, which appears 2,652 times
in the corpus: this particular example failed ‘spectacularly to converge’
(p. 129), it being ‘an extreme example of the case where a word is seen
very rarely, until it suddenly becomes very popular’ (p. 129). They con-
clude that this is due to burstiness: ‘the fact that word occurrence is
not independently and identically distributed’ (p. 129). Proper names
and topic-specific nouns and verbs exhibit the most bursty behaviour:
newspaper articles are naturally clustered together as events occur over
time.

Implications of word burstiness for spelling error detection
and correction As words are bursty in nature, it follows that given
a typo in its input document context, it is likely that the context may
yield the correct form. This need not be the exact same word form,
in Dutch e.g. it is likely the word recurs as part of a compound, or
perhaps even more likely that the error occurs in a compound, con-
taining as constituent part the correct word occurring elsewhere in the
text in its free form. The latter is currently mere impression, based
on our own observations: we cannot, to date, offer a quantification of
this observation. Nevertheless, we incorporate in our spelling correc-
tion system a preprocessing phase that studies the input document
and provides both detection and correction phases with information
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about resembling words and their input document frequency.

This idea is by no means new, it was already employed to good
effect by Morris and Cherry (1975). They used the document to be
spell-checked itself to derive a ranked list to be presented to the writer.
The ranking was based on ‘string peculiarity’, as derived by a specific
measure from the document since the system had no other dictionary.
The top of the list contained the ‘outliers’, in most cases: typos.

1.3 Errors in electronic text

Work on automatically identifying errors in electronic text goes back
to the very first days when text was produced electronically. We can-
not review all the early work here. A very comprehensive survey of the
field prior the beginning of the nineteen-nineties is provided by Kukich
(1992). We refer to some of the early work in what follows when it
is relevant in that it introduced useful terminology or important tech-
niques. Following linguistic convention we mark all typos by an initial
asterisk (Crystal, 1985): *tiepographical. If this is contrasted to its cor-
rect form, the latter is presented in italics: typographical. The example
we just gave was made up.® This is the only time we will use a fabri-
cated typo. All other examples appearing in this work are real-world
errors. These are errors which are attested: we found them either in
electronic corpora or in printed material and can therefore show them
in their original context. Real-world errors should not be confused
with real-word errors, for which we provide some more examples in
the next subsection.

1.3.1 Real-word errors
CANDIDATE FOR A PULLET SURPRISE
I have a spelling checker,
It came with my PC.
It plane lee marks four my revue
Miss steaks aye can knot sea.
— by Jerrold H. Zar

Mistyping a word may result in a word which does not exist in the
language or one which does, according to convention. This gives rise to
the distinction between what are termed non-word errors and real-word
errors.

Real-word errors are most commonly termed confusables or
confused words. They require different strategies for detection than

5 However, at the time of writing (07-04-2005) it produced a ‘Googlewhackblatt’,
which is the Google equivalent of a hapaz legomenon: Google returned exactly 1 hit
for this single word query.
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pubic administration [1] | pubic hair [2] pubic support [1]
pubic areas [1] pubic hearing [2] pubic use [1]

pubic debate [1] pubic holidays [2] | slumping pubic [2]
pubic details [1] pubic offering [1] | wants pubic [1]

pubic enquiry [1] pubic outlays [1] wide-ranging pubic [1]
pubic finances [2] pubic releases [1]

pubic funds [4] pubic sector [4]

TABLE 1.1 Selection of public confusable in Reuters RCv1. Between square
brackets we present the word bigram’s corpus frequencies.

non-word errors do and, in particular, cannot be resolved by the state-
of-the-art spelling checker systems available today. Some types of con-
fusable, usually a limited list of very commonly confused words, are
handled by grammar checkers. A grammar checker uses a real-word’s
context to decide on whether or not the word or word form was used
correctly, from the language’s grammar point of view. In this it per-
forms context-dependent real-word correction, which we discuss further
in Subsection 1.4.1.

A real-word error may be one where a correct, but semantically im-
plausible word was used instead of the more probable alternative word.
In: ‘T have seen it two’ the last word has confusingly been substituted
for ‘too’. Real-word errors also often involve syntactic errors, where e.g.
the verb does not agree with the subject of the sentence (‘He drink too
much’), or where e.g. a preposition is used instead of a verb: ‘By my
guest!’.

We present a selection of bigrams with a confusable for public for
scrutiny and disambiguation by our readers in Table 1.1. The confusable
had an overall corpus frequency count of 29 occurrences, only a fraction
of which were not confused. This means the confused usage is actually
more prevalent in this corpus than the regular usage, which probably
occurs but rarely. This is certainly not to say that real-word errors
are rare: according to Kukich (1992) they may account for fully 40%
of the errors found in a corpus. Our examples were taken from the
Reuters rRov1 Corpus, which we discuss in more depth in Chapter 2,
where we also describe the other corpora used in this study. When we
mention the corpus frequency for an example, we present it between
square brackets.

1.3.2 Types of non-word errors

Kukich (1992) (p. 387) discusses three different types of non-word er-
rors, largely on the basis of what caused the error. She states that often
a distinction is made between mistypings: mechanical mishaps related
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to the keyboard (e.g. *speel for spell), and cognitive errors: caused
because the writer does not know how the word is to be spelled cor-
rectly (e.g. *sattelite for satellite). A subset of the latter category are
phonetic errors, where the writer substitutes a phonetically correct
but orthographically incorrect sequence of letters for the intended word
(e.g. *parashooter for parachuter). As was already stated by Damerau
(1964) (p. 171): ‘it is usually not possible to determine the source of the
error from the output’. It is nevertheless relevant to note that as can
be seen from the example we just gave, phonetic errors tend to distort
a word’s spelling more than the other two categories usually do. For
the sake of brevity, we here simply refer to all errors which result in
a non-word as ‘typos’. However, to avoid confusion between typos and
word types, where applicable, we may also refer to them as erroneous
word forms or simply errors.

In relation to spelling error detection and correction systems, an-
other error typology is handled. This typology is commonly attributed
to early work by Damerau (1964), but is attributed to Gates (1937)
(non vidi) by Pollock and Zamora (1984). This typology distinguishes
between 4 edit operations: string manipulation operations necessary
to transform a typo into its correct form.

« deletion: 1 or more characters are missing: *abot for about

« insertion: 1 or more characters were added: *aboaut for about

« substitution: 1 or more characters were replaced by others: *obout
for about

« transposition: 2 or more characters swapped places: *abuot for
about

The error types are actually named from the point of view of the
correct word form: one would need to insert the character u to turn
*abot into the correct about, but the error is called a deletion error. In
Damerau (1964) the correction system proposed actually handled only
single character errors of the first three categories and 2 adjacent char-
acters in the case of transpositions. These limitations no longer apply
today, but we will refer to these more limited operations as Damerau
edits, as they commonly are.

Ingels (1997) conducted a survey of all the error types present in two
corpora. His definition of lexical errors includes not only the standard
in-word errors but also between-word or segmentation errors. These
are split words, a single word that was written as two or more to-
kens and run-ons, two or more words that were written as one token.
Ingels provides a fine analysis of the reasons why most spelling correc-
tion systems available today cannot handle segmentation errors. As the
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first reason, he states that they are less frequent than spelling errors
in naturally occurring texts. But the most likely reason is the com-
plexity inherent in the segmentation problem, where taking account of
the context is essential. If one cannot assume that white space defines
the word boundaries, the number of possible edits to consider rises ex-
ponentially in the length of the strings under consideration and the
traditional approach to spelling error correction loses applicability.

One can use the number of edits necessary to transform one string
into another to express the distance between and thereby compare the
two strings, as we discuss in the next section.

1.3.3 Levenshtein distance

Given two strings, we would like to be able to say how much they
resemble each other. String distance is a metric to express this re-
semblance. Wagner and Fischer (1974) named one of the most popular
classes of algorithms for finding string distance the minimum edit dis-
tance algorithm: i.e. what is the minimum number of editing operations
needed to transform string A into string B? The operations are: adding
a character or insertion, removing a character or deletion and replacing
a character by another or substitution. Note that transposition is not
one of the operations. A cost or weighting factor can be assigned to
each operation. The simplest form of this was proposed by Levenshtein
(1965): each operation has a cost of 1. It is this cost we will use in
our study. Throughout this work we will refer to it as the LD, short for
Levenshtein Distance. Given the typo: *seroius and its correct form
serious, we will say they are at an LD of 2 to each other: two editing
operations are needed to transform the one into the other. A trans-
position therefore has a cost of 2: the way it is usually implemented
transpositions are actually handled by a deletion at the cost of 1 and
an insertion, at a further cost of 1.

The minimum edit distance is computed by dynamic programming,
first introduced by Bellman (1957): a table driven method is applied to
solve problems by combining solutions to subproblems. The table stores
the results obtained by earlier calculations on part of the problem, for
further use in solving the full problem. We refer to Jurafsky and Martin
(2000) (pp. 155-156) for further explanation and exemplification of
how the algorithm works. We use the minimum edit distance algorithm
in conjunction with the algorithm we propose: they complement each
other. Why this is and how it works is explained in Chapter 3. A further
source rich in LD information, examples and implementations is the web
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site by Michael Gilleland®.

When two strings have an LD of 0, they are exact matches of one
another. Approximate matches, which we discuss in the next section,
have an LD larger than 0.

1.3.4 Approximate matching

A superb in-depth overview of the state of the art in approximate string
matching can be found in Navarro (2001). Approximate matches
are strings that are similar but not identical to the string one looks for.
The overview focuses on approximate matching techniques for online
searching in text. Online searching stands in contrast to offline search-
ing, where the text can be preprocessed to build an index to it. An index
can be seen as a frequency list built from the text which apart from
the words and their frequencies further contains pointers to the posi-
tion(s) in the text where each word occurs. The index speeds up search
in the text, but building it has its own cost. Navarro (p. 33) specifi-
cally mentions that the field of indexed approximate string matching
is quite immature and that the problem is very important because the
texts in some applications are so large that no online algorithm can
provide adequate performance. The core correction mechanism we pro-
pose in Chapter 3 in fact allows for index-based approximate search.
We further note that Navarro states explicitly (p. 38) that ‘although
transpositions are of interest (especially in case of typing errors), there
are few algorithms to deal with them’. Our core correction mechanism
in fact excels at identifying transpositions.

An earlier paper by Zobel and Dart (1995) discusses various tech-
niques to find approximate matches in large lexicons. For retrieval from
document database systems using words, both personal name match-
ing and spelling correction can be required on the same data. This may
have various causes: the correct spelling may be unknown, the spelling
of a given word may vary or there just might not be a single accepted
spelling. The authors estimate that in one particular electronic text
collection, containing the Commonwealth Acts of Australia, one in five
of the distinct words are spelling errors. In Chapter 2 we assess the
incidence of typos in the Reuters RCV1 corpus.

Zobel and Dart (1995) also give an overview of approximate string
matching techniques. These break down into two families: string sim-
ilarity measures and phonetic methods.

String similarity measures may be based on the edit distance we
discussed above, or on n-gram similarities: an n-gram of a string s is any

6 http://www.merriampark.com/1d.htm
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substring of s of some fixed length n. A simple such measure is to choose
n and count the number of n-grams two strings have in common. But
water has as many n-grams in common with itself as with waterline. A
more elaborate version which takes account of the length of the strings
is due to Ukkonen (1992).

Phonetic methods produce a similarity key from a string. This key
can then be compared to the other keys derived from e.g. the names
in a database. The basic idea is to obtain the same key for words or
names that sound alike. The oldest phonetic method, SOUNDEX, due
to Odell and Russell (1918/1922), was patented as early as 1918. It
uses codes based on the sound of each letter to translate a string into
a canonical form. The first character is retained by the algorithm, all
the rest are translated into a numerical code and then the whole is
truncated to be at most four characters long. It was designed to bucket
together names with a similar pronunciation. It was rather crude, so
refinements have been proposed, the most popular of which is described
by Knuth (1981). There is also the PHONIX variant (Gadd, 1990), which
applies far more transformations to the string to be converted in a code.
The details are of no further interest to us here. Both SOUNDEX and
PHONIX are geared to English names, however. METAPHONE (Philips,
1990) and DOUBLE METAPHONE (Philips, 2000) are phonetic methods
that better account for international names. The METAPHONE variants
have been integrated in ASPELL” which in time will, according to some
sources at least, replace ISPELL® as the default Open Source spelling
checking and correction system, i.e. the one that will perform spelling
correction on LINUX systems unless the user specifies which spelling
checker he wants to use. ASPELL’s author, Kevin Atkinson, states that
his spelling checker merges the METAPHONE algorithm and ISPELL’S
near miss strategy which is inserting a space or hyphen, interchanging
two adjacent letters, changing one letter, deleting a letter, or adding a
letter”. This means that ISPELL is essentially an implementation of the
Damerau edits. ASPELL combines the Damerau edits and a pronunci-
ation model. Interestingly, the evaluations by Zobel and Dart (1995)
show that phonetic techniques are inferior to string distance measures.
As we will evaluate both ISPELL and ASPELL in Chapter 4, we will there
see how this combination performs.

Real world application Grannis et al. (2004) compare the real world
performance of approximate string comparators in the context of link-

7 http://aspell.sourceforge.net/
8 http://lever.cs.ucla.edu/fmg-members/geoff /ispell.html
9 http://aspell.net/metaphone/
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ing databases containing patient records from two hospitals. Due to
the disparity of database systems used, there is often the need to find
a match between records on the basis of e.g. the patient’s name and
a few more data fields such as date of birth, social security number,
street name, etc. Given the variability inherent to names this often re-
quires applying approximate string comparators. They discuss how yet
another phonetic similarity method they compare with, the New York
State Identification and Intelligence System algorithm, NYSIIS, is used
for what in database record linkage studies is known as blocking. This
is effectively a technique to reduce the search. As is explained in Bax-
ter et al. (2003): when databases need to be linked, potentially every
record from the one database needs to be compared to every record in
the other. The number of record comparisons then grows quadratically
with the number of records to be matched and this quickly becomes
computationally infeasible for large data sets. Traditional record link-
age systems therefore use a record attribute to split the database into
blocks. An example of a record attribute would be the first four char-
acters of the surname: all records whose surname shares the first four
would then constitute one block. Only for the records within a particu-
lar block will the finer exact and approximate matching strategies then
be applied. This is in line with Zobel and Dart (1995), who split up the
task of finding approximate matches in large lexicons into two parts:
first apply cheaper techniques to reduce the search space, then apply
finer string similarity measures to refine the search. In a way, that is
precisely what we propose in Chapter 3, though with a non-phonetic
similarity key.

We have now introduced basic terminology, discussed how strings
can be compared and how comparable strings can be identified in text.
In the next section we look at the problems of detecting and correcting
typos in isolation or within a context.

1.4 Brief historical overview

Research on spelling correction has over the past 50 years spawned a
respectable body of literature. We cannot review it all here, so we limit
ourselves to referring the reader to major papers for those topics we
consider peripheral to the research conducted here. Prior work that is
related to what we set out to present here, we discuss briefly.

1.4.1 TIsolated word correction versus context-dependent
correction

Kukich (1992) defines three increasingly broader and harder problems
(as described by Jurafsky and Martin (2000) (p. 143-144):
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-non-word error detection: detecting spelling errors that result in non-
words (like *graffe for giraffe)

- isolated-word error correction: correcting spelling errors that result in
non-words, for example correcting *graffe to giraffe, but looking only
at the word in isolation

- context-dependent error detection and correction: using the context
to help detect and correct spelling errors even if they accidentally result
in an actual word (real-word errors). This can happen from typograph-
ical errors (insertion, deletion, transposition) which accidently produce
a real word (e.g., there for three), or because the writer substituted the
wrong spelling of a homophone or near-homophone (e.g., dessert for
desert, or piece for peace).

We quote verbatim from Jurafsky and Martin (2000) in order to show
that somehow something seems to have slipped from the attention of
researchers. Indeed, in the third category we might expect to see the
example from the first two repeated but expanded with some context,
e.g. ‘Due to its long neck the *graffe is the tallest land animal’ or
‘A *graffe is when a politician tells the truth’'°. It appears the focus
in spelling correction research shifted to the third category at about
the beginning of the nineteen-nineties, but largely to the exclusion of
non-word errors. It seems the consensus was pretty much that non-
word error correction was ‘solved’ and it was time to tackle the harder
problem of detecting and correcting real-word errors. And so we witness
what we think was a rather unfortunate move, that ‘context-dependent’
error correction became to be associated with solving the real-word
problem, exclusively (Mays et al. (1991), Golding (1995), Golding and
Schabes (1996), Golding and Roth (1999)). In Carlson et al. (2001)
this is even extended to “context-sensitive text correction”, which then
covers anything to do with errors involving ‘improper use of real words’.
Clearly, progress has and is being made in solving real-word errors.
But what about the non-words, why is it the state-of-the-art spelling
checkers still work at the isolated-word level? So we see that state-
of-the-art research into non-word correction as reported by Brill and
Moore (2000) still regards adding a language model to the system as
something of an optional add-on, to be tried out, not to be taken as an
essential and integral part of a spelling correction system.

Note that the shift in research focus was not due to Kukich, who
stated explicitly that:

10 Te.: ‘A gaffe is when a politician tells the truth.’ attributed to Michael
Kinsley (b. 1951), U.S. journalist. Guardian (London, Jan. 14, 1992). Source:
http://www.bartleby.com/66/73/32773.html.
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A context-based correction technique would not only address the prob-
lem of real-word errors, i.e. errors that result in another valid word,
but it would also be helpful in correcting those non-word errors that
have more than one potential correction. [...] Developing context-based
correction techniques has become the foremost challenge for automatic
word recognition and error correction in text. (Kukich, 1992) (p.379)

A notable exception to this development within the English research
community is the work by Vosse (1992) and Vosse (1994) who devel-
oped a grammar-based spelling error correction system for Dutch. The
batch-oriented system, called CORR?® was developed to detect and cor-
rect morpho-syntactic errors in Dutch texts, i.e. errors within context.
It includes a spelling corrector based on trigram and triphone analy-
sis (van Berkel and de Smedt, 1988). A trigram analysis determines
which combinations of three characters occur with what frequency in
the words in the language. To select correction candidates the less fre-
quent combinations are actually used. A triphone analysis looks at the
phonemic transcription of words’ syllables. A set of rules then allows for
the identification of homophonous words, so this works for errors which
result on completely homophonous spellings. Vosse’s system further in-
cludes a shift-reduce parser based on Tomita (1986) which interacts
with the spelling corrector and handles certain types of structural er-
rors. The system therefore deals with both non-word and real-word
errors. Both modules have been integrated with a compound analyzer
and a dictionary of 275,000 word forms into a program for stand-alone
proof-reading of Dutch texts. This work had major impact in that it
was followed by a European Union sponsored project!! called SCAR-
RIE with the aim of developing a high-quality proofreading tool for
the Scandinavian publishing industry as a whole. In this project re-
searchers, companies and publishing houses from Denmark, Norway
and Sweden participated.

The system we propose is context-sensitive but focuses exclusively
on non-word errors. It is context-sensitive in that it has a language
model, but this language model is not probabilistic in the Bayesian
sense. It is also context-sensitive in that it ranks its CCs according to
evidence gathered from the immediate input text context for the typo
it corrects.

Huang and Powers (2001) remark

‘Note however, that all spelling correction is context-sensitive - the

difference with confused words is that the identification of spelling
errors is also context-sensitive.

1 http://www.hltcentral.org/projects/detail.php?acronym=SCARRIE
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This indeed highlights a major difference: for detecting a real-word
error you cannot rely on the technique commonly employed to detect
non-word errors: see if it exists in the dictionary or not. We would
like to add that to accurately correct a non-word error, you cannot do
without context either. A spelling correction system often returns more
than one correct word for a typo. In the absence of context, all you can
do, for those errors for which more than one correction candidate is
returned, is list them and, at best, list them in the order of which is
more probable than the other. What we propose to do is to list them in
the order that is most likely, given the particular context they appeared
in.

As the system we propose does not have a trusted dictionary, iden-
tification of the spelling errors is also a context-sensitive affair. Unfor-
tunately, this does not entail that the strategy we currently employ to
detect the typos also allows for detecting real-word errors. Though we
have great hopes of extending our system with strategies that do allow
for the detection and correction of real-word errors, that is beyond the
scope of this dissertation.

1.4.2 The noisy channel modelling approach to spelling
correction

Kernighan et al. (1990) were first to suggest the noisy channel ap-
proach to spelling correction. The basic assumption of this approach is
that the typist knows what words he wants to type, but some noise is
added on the way to the keyboard, in the form of typos and spelling
errors. It is further assumed that using classic Bayesian inference the
intended correction can often be recovered from the typo by finding
the correction that maximises the prior probability of a particular cc
in light of the likelihood that a character x was mistyped as y. The
prior probability for the CC is obtained by counting how often it occurs
in a corpus and normalizing this count, i.e. dividing the count by the
total count of all word tokens. The resulting probability then falls be-
tween 0 and 1. The likelihood that z is mistyped as y is estimated from
a corpus of typo/correct word pairs. In Kernighan et al. (1990) this
was based on the simplifying assumption that the correct word differs
from the misspelling by only a single insertion, deletion, substitution or
transposition. Nevertheless, the system, called CORRECT, was capable
of correcting the greater part of typos in text, given that most typos fall
within that range, as we will show in Section 2.2.5. CORRECT first gener-
ates a list of ¢Cs from the typo by applying all possible single character
transformations and repeatedly seeing if this results in a word present
in its dictionary. So for the non-word *acress the following list of cCs
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is retrieved: actress, cress, caress, access, across, acres. This was not
new, in fact, it was what the UNIX spelling checker SPELL did. The new
contribution was that, in a second step, the CCs were ranked: offered to
the user in the order of which CC is more likely to have been intended
by the typist when (s)he mistyped the word. This ranking is done on
a probabilistic basis. Using 4 confusion matrices, square 26 x 26 tables
which represent the number of times one of the 26 alphabetical charac-
ters was incorrectly deleted or inserted after another or substituted for
the other or transposed with the other, the probability for e.g. across
to have been intended when *acress was actually typed, is calculated.
The actual counts in the matrixes are derived from the large corpus of
errors, either manually or by iteratively using the spelling correction
algorithm itself, which results in the confusion matrixes being learned.
This model in fact predicts that acres was the intended word, a fact
contradicted by the original context, which clearly points to actress
having been the intended word: ‘... was called a “stellar and versatile
*acress whose combination of sass and glamour has defined her ...” .
However, in 87% of the cases where the error had 2 possible corrections,
CORRECT agreed with the majority consensus of three human judges
who had access to the contexts.

Brill and Moore (2000) and its successor (Toutanova and Moore,
2002), represent the state-of-the-art in spelling correction as proposed
in the literature. Brill and Moore (2000) extend the noisy channel model
to be able to handle an arbitrary number of edits. In particular they
improve the channel model for spelling correction, by learning generic
string to string edits, along with the probabilities for these edits. The
system is trained to correct generic single word spelling errors and is
conditioned on the position in the string that the edit occurs in. While
people rarely, they assume, mistype antler as *entler, reluctant is often
mistyped as *reluctent. So this error is modelled as P(ent—ant), i.e.
the probability that ent will have been typed rather than ant, rather
than simply P(e—a) as was done in the earlier models. Also, account
is taken of the positional information, the place in the word where this
kind of error is most likely to occur. This model is further equipped with
a probabilistic word trigram language model, which helps performance.
Toutanova and Moore (2002) slightly improve on the results of Brill and
Moore (2000) obtained without the language model, by further adding
a pronunciation model to the system.

Language-specific training data What all noisy channel models
have in common is that training data is required to derive the likeli-
hoods that character(s) = will be replaced by y. Kernighan et al. (1990)
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built confusion matrices for English on the basis of one year’s Associ-
ated Press newswire text. Brill and Moore (2000) used 8,000 common
English spelling errors to train their model. Training data for a noisy
channel model is necessarily language-specific and so is the derived
spelling correction system. In the next subsection we take a closer look
at the matter of ranking the CccCs.

1.4.3 Context and ranking

Context-less ranking We think it is only by virtue of adding a lan-
guage model and by taking the error’s context into account that the
misprediction of e.g. acres instead of actress for *acress can possibly
be overcome. Having an improved isolated-word error model for noisy
channel spelling correction by itself will not remedy this. Not taking
into account the context beyond the misspelled word will always result
in the same CC to be ranked first.
Let us consider the following laboratory sentence:

Her vehement *onjections to these painful *onjections were based on
solid medical evidence, as well as a hearty dislike of needles.

Whether these errors should be resolved to either objections or in-
jections is fully determined by their immediate context. It seems to us
nothing else can be called upon: both are keyboard adjacency cases:
both b and n and ¢ and o are adjacent on the keyboard. In a noisy
channel system the likelihood of ob versus in to be rendered as on
would determine the ranking, in combination with the prior probabil-
ity derived from a corpus. The Reuters corpus frequency of the words
is injections [346] and objections [1357]. This might guide the rank-
ing of proposed candidates, but would be very much dependent on the
background corpus used. Adding a language model would nevertheless
help best: a bigram language model would likely tell that vehement ob-
jections is a far more probable combination than vehement injections
while painful injections is far more probable than painful objections.

Context-guided ranking An accessible study which provides a
sound overview of the issues involved in generating and ranking spelling
error corrections is Tillenius (1996). He evaluates the generation and
ranking of spelling error corrections for Swedish. The corrections were
indicated by the original context the errors appeared in, culled from
newspaper articles and student essays. The error list contained 729
items. For ranking the correction candidates he explores the use of
modified edit distance (where the cost per edit is dependent on the
kind of edit required), word frequency and word bigram frequencies.
The word bigrams did not perform well. He concludes that for spelling



22 TEXT-INDUCED SPELLING CORRECTION

correction of texts on any subject, a much larger list than his 200,000
word pair list seems to be necessary. Combining edit distance and word
frequencies worked best, on the isolated word level. He states that in
order to attain further improvement, context information is probably
needed. The best-first ranking score attained was 77%, when counting
only the typos for which the correct word appeared in the dictionary.

Agirre et al. (1998) study what kind of knowledge facilitates best-
first ranking in non-word context-sensitive correction (they boldly re-
claim the term) for general unrestricted texts. The kinds of knowledge
they consider are: syntagmatic knowledge in the form of part-of-speech
(pos) tags and paradigmatic knowledge represented as a measurement
of ‘affinity distance’ between nouns in Wordnet. Further, they employ
general and document word-occurrence frequency rates. The various
knowledge sources are used to rank the CcCs returned by 1SPELL. They
fine-tune their systems and combinations thereof on fabricated evalua-
tion sets and finally test on 158 real-world typos derived from magazine
text in the Bank of English Corpus'2. The correct forms for these were
indicated by the context. They employed a heuristic that eliminated
all ccs that were at an LD of 2 or more. Another heuristic was to not
include words shorter than 4 characters long. Use of both the paradig-
matic knowledge and the general frequencies (derived from the Brown
Corpus) were found not to be useful. The syntagmatic knowledge and
document frequencies helped, although the latter very little as the doc-
uments were very short. They generally conclude results improve as
more context is used.

The use of context to resolve OCR errors The types of errors that
may be produced by typing are different from the types that are pro-
duced when previously printed or even handwritten text is reproduced
in electronic format by Optical Character Recognition (OCR) devices.
These first produce a digital image of the text and then OCR-software
determines which characters are most likely to constitute the image.
Depending on the quality of the printed text and on the quality of
the software this process has smaller or greater chances of successful
recognition.

Taghva and Stofsky (2001) discuss the typical problems associ-
ated with correcting OCR-induced errors. They state that ‘traditional
spelling correction is performed by isolating a word boundary, checking
the word against a collection of commonly mispelled words, and per-
forming a simple four-step procedure: insertion, deletion, substitution,
and transposition of all the characters’. In OCR text, word isolation

12 http://titania.cobuild.collins.co.uk/boe-info.html
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is much more difficult because errors can include the substitution and
insertion of numbers, punctuation and other non-alphabetic characters.
Second, the mapping of characters may not be one-to-one: an m, for
instance, is often rendered as 4ii. Third, words may be broken, e.g. pro-
gram being recognised as pr~ gram (OCR-software commonly returns a
tilde for characters it is insufficiently sure of). Last, OCR errors may
vary from device to device, document to document and font to font. In
the paper, they introduce a dynamic confusion construction mechanism
that learns this variation. Taghva et al. (2004) gives an overview of 15
years of research in the field, especially of OCR errors in relation to
Information Extraction.

This work is relevant here in that, in contrast to most research in
non-word errors resulting from typed input, their systems study the
input context and derive useful information from it, in order to facilitate
the correction. This is a strategy we also employ in the system we
propose. Their systems further need to cope with word segmentation
errors, a feature notably absent from most spelling checkers today, as
we discussed above, but also in part implemented in the system we
propose. Finally, we think it should be relatively easy to extend the
system we propose to also handle OCR-induced errors. That was not
attempted within the work reported on in the present study, however,
largely for lack of suitable evaluation material.

1.5 Introduction to Text-Induced Spelling Correction

We call the spelling detection and correction system we propose in this
dissertation Text-Induced Spelling Correction or, in short: TISC.

TISC should be pronounced as ‘tisk’. This is a verb, denoting the
sound a human proofreader may make when he, again, finds a par-
ticularly recurrent typo. It is a verb that has not found its way into
either the Oxford English Dictionary or Merriam-Webster’s, which is a
striking reminder no dictionary will ever be complete.

Why ‘Text’? We might have used the word ‘corpus’ instead of ‘text’,
but that would have deprived us of the connotation with human proof-
readers. Also, a corpus may come in highly marked-up form, depending
on what it is intended for. We use raw text only, the kind of text one
could produce using an old-fashioned type-writer in the days when no
scores of fancy fonts or layouts were at our finger-tips’ disposal.

Why ‘Induced’? This actually comprises both uses of the verb in-
duce:

+ lead or cause (sb. to do sth.)

+ bring about
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In the first reading, TISC is induced to rank a particular cc first
on the basis of the input text, i.e. the immediate as well as the wider
context of the typo.

In the second reading, TISC is induced from text, i.e. the language
knowledge incorporated in the system has fully been derived from a
large body of text in that language. On the basis of this knowledge
decisions are taken as regards to validating a particular word form or
sending it on to be corrected, which again is achieved on the basis of
that knowledge.

1.6 Contribution of this dissertation

In this section we list the contributions of this dissertation.

The main contribution we make in the present work is that we pro-
pose a new approximate string matching algorithm and use it as the
basis for a context-sensitive spelling error detection and correction sys-
tem for non-word errors that is, in unsupervised ways, fully derived
from large corpora of text in a particular language. Context-sensitivity
is achieved largely through the incorporation of word bigrams in the
Text-Induced Spelling Correction system’s lexicon.

On the basis of extensive evaluations, we show that the core correc-
tion algorithm we propose, which is based on a similarity key derived
from the actual characters that constitute a word, is sufficient to re-
solve the errors one encounters in edited text. We further show that
the similarity key based correction algorithm we propose requires no
training and is thereby largely language-independent. We illustrate this
on the basis of evaluations for both English and Dutch, which allow us
to show that it is feasible on this basis to perform spelling error de-
tection and correction to levels surpassing those of the state-of-the-art
systems available today. We finally show that the algorithm may per-
form equally well on mixed language tasks, performing correction to the
same levels as in the monolingual task when the text to be spelling cor-
rected is mixed English-Dutch text and the lexicon is a mixed English,
Dutch and French lexicon.

1.7 Overview of this dissertation

In Chapter 2, we discuss the corpora we used for this study and perform
an in-depth analysis of a large corpus of non-word errors derived from
the Reuters RCV1 corpus.

In Chapter 3 we present our spelling detection and correction system,
which we have called ‘Text-Induced Spelling Correction’ or TISC.

In Chapter 4 we conduct in-depth evaluations of TISC and present
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the results on a variety of tasks. We evaluate TiSC and state-of-the-art
systems available today on both English and Dutch and compare their
performances.

In Chapter 5 we evaluate the evaluations and conduct a survey of the
various metrics one may use for evaluating a spelling detection and/or
correction system. We compare with state-of-the-art-systems proposed
in the literature.

Chapter 6 is devoted to multilingual spelling error detection and
correction and the issues involved: we determine whether prior language
detection is a necessary prerequisite.

Chapter 7 presents our conclusions and suggests future directions.

1.8 Summary

In this first chapter we have provided an introduction into the field of
spelling error detection and correction. We have provided some nec-
essary terminology, after which we have discussed what distinguishes
an erroneous word variant from a conventionally accepted form. We
have shown that the work by Zipf provides insight into what consti-
tutes a language’s vocabulary and into the distribution of words within
the vocabulary. We have from these insights derived implications for
the design of a spelling error detection and correction system. Next
we have given an overview of approximate string matching techniques
and how they relate to spelling error detection and correction. We have
briefly positioned our own core correction mechanism based on a non-
phonetic similarity key within this field. We have then surveyed some
of the history of spelling error detection and correction research. We
have concluded that whereas research into real-word error detection
on the basis of context has drawn a lot of attention, research into non-
word spelling correction has largely stuck on the isolated word level. We
have then discussed the noisy channel modelling approach to spelling
error correction and pointed out that this is necessarily a language-
specific technique. We have discussed the relationship between ranking
the correction candidates and taking account of the typo’s context.
We have then briefly introduced the name for the system we propose:
Text-Induced Spelling Correction. We have finally discussed the main
contributions of this work.

Before we can move on to the full description of T1SC in Chapter 3, we
first describe the corpora used in this research and perform an in-depth
analysis of the extent of non-words in a large, English, contemporary
corpus in Chapter 2.






2

Overview of corpora used and
detailed error study

The work presented here uses as primary resources large collections
of text available in electronic format. In this chapter we first give an
overview of the various corpora we used. Next we study the extent of
typos occurring in a large contemporary English corpus. Apart from
this corpus, which we set aside for evaluation purposes, all the other
English corpora were used for development purposes. For Dutch, we
followed the same methodology.

2.1 The corpora
2.1.1 Corpora for development purposes

The following corpora were used to extract the lexicons and other in-
formation for our spelling checking and correction system. We used
primarily English and Dutch corpora for building a spelling correction
system for both languages. In Chapter 6 we present a multilingual ver-
sion, which besides Dutch and English, also has French in its dictionary.

English
The American English corpus we used was the New York Times (1994-
2002) material available in the LDC Gigaword Corpus (Graff, 2003). We
further refer to this corpus as NYT.

For British English we used the British National Corpus, a balanced
corpus of contemporary written and spoken British English (Leech,
1992)!. We refer to this corpus as BNC.

L http://www.natcorp.ox.ac.uk/index.html
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Dutch

For Dutch we used both the LK Corpus? and the Twente Corpus®
(Twce). The 1ILK Corpus is a collection of southern Dutch regional news-
papers, which we supplemented with an assortment of about 100 books,
mainly novels, and 5 years of Dutch Roularta magazines. The Roularta
magazines constitute a series of Belgian Dutch weekly magazines de-
voted to current affairs, industry, financial affairs and leisure. The TWC
comprises a number of national Dutch newspapers, teletext subtitling
and autocues of broadcast news shows and news data downloaded from
the www. We also used the Twente Update, TWC2, which represents
national Dutch newspapers from the year 2002. We reserved the Update
for special purposes, as we explain in Chapter 4.

French

For French we used 8 years (’91-'98) of Roularta Magazines®. These
constitute a series of Belgian French weekly magazines devoted to cur-
rent affairs, industry, financial affairs and leisure.

2.1.2 Corpora for evaluation purposes

English

All evaluation materials for English were derived from the Reuters RCv1
(Lewis et al., 2004), formally known as RCv1-v1l (Release date 03-
11-2000, Format version 1, correction level 0). This corpus covers the
period 20-08-1996 to 19-08-1997 and contains about 810,000 Reuters,
English Language News stories. The website® devoted to the corpus
provides a breakdown in number of words and paragraphs per article,
among other statistics. Section 2.2 deals with the error list we obtained
from this corpus. In Chapter 4 we discuss how we built a benchmark
test set of nearly 3,000 typos within their original context. We provide
more detailed information about the benchmark set there.

Dutch

For Dutch we collected newspaper articles containing typos from the
daily free tabloid Metro®. The material and manner of collecting is
described in Chapter 4.

2 http://ilk.uvt.nl/ilkcorpus/

3 http://wwwhome.cs.utwente.nl/~druid/ TwNC/TwNC-main.html
4 http://www.roularta.be/en/products/

5 http://about.reuters.com/researchandstandards/corpus/statistics/
6 http://www.metropoint.com/
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| Corpus | Lang. | Mb | Tokens | Types | Word bigr. |
NYT AE 5,570 | 1,106,376,695 | 1,863,802 | 41,611,447
BNC BE 567 113,165,579 651,321 | 12,141,343
R-Rcv1 | IE 714 134,031,130 | 1,626,038 | 12,555,943
ILK D 1,748 314,051,047 | 2,747,341 | 32,767,046
TWC D 2,014 365,545,491 | 2,607,305 | 33,912,967
TWC2 D 510 92,793,519 914,026 | 10,946,486
ROUL F 273 52,722,253 422,682 5,452,266

TABLE 2.1 Corpora Statistics: Corpus, language (AE: American English,
BE: British English, IE: International English, D: Dutch, F: French), size in
Megabytes, number of word tokens, number of word types, number of word
bigrams.

2.1.3 Corpora preprocessing

All corpora were preprocessed in the same manner. All XML or other
tags were discarded. Each corpus was then tokenized by applying a
rule-based tokenizer”. A tokenizer divides text in tokens and sentences.
A token may be a word, a number or a punctuation sign. The tok-
enizer inserts a space to set apart punctuation signs that are attached
to words and marks sentence boundaries explicitly. We further normal-
ized each corpus by replacing all word-external punctuation by a single
unique mark, a period, which then signifies that there had been some
form of punctuation at that point. All strings containing only digits
were reduced to a single arbitrarily chosen digit, 3, which then signi-
fies there had been some number at that point. N-gram frequency lists
were derived by means of the cMU Statistical Toolkit (Clarkson and
Rosenfeld, 1997).

2.1.4 Corpora statistics

Statistics regarding corpora sizes and numbers of words in these corpora
are presented in Table 2.1. The discrepancy in number of types between
the BNC and RCV1, which are comparable in byte and token size, can
be explained by the fact that the latter did not get the digits and
punctuation normalization preprocessing, as we reserved the RCV1 for
evaluation purposes and did not use it for lexicon development.

7 Developed at LK, University of Tilburg, by Dr. Sabine Buchholz, to whom we
are indebted for its use
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2.2 Reuters RCV1: corpus and typos

In this section we take a close look at one particular English corpus and
determine the extent of non-word errors in it. Reuters is the world’s
largest international text and television news agency, with over 2,000
journalists, photographers and camera operators in 190 offices, serving
151 countries (Rose et al., 2002). We chose the Reuters Corpus Volume I
(Lewis et al., 2004), formally known as RCV1-v1 and further referred to
as RCV1, to study the extent of erroneous word forms in a contemporary
real world corpus.

2.2.1 Preliminaries
Damerau (1964) (p. 171) wrote:

An inspection of those items rejected [by the retrieval system’s index
storage program| because of spelling errors showed that over 80 percent
fell into one of four classes of single error - one letter was wrong, or
one letter was missing, or an extra letter had been inserted, or two
adjacent characters had been transposed.

Peterson (1986), on the basis of two error lists derived from key-
boarded word lists containing 155 and 360 errors respectively, revises
the ‘over 80%’ upwards to 92.9% for the shorter and 94.7% for the
longer list. Pollock and Zamora (1984) confirm a figure between 90
and 95% on the basis of 50,000 single-error misspellings culled semi-
automatically from 250 million words of text from scientific and schol-
arly databases. Their study is without doubt the most comprehensive
study of typos in real-world databases ever published. The study formed
the basis for the development of the SPEEDCOP correction algorithm,
based primarily on the transition probabilities derived from the statis-
tics gathered. From the statistics two, complementary, similarity keys
were derived. In that the system is extremely language-dependent and
handles only the Damerau edits, we do not discuss it in more detail. A
fine summary is provided in Kukich (1992).

Damerau and Mays (1989) present some statistics on the error types
observed in three different corpora. We reproduce these in Table 2.2,
summed, disregarding their original three different sources. The authors
caution for the statistics of the category ‘Word division’: for prepro-
cessing the data they used various programs which might have treated
hyphenation and line ends differently. They further explain that it is
problematical to know whether some words, e.g. frozen expressions such
as abovementioned, should be ‘run together, hyphenated or left as in-
dividual words’. Note that these statistics represent a list of 502 mis-
spellings.
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| Category | Original description | Number | Percentage |
Split word Word division 180 35.86%
Deletion Missing letter 115 22.91%
Substitution Wrong letter 63 12.55%
Insertion Additional letter 56 11.16%
Transposition | Transposition 51 10.16%
Multiple error | Multiple error 37 7.37%

TABLE 2.2 Error-type statistics due to Damerau and Mays (1989). Shown
are the names of the error types as handled in this work, the original paper’s
descriptions, number of errors found and their percentage of the total amount.

Kukich (1992) (pag. 389) remarks that data concerning the fre-
quency of occurrence of spelling errors is not abundant and that the
few data points that do exist must be qualified by

+ the size of the corpus from which they were drawn
+ the text entry mode of the corpus
+ the date of the study.

She qualifies the latter by stating that ‘newer studies for some genres,
such as edited machine-readable text, probably reflect lower error rates
due to the availability of automatic spelling checkers’.

In the next subsections we study a large contemporary corpus, most
of which we assume has been keyboard input. We will see that Kukich’s
qualification does not find a basis in fact.

2.2.2 Reuters RCV1: facts and figures

The over 800,000 news stories in RCV1 were effectively sent in from
all over the world. As such, we believe, it offers a cross-section of the
various Englishes and represents ‘International English’ as employed
by professional writers.

We limited this study to the word type list of word forms begin-
ning with a lowercase character. This reduced the 1,626,038 items type
frequency list (which was not normalized as regards digits) to 215,046
items. This was further reduced to 159,085 items by setting aside what
can only be described as systematic bad tokenization cases. Any corpus
seems to have its peculiarities which may not be provided for in the
tokenizer.

We worked our way through the entire reduced list, aiming at com-
pleteness. We did this manually, i.e. unaided by an existing computer
spelling checker, as we did not want to allow for the possibility that
results would be influenced by some system’s bias. We might have used
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the GNU spelling checker ISPELL, for instance, just like Kernighan et al.
(1990) used its predecessor SPELL to scan through 44 million words of
Associated Press newswire to locate non-word strings in the text. Part
of ISPELL’s bias in this would be that it can be made to accept words it
can split in two words in its dictionary. Wrongly concatenated strings
such as *ifthe or *wasno it would therefore accept. Also, it was noted by
Zobel and Dart (1995) that 1SPELL’s dictionary contains some spelling
errors. If these happened to recur in our list, these too would go unno-
ticed.

Results presented are not valid for capitalized words, which contain
the bulk of proper and other names. Names naturally allow for consid-
erable variation. This is primarily because there are no orthographical
rules for names. Neither are there generally agreed on transliteration
rules for names from other languages or scripts. And names often record
historical changes that have occurred within a language. The main rea-
son we excluded the bulk of names by focusing on lowercase first char-
acter words, however, lies in the fact that we wish to measure if the
availability of spelling checkers has indeed reduced the presence of non-
word errors in corpora. The spelling checkers which have been available
typically do not deal with names, or only to a limited extent.

2.2.3 Non-word errors

We aimed at identifying as many as possible of the non-word errors.
What we consider ‘admissible’ variants, e.g. those produced by the
differences between accepted British and American spelling, were left
unmarked.

In all, we marked 33,488 word types as being typos: erroneous vari-
ants of other words. This error list constitutes just more than 21% of
the 159,085 items long type list, an unexpectedly high proportion. Not
included in this number is what we consider bad tokenization cases,
abbreviations or foreign words. These we will briefly typify later in
this section. In terms of tokens, 33,488 typos means that the Reuters
RCV1 corpus contains 1 erroneous form per 400 running words with a
lowercased first character.

The top three most frequently misspelled words and their corpus
frequencies were *goverment [482], *milion [372], *occured [331].8

In Subsection 2.2.5 we give an overview of the types and number
of occurrences of the errors for which we provided a correction: 12,094
items or over 36% of the error list. This list represents a random subset
of the full error list. Whenever the word form gave rise to the least

8 We present the corpus frequency of a word within square brackets.
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doubt about the correct resolution of the error, we examined the context
in the corpus itself. In the main, resolution is possible examining the
sentence containing the error. The example of *absord, which might
equally resolve to absurd of absorb, without or within its one sentence
context, shows wider context is sometimes needed.

SINGAPORE : Asia Products Outlook - Shutdowns to *absord length
. [.-.] The ample length in the Asian oil product markets is due to be
absorbed by fresh demand arising from refinery shutdowns [...]

Context may also serve to resolve problems with domain specific
terms, not likely to be found in standard dictionaries:

Sri Lanka bought 50,000 tonnes of *opitional-origin soft wheat for
September shipment and 50,000 of optional-origin hard wheat for Oc-
tober .

2.2.4 Error types discerned and how we counted

There are multiple ways of looking at a typo/correct word pair and of
classifying the difference between them. We here detail what categories
of errors we discern in the error list we culled from Reuters RCv1 and
how we count them. The actual method employed for classifying lists
of typo/correct word pairs we detail in Chapter 5 and Appendix A.

Deletion or insertion: point of view

Given the pair *acress/ actress, when viewed from the correct form, the
error is a deletion error. Viewed from the point of the typo, it would
require an insertion to correct the error. We follow Kernighan et al.
(1990) in naming the transformations from the point of view of the
correction.

Substition and transposition

Substitutions are substitutions, whichever way they are looked at.
Transpositions, however, can equally well be described as constituting
two substitutions. Or, as Navarro (2001) (p. 38) points out: ‘note that
a transposition can be simulated with an insertion plus a deletion’. To
get from *trasnport to transport one may substitute the s by an n and
the n by an s or one may delete the s and insert another s after the n.
Looked at this way, which in actual fact is what most implementations
of LD do, transpositions have an edit cost of two instead of one.

Run-ons and splits, space to dash

Apart from the four basic Damerau (1964) categories we also discern
between run-ons and splits. Note that these are special cases of dele-
tions and insertions, respectively, both involving a specific character:
the space. Nevertheless, we counted these separately, but their counts
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might be added to their respective parent categories. The same is true
for the space to dash substitution: the typo was written with a dash,
it should have been two words divided by a space.

Capitalization

We also present counts for capitalization errors, e.g. *spain having been
written for Spain. These involve mainly names, but the odd capitalized
character(s) in the middle or at the end of a word were observed to
occur (e.g. *orieNTED). Of course, these too might have been summed
in with the other substitution errors.

Out-of-alphabet characters

Both categories insertion and substitution may contain items that ei-
ther contain punctuation marks or digits, i.e. out-of-alphabet characters
(e.g. *arou3nd, *atr=tributed). These were few and were counted with
their parent category.

Initial character transformations:

Other special cases we were interested in, involve deletions or inser-
tions of words’ first character(s). While we present separate counts for
these (in Subsection 2.2.7), these counts were not subtracted from their
respective parent categories. We want to know their prevalence in our
corpus, but further regard them for what they are: deletions or inser-
tions of one or more characters. Note that first character capitalization
errors might as well be seen as constituting first character substitu-
tions too, so that those counts might be added to the ones reported for
first character substitutions involving different characters and not mere
capitalized versions of the same character. But they were not. These
figures are retrievable from the table. First character transpositions in-
volve the first two characters of a word that happen to have traded
places. Their counts too are part of the overall transposition counts.

Multiple errors: single or multipoint

For more elaborate types of errors, necessarily involving edit distances
larger than LD 1, we discern two types: single point or multiple point
multiple errors. This is because the LD does not tell the full story.
Consider: *apppointements. This typo has LD 2 with its correct form,
but the two insertions do not occur at the same point within the word:
we find an extra p at the beginning and an extra e between the stem and
suffix. We refer to this type of error as a multi-point error, in contrast
to the far more prevalent single-point errors. We called the single-point
multiple errors more elaborate in that they involve a mix of at least
two of the basic error types, e.g. a deletion followed immediately by
a substitution. Multipoint (multiple) errors may well involve the same
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| Category | .p1 ]| tp2[p3[p4|D5] Total [ %]

deletion 4,026 239 9 2 4,276 | 35.36
insertion 3,370 196 17 2 3,585 | 29.64
transposition 1,566 5 1,571 | 12.99
substitution 1,447 91 4 1 1 1,544 | 12.77
multiple 398 89 11 498 | 4.12
run-on 314 314 2.60
capitalization 168 2 1 171 1.41
multisingle 52 15 2 69 | 0.57
split word 51 51 0.42
dash to space 15 15| 0.12
total 9,391 | 2,544 | 134 24 1] 12,094

% 77.65 | 21.04 | 1.11 | 0.20 | 0.01 100

TABLE 2.3 Statistics of the error categories in the 12,094 typo/correction
list.

basic type, but these errors are not adjacent. Of the latter type, we
present our favourite: *momopology, which has an LD of 3 (but 2 non-
adjacent edits: m-n substitution and og insertion) with its correction:
monopoly, as may be inferred from its context:

The club , which holds the *momopology on gambling in Hong Kong
, has retained the services of its other two fund managers , [...] , the
newspaper reported .

2.2.5 Statistics of the error types

In Table 2.3 we present the statistics of our list in terms of the
categories of errors encountered. Categories are ordered by diminishing
frequency of the error category.

Prevalence of the error types

We see that deletion occurs most often, followed by insertion errors. To-
gether, these two categories account for over 65% of all typos observed.
This changes the order of prevalence reported by Damerau and Mays
(1989) which we presented in Subsection 2.2.1. We see that transposi-
tions and substitutions occur with the same likelihood, each accounting
for about one in eight typos. Over 4% of the typos observed involved
multipoint errors, accentuating the need for correction strategies capa-
ble of handling several edits within the same word. Run-ons appear to
occur more often than split words. However, this may be an artefact of
our sampling method: split words viewed within a word list may well
appear to be either existent words or likely abbreviations. Single point
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multiple errors (referred to as multisingle in the Table) are relatively
rare in our sample. So is the space to dash category, which could proba-
bly be seen to represent bad tokenization rather than real typographical
errors.

LD distribution of errors

Let us now take a look at the LD-variation of the 12,094 items list of
paired errors and corrections in the bottom row of the Table.

LD 1 covers all single character deletions, insertions and substitu-
tions. LD 2 covers all 2 character transpositions, deletions, insertions
and substitutions. Of these, there were 1,566 transpositions. The LD
1 cases and LD 2 transpositions together account for 90.6% of the ty-
pos, which is more than Damerau found and confirms the findings of
Peterson (1986), as well as Pollock and Zamora (1984). LD 1 + 2 to-
gether cover 98.7% of all non-word errors identified and provided with
a correction in our list. Given a correction system that is capable of
correction up to LD 5 would allow for correction of all the typos we
observed in RCV1.

What we also observe, if we remember that transpositions should
also have an associated cost of 1 and not 2 as we actually report them
in the table, is that if we look at the distributions in terms of the LD,
we see that LD 1 occurs by at least an order of magnitude more than
typos involving LD 2, which in turn occurs by an order of magnitude
more often than LD 3 errors. And so on, to LD 5. We think this is
important: when building evaluation benchmark sets, for instance, their
composition might well fruitfully be guided by this finding as a rule-
of-thumb. In other words, if one were to build a benchmark data set
consisting of 10,000 LD 1 typos, 1,000 LD 2 typos, 100 LD 3, 10 LD 4
and 1 LD 5 one would get very close to the actual distributions we have
observed in the real world. We will return to these considerations in
Chapter 5.

2.2.6 Errors versus hapaxes

Many researchers have repeated over and over, that ‘typographical
errors, if any, will appear in the hapax legomenon’ in the wording of
a recent paper on Zipf’s Law (Ha et al., 2003). In what went before,
we believe to have shown that the ‘if any’ is unduly optimistic. That
they only appear among the hapax legomena is clearly not the case.
Figure 2.1 shows graphically that typographical errors recur frequently.
The log-log plot of their frequency versus the total number of types (top
curve) and typos (bottom curve) shows that the distribution of typos
closely follows the Zipfian curve displayed by the correct forms. A small
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FIGURE 2.1 Log-log plot of total number of types versus number of erroneous
types, per frequency.

note of warning is in order here: a log scale awards the same space on
the scale to number 1 to 10 than it does to 11 to 100 or 101 to 1000, etc.
So the curves appear much closer than they are in reality. Nevertheless,
it can be observed that the most frequently occurring typos nearly join
the distribution of the correct forms. Statistical linguists often try to
circumvent the impact of typographical errors on language models by
discarding the hapax legomena (Manning and Schiitze, 1999). What we
learn from our data is that the ratio of erroneous (21,576 items) versus
correct (39,285 items) types for hapax legomena is 0.549, i.e. 55% of the
hapaxes are correct word forms occurring only once in this particular
corpus. The type list contains 122,153 correct types in all. Without the
correct types occurring only once, the hapaxes, we would retain only
82,868 correct types. Of the 33,225 erroneous forms, removing only the
hapaxes, we would still retain 11,649 typos. By discarding the hapaxes
over 32% of the total amount of correct types are lost and 35% of the
erroneous types retained.

At frequency 10, 156 of the 1,627 types in the RCV-1 list are typos,
or 9.59%, accounting for 27.50% of the types up to that point and
20.39% of the total number of tokens occurring up to ten times. We
find *currenty, *curreny, *currrently sharing the company of curators,
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goverment [482] 1
governemnt [93] 2
govenment [52] 1
governement [42] 1
governent [39] 1
governmment [32] 1
governnment [24] 1
govenrment [19] 2
governmnent [16] 1
governmnet [14] 2
governmemt [8] 1
governemt [7] 2
goverenment [6] 1
governmet [4] 1
govermnment, [4]

1
governmenmt [3] 1

governmenment [3] 3
governmeent [3] 1
govennment [3] 1
govrenment [2] 2
govnerment [2] 2
governmenet [2] 1
governmen [2] 1
governmant [2
govermnent [2
govermment [2
fovernment [2]
bovernment [2]
govrmment [1] 2
govrernment [1] 1
goversment [1] 1
governvement [1] 2

] 1
] 2
]1
1

1

governmnt [1] 1
governmnnt [1] 1
governmetn [1] 2
governmennt [1] 1
governmemnt [1] 1
governmement [1] 2
governm+-ent [1] 1
govermnemnt [1] 3
goverbnment [1] 1
govenrnment [1] 1
govenrement [1] 2
gopvernment [1] 1
goovernment [1] 1
givernment [1] 1
giovernment [1] 1
gavernment [1] 1

TABLE 2.4 government variants, their frequency in Reuters RCV1 and their
LD to the correct form government.

curtly and curvy, and *sharesholders sharing the rank of share-holders.
At frequency 100, 3 of the 68 types are typos, or 4.41%, accounting for
23.47% of the types up to that point and 7.29% of the total number
of tokens occurring up to a hundred times. We find *millon in among
long-ruling, manuals, non-traditional and nude, as well as *signficant in
between shrewd and solicitor. Up to frequency 482, where we found the
most recurrent typo: *goverment, 22.14% of all the types were in error.
These account for 2.85% of all the tokens up to that point. At this
rank we find types such as: globally, inappropriate, needing, non-bank
and recipients.

2.2.7 Variants for ‘government’

If we take a closer look at the variants for government in the Reuters
Corpus (Table 2.4), we see that this single type has spawned 48 vari-
ations. This is when we focus only on the singular, lower-cased form,
disregarding the abbreviated and badly tokenized forms and whatever
happens to the genitival, plural or compounded forms.

Effect on statistical estimates

Typos are statistical events seen, which should not have been seen. We
do not know at this point how the amounts of non-words we observe
in a large corpus would affect the predictions of Large Number of Rare
Events or LNRE models, as described by Baayen (2001). What we can
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conclude is that the LNRE distribution in a large corpus appears to
be an Overly Large Number of Rare Events distribution, if over 20%
percent of the types observed should not have been observed. What
we do know is that Evert (2004) specifically mentions the use of data
clean-up on the large English (BNC) and German corpora he uses to
evaluate the two new LNRE models he proposes.

Typos detract from the frequency mass of the correct form. In terms
of the frequency mass of the type government, its 48 variants account for
892 occurrences versus the corpus frequency of 163,697 for the correct
form government, which means its variants account for 0.542% of what
should have been its total frequency mass. Discarding the hapaxes from
this list of variants still leaves us 28 non-word variants, which is still
0.530% of what should have been the frequency mass. Discarding the
hapaxes, then, does little to redress the balance. Discarding the hapax
dis legomena too, still leaves us 21 non-word variants and removes only
a further 18 occurrences, so we are still short of 0.519%. Contrast this
to the LD-distribution of these variants: 34 variants have LD 1, twelve
variants LD 2 and only two LD 3, so nearly 96% of the variants fall
within 2 edits. If one were able to fully automatically identify and
correct these, this would leave only 4 occurrences out of 892 ‘displaced’
corpus counts, or only 0.002% of what should have been the type’s
frequency mass. We think this would be conducive to a better unigram
probability estimate.

Of course, it can be argued that for this particular word, which
to all probability has an even distribution over the corpus, the loss in
frequency mass due to variations is negligible and will not unduly affect
probability estimates. But Curran and Osborne (2002) wrote:

These large corpus experiments demonstrate the failure of simple Pois-
son models to account for the burstiness of words. The fact that words
are not distributed by a simple Poisson model becomes even more ap-
parent as corpus size increases, particularly as the effect of noise and
sparseness on the language model is reduced, giving a clearer picture
of how badly current language models fail. [...] Without better models
all that training upon large corpora can achieve is better estimates of
words which are approximately i.i.d. [i.e. independently and identically
distributed].

The effect of burstiness is perhaps best illustrated by one of their
own examples: tightness, which occurred 2,652 times in their corpus.
Their corpus is not completely disjoint with ours: it comprised the
RCV1. In the RCV1 the word has a corpus frequency of 1,024. But we
also find: *tighteness [8], *tighness [5], *tightnes [2] and *tightnesss [1].
Which means that in the Rcv1 alone 1.54% of the word’s frequency
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mass is distributed over variants. Another, more extreme example in
our corpus would be the word hygienic [22]. This has a low frequency
in the RCV1 and yet we find a variant: *hygenic [8]. This variant then
accounts for 26.7% of the correct form’s frequency mass. At the most
extreme end, we observed cases where the correct form was lacking
altogether, all that was observed was a variant. An example of this is
*labrynths, although the list did have: labyrinth [8], labyrinthine [6] and
even labyrinthitis [1].

We would like to argue that what emerges from this, is that given
larger corpora more and more noise in the form of incorrect typographi-
cal variants of the orthographically correct word types is incorporated.
We fail to see how the effect of more noise can then be said to be
reduced by using larger corpora. As regards sparseness, Curran and
Osborne (2002) compiled a homogeneous corpus of 1.145 billion words
of newspaper and newswire text from three existing corpora. We think
the best way to effectively combat sparseness would be to include text
from diverse other sources as well, say: include all the books available in
the Gutenberg archives?, to start with. This would not help to alleviate
sparseness as concerns neologisms and, to a certain extent: names. It
might well help as concerns the ‘rare but not necessarily unusual words’
(Curran and Osborne, 2002) (p. 129).

Text Categorization

The rRCV1 was made available by Reuters as a benchmark collection for
Text Categorization research purposes. Lewis et al. (2004) describe in
detail how the corpus was built up, how it was encoded for text cate-
gorization purposes and provide benchmark results obtained by three
Machine Learning algorithms. They describe what the text representa-
tion used for benchmarking the collection looks like. Text is reduced to
all lowercase characters. They define tokens to be maximal sequences
of nonblank characters; sequences consisting purely of digits were dis-
carded, as well as those occurring in a stop word list (i.e. a list of highly
frequent words, which therefore have no discriminative value for text
categorization). Using their own implementation of the Porter stem-
mer (Porter, 1980), the tokens were stripped of their suffixes and thus
reduced to their stems. As no two implementations of the stemmer be-
have identically, they provide their list in online appendix 14 to Lewis
et al. (2004)'°. The final token list thus obtained finally contains 47,236
stemmed tokens (recall that the full frequency list we derived from the

9 http://www.gutenberg.org/
10 http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewisO4a/
~al4-term-dictionary/stem.termid.idf.map.txt
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gov 16497 | 4.88602502858038
gover 16498 | 6.5907731208188
govern 16499 | 1.63033523058946

governemnt | 16500 | 9.36336184305859
governmetn | 16501 | 10.0565090236185
governmn 16502 | 8.67021466249864
governmnet | 16503 | 10.0565090236185
governor 16504 | 4.16210618935368

govet 16505 | 6.62252181913338
govimt 16506 | 9.36336184305859
govt 16507 | 5.03262850277225

TABLE 2.5 Stems beginning on gov from online appendix 14 to Lewis et al.
(2004). Shown are: the stem, the integer token identification number, inverse
document frequency value (IDF). Note that the unstemmed typos have a low
frequency and thus gain greater weight for Text Categorization by obtaining
greater IDF values.

corpus contained 1,626,038 items).

We list the stemmed tokens beginning on gov in Table 2.5. It can be
seen that this list contains 6 stemmed index items for the various word
forms of govern, apart from 3 likely abbreviations. Note that the Porter
stemmer (Porter, 1980) regards the -ment in government as a suffix to
be stripped.!! This is in contrast to the -or in governor, which is not
stripped and the -ness in governess which is stripped, leaving the stem
gover.

We cannot assess here what the possible impact of this is on Text
Categorization results. At least in part, that will be dependent on the
specific Machine Learning algorithm employed. What is clear, neverthe-
less, is that typos affect the index of terms used for this research. In five
of these cases, the typographical variance precluded proper stemming,
i.e. produce the stem govern, from a variant of the type government.

In order to show that just about any word may spawn an impressive
range of variants, Table 2.6 lists the items for which we observed 20 or
more variants in the subset of the RCV1 derived typo list we provided
with corrections. The full typo list may well contain many more.

" The webpage at http://www.tartarus.org/~martin/PorterStemmer/, main-
tained by the algorithm’s author: Martin Porter, allows the reader to verify this.
Compare the morphological variants of govern in the sample vocabulary provided
there with the algorithm’s output.
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government (48) | opportunities (25) | communications (22)
percent (38) against (25) acquisition (22)
significant (32) responsibility (24) | situation (21)
restructuring (30) | parliamentary (24) | parliament (21)

immediately (30) | opposition (24) international (21)
newsroom (28) negotiations (24) agreement (21)
said (27) business (24) about (21)

million (27) significantly (23) possibility (20)
between (27) previous (23) pharmaceutical (20)
available (27) operations (22) activities (20)
company (26) operating (22)

particularly (25) | management (22)

TABLE 2.6 Words with 20 or more variants in the corrected list, number of
variants observed (between brackets).

| Category [tpl [wo2[p3[p4[D5 [ Total [ % |
1st ch. delet. 122 11 133 | 1.10
1st ch. insert. 55 3 58 | 0.48
1st ch. transp. 23 1 24 | 0.20
1st ch. sub. lc. 106 106 | 0.88
1st ch. sub. uc. 138 138 | 1.14
% (uc.) 3.80
% (Ic.) 2.65

TABLE 2.7 Statistics on first character transformations in the 12,094
typo/correction list.

2.2.8 DMore specific statistics
First character errors

Kukich (1992) (p. 388) writes that ‘it is generally believed that few
errors tend to occur in the first letter of a word’. She goes on to state
that only a few studies actually document first-position statistics. Ta-
ble 2.7 presents the statistics on first character transformations in the
12,094 typo/correction list. We distinguish between the counts where
first character capitalization errors (1st ch. sub. uc.) are also counted as
first character errors. Together with first character substitution errors
not involving capitalization (1st ch. sub. lc.), they make up the cate-
gory of first character substitution errors. One might wish to include
capitalization errors, or choose not to, but we think that it is at least
necessary to state which point of view is adopted, when a system is
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L #][L #lL  #[L #[L #]
2 21|7 145112 96717 4423 1
3 8|8 1,802|13 581 |18 12|24 4
4 305|9 1,846 |14 357 |19 16|25 1
5 2
6 1

503 | 10 1,684 | 15 134 | 20 18 | 26
932 | 11 1,255 |16 64|21 8|27

TABLE 2.8 Length distribution of the corrected word forms in the 12,094
typo/correction list. Pairs: left: word length in characters (L); right: number
of words (#).

described or evaluated.

Disregarding the capitalization substitutions, 2.65% of the errors
involves the first character. We think this is not a negligible amount.
It is actually slightly more than the run-ons we have observed. If one
expects a spelling correction system to be able to cope with the latter,
the former should certainly not be left out. This is what happens with
e.g. the SOUNDEX similarity key (Odell and Russell, 1918/1922), which
uses the first character to partition and thereby reduce the search space.

Breakdown by word length
Kukich (1992) (p. 388) further wrote:

Unfortunately, little concrete data exists on the frequency of occurrence
of errors by word length.

We present Table 2.8 to help remedy that. We counted the lengths of
the correct word forms, not the lengths of the typos. Figure 2.2 shows
graphically that the corrected typos show a distribution which is similar
to the distribution of the correct types in the RCV1 frequency list.

In Table 2.9 we contrast the distributions of errors of the correct
word forms of length less than five with those of word forms of length
five or more. In order to facilitate comparison with the full table pre-
sented before, categories are ordered as they were there. Note that for
the short words, insertion is now the most frequently observed error
category, accounting for over 52% of the typos, followed by over 22%
of substitution errors. Clearly different mechanisms are at work as re-
gards short words. It will be readily understood that for words that
are at most 4 characters long, greater LD variation is not likely to be
observed. The table shows one case where we have an LD of 3, for the
typo *olp, for which the correct form should be to, given the context:

After severing its ties with Mobil last year the IAAF paid $ 2 million

*olp support the circuit and will pay a similar amount next season .

It was clearly only by virtue of examining the context that the error
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could be resolved to to. One lesson to be learned from this is that for
short words, one should not let one’s spelling correction system search
too far.

The particular typo we just discussed happens to be a clear case of
a keyboard proximity error, at least as regards the additional [p. This
might prompt one to try to model this or other types of error. In this
study we draw no such conclusions, nor do we try to devise specific
spelling correction techniques on the basis of studying spelling error
patterns. As shall become clear in Chapter 3, our algorithm effectively
searches for all possible solutions, within bounds.

Inter-corpora statistics: recurrence of non-word errors

For the 33,488 errors culled from the Reuters RCV1, we also checked
whether they recur in other corpora.
We observed:

=+ 14% overlap with NYT: 4,628 of the typos recur
+ 13% overlap with BNC: 4,325 of the typos recur

Just over 28% of these recurrent typos appeared in all three corpora.
These would be prime candidates for the absolute correction strategy
as defined by Pollock and Zamora (1984), which they call limited but
very cost-effective. These typos could be put in a misspelling dictionary,
which when one of these is encountered, simply returns the correct form.
In an isolated-word correction system, this requires that there is only a
single unambiguous correction possible. A context-sensitive correction
system should in principle be able to deal with recurrent typos having
more than one resolution.

It will be clear no conclusions regarding the true error rate within the
NYT or BNC can be drawn from these findings. What this does illustrate
is that probably no corpus is free from Zipfian-distributed typos.

2.2.9 Final note on disregarded word strings

As we remarked before, we left foreign words, abbreviations and bad
tokenization cases out of the accounting of the error types in the RCV1.
For the sake of completeness, we here typify and discuss these in a little
more detail.

Foreign words

Foreign words were marked as such and excluded from the typo list. The
list contains quite a number of French words, to a lesser extent Dutch,
German, Spanish and others. Unfortunately unknown to us when we
started work on the RCV1 frequency list, Khmelev and Teahan (2003)
had reported on about 400 foreign language news stories in the RCV1,



46 TEXT-INDUCED SPELLING CORRECTION

[ Category | il [ 2|3 [wp4 [ b5 [ Total | % |

Words of length < 5

deletion 45 1 46 | 11.19
insertion 208 7 215 | 5231
transposition 43 43 | 10.46
substitution 87 4 91 | 22.14
multiple 0.00
run-ons 2 2 0.49
capitalization 11 11 2.68
multisingle 1 1 0.24
split word 2 2 0.49
space to dash 0.00
1st ch. delet. (5) (5) | (1.22)
1st ch. insert. (28) (2) (30) | (7.30)
1st ch. transp. (4) (4) | (0.97)
1st ch. sub. lc. (24) (24) | (5.84)
1st ch. sub. uc. (11) (1) | (2.68)
total 355 55 1 411

% 86.38 | 13.38 | 0.24 100
Words of length > 5

deletion 3,981 238 9 2 4,230 | 36.21
insertion 3,162 189 17 2 3,370 | 28.85
transposition 2 5 1,528 | 13.08
substitution 1,360 87 4 1 1 1,453 | 12.44
multiple 398 89 11 498 4.26
run-on 312 312 2.67
capitalization 157 2 1 160 1.37
multisingle 52 14 2 68 0.58
split word 49 49 0.42
space to dash 15 15 0.13
1st ch. delet. (117) (11) (128) | (1.10)
1st ch. insert. (27) (1) (28) | (0.24)
1st ch. transp. (19) (1) (20) | (0.17)
1st ch. sub. lc. (82) (82) | (0.70)
1st ch. sub. uc. | (127) (127) | (1.09)
total 9,036 | 2,489 133 24 1| 11,683

% 77.34 | 21.30 | 1.14 | 0.21 | 0.01 100

TABLE 2.9 Breakdown of the statistics of the error categories for words less
than 5 characters long (top half) versus words 5 characters or more in
length (bottom half) in the 12,094 typo/correction list. Counts between
brackets are subsumed by the parent category.
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which was to have been an exclusively English corpus. The authors
recommend that these be removed if the corpus is used for Natural
Language Processing purposes.

Abbreviations

The full list further contains countless and indeed uncounted abbre-
viations. When the context clearly showed these word forms to be
abbreviations, we marked them as such and further left them out of
consideration. If we have missed out on typographical errors in the list,
it will be primarily in these shorter word forms.

Bad tokenization

We set aside 55,953 strings, primarily run-ons involving words con-
catenated to some sequence of digits (e.g. *item3,383 - *costs0.25 -
*taxes692) which resulted from bad tokenization, in particular imper-
fect handling of tables. These strings were also not included in the
statistics provided earlier. Bad tokenization should be solved at the
level of tokenizing a text. Given the systematicity of this type of prob-
lem, this can be done: regular expressions could easily be written to
extend the tokenizer to remedy this. Nevertheless, a spelling correction
system should likely also be able to deal with this type of error.

2.2.10 Summary

We have studied a large sample of typos in English which should be
representative of what one may encounter in a contemporary corpus.
We think it is fair to conclude that our findings do not bear out Ku-
kich’s qualification that given the availability of spelling checkers less
non-word errors occur than there used to before the advent of spelling
checkers. Put quite simply: the non-word error problem has not gone
away. It does not even show signs of being on the retreat. The extent to
which a contemporary corpus has here been shown to contain non-word
errors is to all intents and purposes the same as reported by Kukich
(1992). Our findings are also in line with Pollock and Zamora (1983)
(p. 53), who report an overall incidence of 0.20% of misspellings in
the databases they studied and state that this is ‘probably what one
should expect in raw keyboarding by experienced operators’. We found
an incidence of 1 in 400 tokens in the Reuters RCV1 corpus, or 0.25%.
We take this figure to constitute the natural distribution of typos in
keyboarded text throughout the rest of this work.

We have not tried to quantify the size of the real-word problem: real
words cannot be detected by studying a frequency list. Neither have we
tried to quantify the proportion of cognitive errors versus typographical
errors. As we have explained in Chapter 1, Subsection 1.3.2.: it is hard
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to see what caused the error from the output (Damerau, 1964). What
we have quantified is that only very few typos have an LD larger than
three. We observed only one single case where the LD was 5 in 12,072
typos. This was *seeked for sought, which is a grammatical error, but
nevertheless results in a non-word.

We have seen that discarding the hapax legomena and hapax dis
legomena from a corpus only allows for removing about 66% of the
variation, at a cost of losing about 33% of the real-word types. We have
detailed what the impact of this is on the frequency mass measured for
one particular word, government. While it can be argued that for this
particular word, which most likely has a very even distribution over the
corpus, the loss in frequency mass due to variations is negligible and
will not unduly affect probability estimates, we have argued that the
situation is likely to be more dramatic for words more bursty in nature.

Given an automatic spelling correction system that achieves not only
good recall, i.e. is capable of correcting the typos it finds, but also high
precision in doing so, i.e. does not report real words to be non-words
and replaces them by other real-words, up to 77,6% of the variants
present in a corpus might be removed by correcting only those typos
that are within LD 1. By correcting only the typos that are within LD 1
+ 2, which given the computational resources available to date should
be well within reach, up to 98.7% of the variation within a corpus
might be removed. We think pursuing this goal has far better chances
of alleviating the data sparseness problem and of improving statistical
language models than the common practice of hapaxing has.

In the next chapter we describe our approach to detecting and cor-
recting typos with good recall and great precision. In Chapter 4 we
substantiate this with extensive evaluations.
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Text-Induced Spelling Correction

3.1 Introduction

In Chapter 1 we sketched various approaches to spelling correction,
most of which are based on performing string edits of some kind. In
Chapter 2 we studied what kinds of spelling variation actually occur in
a large corpus of contemporary English edited text. In what follows we
present our approach to spelling correction, which in essence avoids the
need for performing string edits by performing table look-up instead.
The corpus-derived table containing the lexicon defines the language
as well as the language’s orthography. The alphabet provided delimits
the major bounds of what can be regarded a spelling variant of an-
other word form and allows for a systematic and complete search for
these forms within the table. These features provide this algorithm’s
strongest characteristics: its unsupervised nature and its language in-
dependence. The fact that it should work with any alphabet, and by
extension, language, makes it to a large extent language-independent.
Taken together, these features provide a cheap solution to otherwise
computationally expensive problems.

3.2 The correction algorithm

We develop the idea of using a corpus as the basis on which to build a
spelling correction system. Given our findings in Chapter 2, we know
that for most erroneously spelled word forms, the corpus contains far
more counterexamples of the correct form.

3.2.1 Anagram hashing

We line up all those word forms present in the corpus that consist of
the same set of characters. This alignment forms the basis for a corpus-
derived lexicon and spelling correction system. A means to align only
the word forms consisting of the same set of characters in a completely
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unsupervised way was found in the theory of hashing, be it in the ‘bad’
part of it, in the normally avoided generation of collisions. Collisions
occur when the mathematical function used to bin the information,
puts more than one item of information in a single bin (Knuth, 1981).
The mathematically simple function introduced and exploited here does
precisely that, for all strings containing the precise same set of charac-
ters.

For each word type or word type combination (compound or word
bigram) to be included in the TISC lexicon, we obtain a numerical value,
which will serve as the hash key. The formula represents the mathemat-
ical function we devised to do this, where f is a particular numerical
value assigned to each character in the alphabet and c¢; to ¢, the
actual characters in the input string w.

|w]

Key(w) =Y f(c)”

In practice, we use the ISO Latin-1 code value of each character in
the string raised to a power n. We currently use 5 as the value for n.
This was empirically derived: lower values do not produce collisions
between anagrams only. The rather large natural number produced by
this function in effect raises the numerical distance between any two
characters to such a degree, that only the strings containing the same
set of characters are assigned the same natural number. This means
that all anagrams, words consisting of a particular set of characters
and present in the lexicon, will be identified through their common
numerical value. As the collisions produced by this function identify
anagrams, we refer to this as an anagram hash and to the numerical
values obtained as the anagram values, further abbreviated as Avs,
and anagram keys, when we discuss these in relation to the hash.
Table 3.1 shows an extract from the lexicon derived from the combined
NYT-BNC bigram list from which the bigram hapaxes were discarded.
All lines contain the string whale as well as the anagrams observed,
if any, for the particular word combinations formed on the basis of
the string. We further discuss the lexicon and provide a rationale for
applying frequency cut-offs to the bigram list in Section 3.3.1.

In the implementation we use chaining for collision resolution, as
the anagram keys and their associated word forms are there stored in
a regular hash. So the anagrams colliding to the same AV are associ-
ated to it in a linked list. The anagram key will enable us to look up
immediately whether any string consisting of the same character set as
the input string was encountered in the corpus. As will be explained
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[ Anagram key | anagrams
69820787149 elhwa, elwah, elwha, wahle, whael, whale, wheal, wleah
70060304557 . whale, whale .

70199366832 3 whale, whale 3

78441681838 a whale, whale a

97745731164 of whale, owe half, whale of

98722257206 in whale, whale in, while an

99445098414 a wealth, wealth a, whale at

102637158206 | whale ice

102730729081 as while, he wails, she wail, whale is, while as

102810023132 an whole, heal now, how lean, lane who, lean how, no whale, on
whale, whale on, who lean, whole an

103249105917 | bag while, big whale

103620573782 ale with, at while, la white, the wail, the wali, wail the, whale it,
what lie, while at, with ale

104056682337 each lawn, whale can

104546781838 and whale, whale and

105959068956 a howler, earl who, how real, or whale, whale or, who real
106704923132 | add whole, odd whale

106735035630 whale bar

106818495007 as whole, hole saw, hole was, sale who, seal who, so whale, whale
so, who seal, whole as, whose al

107708339708 at whole, heat low, how late, late how, late who, low heat, tale
who, to whale, whale to, who late, whole at

109763065238 fail when, fan while, fin whale, half wine

109955198915 eat whale, wheat ale

109992590371 deaf whale, flew ahead

110982753180 beachwalk, whackable, whaleback

113320123633 one whale

113685671137 | whale calf

113767373230 narwhale

113771537113 | if whales, whales if

116818495007 | al showed, deal show, deals who, do whales, heads low, how deals,
howled as, lad whose, lead show, leads who, low heads, owls head,
show deal, show lead, was holed, whales do, who deals, who leads,
whole sad

170274311781 | white whales

193505358311 Melville’s whale

204875577601 exploding whale

218430814371 important whale, white patrolman

235790947870 underwear should, whale surrounded

246647271323 | bottlenose whales

338099502351 whale-tracking technology

340344255445 whale-tracking hydrophone

342030600028 | whale-hunting forefathers

357657717136 | whale-watching excursions

358755368115 | whale-watching expeditions

364085024665 boy-meets-killer-whale movie

391720180929 3-million-year-old proto-whales

TABLE 3.1 Extract from a TISC lexicon with the anagram keys and associ-
ated, chained anagrams. The lexicon is based on the NYT-BNC bigram list
with bigram hapaxes removed. Note that the first line shows that of the 120
theoretically possible words containing a particular set of 5 characters (here :
a, e, h, 1, w) only 8 were actually observed. Note too that longer word strings
rarely have anagrams.
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below, a short sequential search will then allow for the retrieval of the
anagram which best matches the input string. When the actual AV is
not found in the lexicon, close numerical neighbours might very well
be present, and simple arithmetic will allow us to identify and retrieve
these potential correction candidates or CCs.

This novel representation makes the implementation computation-
ally efficient. The net effect of obtaining anagram hash key values is
that it provides a cheap abstraction from the surface sequence of char-
acters. This furthermore allows, through simple addition, subtraction
or both, for moving from one particular combination of characters to
another. The numerical difference obtained by means of this abstrac-
tion will in all cases be exactly the same for e.g. the difference between
‘randomise’ and ‘randomize’ or any other verb possibly ending in ‘-
ise’ or ‘-ize’. The same goes for all systematic differences between e.g.
American and British English (think of single or double ‘I’ or ‘ou’ versus
‘0").

Anagram key based spelling correction is an inexpensive solution to
the string correction problem as it limits expensive searching: it relies
primarily on the non-search strategy implied in hashing. In hashing
search is limited in that it is known, through the hash key, what is
available and where a particular item is to be found.

Number of elements per hash key

The maximum number of elements per anagram hash key is necessarily
limited to the number of possible permutations defined by the number
of characters c|,| in the string(s) assigned to a particular hash key.
This number of permutations is the factorial ¢|,,!. For a set of three
characters, the number is 3 x 2 x 1 = 6 , for a set of five characters
it is 120, while a set of 10 characters allows for 3,628,800 words to be
formed. For longer words it is very rare for even a very small fraction
of this theoretically possible number to be observed within a given lan-
guage. Storing all the anagrams in a chained list linked to the anagram
key, thereby solving the collision problem, is also quite efficient. Knuth
(1981) (p. 521) states:

Chaining is quite fast, because the lists are short. [...] In general, if there
are N keys and M lists, the average list size is N / M; thus hashing
decreases the average amount of work needed for sequential searching
by roughly a factor of M.

In our case, taking for example the English lexicon obtained with bi-
gram list cut-off frequency 2, we retain 16,329,811 unigrams and bi-
grams, the keys. Linked to their anagram keys, we have 13,445,472
lists. The average chained list size is 1.215, which shows that indeed
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only a very small fraction of possible word forms given specific subsets
of characters actually occur. As a consequence, the necessary sequential
search through the list of chained anagrams for the anagram matching
best with the input form will be short.

3.2.2 Anagram key based correction

Based on a word form’s anagram key it thus becomes possible to sys-
tematically query the lexicon for any variants present, be they morpho-
logical, typographical or orthographical.

The list of anagram values for the character(s) collected from the
input type we further refer to as the Type-derived Anagram Values,
abbreviated: TAVs. Given e.g. the type lolita we collect the Avs for the
single characters. Then we add a space front and back (we clarify the
reason for this later, the space is represented as an underscore, here):
_lolita_, derive the Avs for the character bigrams: _1, lo, ol, li, it, ta, a_
and store these. If the type is longer than 5 characters, we also derive
the Avs for the character trigrams: _lo, lol, oli, lit, ita, ta_ and store
these, too. So, in all, we derive n unigram values, n+1 bigram values
and n trigram values. Given the number of characters c|,,| in the string
w we get ¢y + (¢l +1) if ¢y < 5 and (2 x ¢pyy)) + (¢l +1) , otherwise.

What actually constitutes the alphabet we explain in Subsection
3.3.2. Let it suffice for now that the alphabet contains Avs represent-
ing characters and character combinations, not actual characters. We
further refer to the Avs in the alphabet as the Aavs.

Correction candidate retrieval Figure 3.1 shows a schematic rep-

resentation of the core correction mechanism. We use the Av for the

input string and the list of TAVs and the longer list of AAVs to query

the lexicon for variants to the string we need to find correction candi-

dates for. These variants can all be seen as variations of the usual error

type taxonomy due to Damerau (1964):

transpositions These we get for free: they have the same anagram
key value, so when queried for the input word Av, the lexicon
returns the correct form and its anagrams (if any).

deletions We iterate over the alphabet and query the lexicon for the
input word anagram value plus each AAv.

insertions We iterate over the TAVs and query the lexicon for the
input word anagram value minus each TAV.

substitutions We iterate over both TAV and AAv lists adding each
value from the AAVs and subtracting each value of the TAVs to
the input word anagram value and repeatedly query the lexicon.

By systematically querying the lexicon hash we retrieve all possible
ccs that fall within reach and apply standard string matching tech-
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FIGURE 3.1 The core correction mechanism. The lexicon is queried for trans-
positions on the basis of the input word anagram value (1av) alone. Each
AAV is added to the 1AV to query for deletions. Each TAV is subtracted to
query for insertions. Each AAv is added and each TAvV subtracted to query
for substitutions.

niques to retain those that either in front or back match the input
type for a specific number of characters, depending on the input type’s
length. We then iterate over the list of CCs retained and apply string
matching rules to rank the list according to the plausibility that a given
Cc is the correct form for a particular typo. This step we call upgrad-
ing. We list the actual upgrading rules applied in the next paragraph.
We finally retain only those ccs whose Levenshtein distance (LD) (Lev-
enshtein, 1965) does not exceed a specified limit, as the algorithm is
not in itself limited to a particular LD, which we will further discuss in
Subsection 3.2.3. The cCs have then been ranked and the top n are pro-
posed as correction candidates. Ranking is thus in part an automatic
side effect of the algorithm which produces more hits on the actual
most plausible Ccs.

Upgrading is making it appear as if some CC were retrieved more
often than it actually was because one or more string matching rules
apply. Upgrading is achieved by adding a specific amount to a partic-
ular cC’s count of times it was retrieved. The amount is specified as
a parameter at run-time. Throughout this work we used 3 as the up-
grading amount, prior experiments during development having shown
that adding nothing resulted in poorer best-first ranking, adding one
helped a little, adding three helped best.
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We upgrade only those items whose ‘cooccurrence frequency counts’
(to be discussed in full in 3.3.3) are higher than a particular threshold
(i.e. the Zipf Filter amount set, to be discussed in full in 3.4.1) and
whose LD is lower than the LD limit set (the subject of 3.2.3), when one
or more of the following string matching rules apply:

« if the lowercased cC matches with the specified number of initial
characters of the input word and with the specified number of final
characters

« if the lowercased cC matches with either the larger specified number
of initial characters of the input word or with the larger specified
number of final characters

« if the cC matches fully with the input word stripped of its first
character

« if the input word matches fully with the cC stripped of its first
character

« if the cC matches fully with the input word stripped of its last char-
acter

« if the input word matches fully with the cc stripped of its last char-
acter

« if the cC matches with the input word or the input word matches
with the cc, regardless of the match being complete or not

« if the lowercased cC matches fully with the lowercased input word

« if the cC’s first character is uppercased and the lowercased versions
of cc and input word fully match

We further refer to the second rule as to the ‘first-or-last-characters-
matching’ rule and to the rules 3 to 7 as the ‘the-one-fits-in-the-other’
rules.

The first two rules are the most important. Note that if the first
applies, the second will apply too. The same set of upgrading rules is
applied whenever the core correction mechanism is invoked. In Section
3.2.4. we show that this happens more than once, for a particular typo.
We first detail by means of an example how the CCs retrieved by the
core correction mechanism are upgraded and ranked.

Example We see what happens when the core correction mechanism
is applied to *goverment, running TISC with a trusted dictionary. This
produces 29 hits in all, retrieving the words in Table 3.2 with their
frequency of retrieval. The examples show that the actual placing of the
characters within the retrieved words is irrelevant. The correct word
government was retrieved once on the basis of addition of the value
for the missing character n, the other twelve times on the basis of the
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| cc | b | FR | UR | URF |
government | 1 13 | government | 98
provement 4 3 overgarment | 4
overgarment | 3 3 provement 3
revetment 2 1 governments | 2
regiment 4 1 emergent 1
ravelment 6 1 goniometer 1
ravagement | 9 1 regiment 1
governments | 3 1 ravelment 1
goniometer 3 1 convergent 1
emergent 3 1 revetment 1
convergent 5 1 ravagement 1
averment 2 1 averment 1
agreement 4 1 agreement 1

TABLE 3.2 *goverment: correction candidates retrieved (cc), their Leven-
shtein distance (LD) to the typo and their frequency of retrieval (FR). Column
4: upgraded ranking (UR) based on upgraded retrieval frequencies (URF).

substitution of the anagram values for each of its constituent characters
for the character bigram value of each of these characters with the value
for n. These character bigram values are contained in the alphabet. This
repeated retrieval introduces desirable redundancy: it is an artefact
of abstracting away from the actual character sequence through the
anagram key values, but should be seen as a desirable side-effect as
it helps to converge on what is usually the best correction candidate,
besides the actual input string itself, if present in the lexicon.

After upgrading, this list looks as in column UR: shown are the words,
their upgraded retrieval count and the LD to *goverment. It can be
seen that only the first ranked correction candidate falls within LD 1.
The far less plausible correction candidate goniometer was retrieved on
the basis of subtracting the value 22,877,577,568, which represents the
character v and adding the value 29,613,397,176, which represents the
character bigrams oi and i0 = 6,735,819,608.

The LD forms the basis for the third ranking step, which filters out
those that exceed the LD limit which was set, in this case LD 3. This
leaves the words in Table 3.3, only the top 5 ranked of which are fur-
ther passed on to the post-correction evaluation step. We only retain
the top 5 to cut down on processing in comparing the outputs from
the various times the core correction mechanism is invoked. We briefly
experimented with retaining the top 10, but saw no performance gains.
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Correction candidate | Retained? |

government yes
provement yes
governments yes
ravelment yes
convergent yes
revetment no

averment no

TABLE 3.3 *goverment: final ranking of correction candidates on the unigram
level: top 5 only are retained.

It is possible that if the top 10 or more were passed on for shorter words
only, performance would improve. We clarify this in Chapter 4.

Number of possible hits per error type In what follows we will
discuss per error type, how many hits on the correct form may occur.
We discuss this in terms of z/y replacements, meaning that the char-
acter(s) z are replaced by the character(s) y. Bear in mind no actual
replacement of characters takes place in our algorithm, that anagram
values are added or/and subtracted from the input string’s anagram
value, allowing for a hash key to match and a cc retrieval to occur.
The reason we add a space front and back to the input string when
collecting the TAVs is to allow for first or last character changes to be
retrieved as many times as in-word changes, i.e. to also reap the benefit
of character bigram to character unigram substitutions on these cases,
which would otherwise not be retrieved as often.

The example of *goverment has shown us that in the case of a single
character deletion error, the correct form may be retrieved as many
times as the input word has characters, plus two for the spaces added,
plus one for the single character n, plus one for substitution of the
null-value by the Av for n.

The picture is different for a two-character deletion. For *govement
both movement and government are retrieved, among 27 CCs in all. The
correct form, using an alphabet containing only character unigram and
bigram values is only retrieved twice, on the basis of adding the ap-
propriate character bigram value. The other cc, movement, is actually
retrieved three times, on the basis of g/m replacement, space-g/m re-
placement and go/mo replacement. So the upgrading has to ensure
government is ranked first. On the basis of its matching both in front
and back with the typo, government is still ranked first.

For transpositions, one would think that these would be retrieved
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just once, on the basis of their identical anagram key value. However,
the correct form is retrieved as many times as the TAVs match one of
the AAvs, which is equal to the number of TAvVs.

Single insertion errors produce four matches: one unigram charac-
ter value subtraction, one character unigram value (the null-value) to
character unigram substitution and two bigram character value to un-
igram character substitutions. Two-character insertion errors produce
one match on the basis of one character bigram subtraction.

The substitution error *governmant produces 14 retrieved ccs, but
only three times the correct form, on the basis of the replacements e/q,
me/ma and en/an. It follows that two character substitutions will only
produce one match.

Total cost in number of queries Our error model is in its essence
simple and complete: within the limits imposed by the alphabet and
the length of the input string, it allows for anything to happen and is
still capable of retrieving the intended string.

This comes at the following cost: let n(AAv) be the number of values
in the alphabet, n(TAV) the number of typo-derived anagram values,
then

+ transpositions are found in 1 query

+ deletions in n(AAV) queries

+ insertions in n(TAV) queries

« substitutions in n(TAV) X n(AAV) queries

which gives us the total number of queries required:
« 14+ n(AAV) + n(TAV) 4 (n(TAV) X n(AAV))

This then also defines the maximal number of chained lists of correction
candidates that may be retrieved. Follows the sequential search through
these chained lists for the cCs matching best with the input string. We
have seen that for the lexicon with frequency cut-off at 2, this multiplies
this maximal number by 1.215 on average. The actual sequential search
involves nothing more than looking at each item of the chained list in
turn whether it matches the input string either in front or back. The
items that do are retained and sent on for upgrading.

We have now given an in-depth description of how the core correction
mechanism works. This mechanism is in actual fact applied in several
levels or tiers in TISC. Before we describe how this works, we discuss
in the next subsection how we in practice limit the LD covered by the
core correction mechanism.
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3.2.3 Levenshtein distance

The LD that can be covered by our system can be set or limited in two
ways.

First, the anagram values that make up the alphabet could include
not only the values for character unigrams and bigrams, but also for
character trigrams. The values included define the scope of the correc-
tion mechanism. We will further discuss this in Subsection 3.3.2.

Secondly, for each correction candidate retrieved, we use a separate
subroutine which calculates the LD between the string to be corrected
and the candidate. This is required because even with the LD limit im-
posed by the alphabet, CCs of great LD are retrieved, e.g. goniometer
for *goverment, with an LD of 6. By discarding the cCs retrieved that
have an LD larger than the limit we set at run-time, less plausible can-
didates are removed and ranking is further improved. The Levenshtein
Distance implementation we used throughout this work was provided
by Eli Bendersky®. This has a ‘classical’ complexity: O(mxn) (Navarro,
2001) (p. 47) where n is the length of string 1 and m the length of string
2. As a matter of fact this is wasteful: the implementation tells us what
the actual LD is. We only need to know whether or not the LD exceeds
the limit we set or not. This can be obtained by Ukkonen’s ‘diagonal
transition algorithm’ (Navarro, 2001) (p. 48) which can check in time
O(k?) whether the distance is < k or not (Ukkonen, 1985). Future
implementations of TISC will use this algorithm instead.

3.2.4 Tiered correction

The core correction mechanism is invoked several times for a particular
typo. It is actually applied on three tiers: on the tier of the isolated
words, on the tier of the four bigrams formed by the 2-1-2 word window
in the input context and, if necessary, on the tier of the input word’s
two compounding parts. These three tiers of correction together form
the full correction mechanism. On the first and third tiers we not only
retrieve CCs from the lexicon, but also from the list of word types
derived from the input text. This latter step is based on the simple
observation that the correct form may well be present elsewhere in the
input text, due to the bursty nature of words. This may actually allow
TISC to correct words for which the correct form is not even present in
the lexicon, as we shall see in Subsection 3.4.4.

The unigram tier consists of two levels. On the first level, we effect
unigram correction on the basis of the corpus-derived lexicon, which is
equivalent to isolated word correction as performed by most spelling

L Available from http://www.merriampark.com/ld.htm



Unigram Tier:

Items returned

Error Type Typo Input AV - TAV 4 alphabet Av = lexicon key Av cCs

Actual character(s) represented by the AV are shown between brackets
Deletion pro-goverment 198002675145 + 16105100000 (n) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 33554432 () + 16138654432 () = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 17623416832 (p) + 33728516832 (pn) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 19254145824 (r) + 35359245824 (rn) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 16850581551 (o) + 32955681551 (on) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 184528125 (-) + 16105100000 (n) = 213923247020 progovernment
Substitution pro-goverment 198002675145 - 11592740743 (g) + 27697840743 (ng) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 16850581551 (o) + 32955681551 (on) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 22877577568 (v) + 38982677568 (vn) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 10510100501 (e) + 26615200501 (ne) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 19254145824 (r) + 35359245824 (rn) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 15386239549 (m) + 31491339549 (nm) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 10510100501 (e) + 26615200501 (ne) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 16105100000 (n) + 32210200000 (nn) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 21003416576 (t) + 37108516576 (tn) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 33554432 () + 16138654432 () = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 33554432 () + 16138654432 () = 214107775145 pro-government
Substitution pro-goverment 198002675145 - () + 16105100000 (n) = 214107775145 pro-government
Substitution pro-goverment 198002675145 - 17035109676 (o-) + 32955681551 (on) = 213923247020 progovernment
Substitution pro-goverment 198002675145 - 11777268868 (g-) + 10543654933 () = 196769061210 never promote,

promote nerve

Substitution pro-goverment 198002675145 - 11777268868 (g-) + 27697840743 (ng) = 213923247020 progovernment
Substitution pro-goverment 198002675145 - 39728159119 (vo) + 19097440758 (ea) = 177371956784 pro-agreement
Unigram Tier: Upgraded ranking
Typo CCs Upgraded count LD
pro-goverment pro-government 119 1
pro-goverment progovernment 3 2
pro-goverment pro-agreement 1 4
pro-goverment promote nerve 1 8
Unigram Tier: LD filtered ranking
Typo cCs
pro-goverment pro-government
pro-goverment progovernment
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TABLE 3.4 Correction on the unigram tier. For this particular example, actually only one item retrieved from the lexicon
forms a chained list of two anagrams. The first of these, never promote does not make it to upgrading: it matches neither
front nor back with the input word. The second, promote nerve, is not upgraded because its LD is too high, as is the case for
pro-agreement. Both are discarded in the last step, the LD filtering. In this case, only two CCs are finally retained.
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error correction systems available. On the second level, we perform
unigram correction on the basis of the list of input context derived
types and compounding parts, in which the types exceeding a particular
frequency threshold are taken to be correct and are made available to
the system as an input text derived lexicon. The frequency threshold
is set very low: all non-hapaxes are included.

On the bigram tier, TISC performs context-dependent error correc-
tion, to some extent. It examines the 4 bigrams contained within a
2-1-2 window around the type in the input text (e.g. the green *bottel
was empty — the *bottel, green *bottel, *bottel was, *bottel empty). For
the 4 bigrams sent consecutively through the correction loop, all the
correction candidates retrieved are stored in the same list, reinforcing
the evidence found that a particular cC is more likely given the context
than the other cCs retrieved. This produces more reliable counts after
upgrading.

After correction on the unigram and bigram tiers, the output candi-
dates are compared and if both tiers concur, i.e. the same candidate(s)
were returned, they are accepted if they differ from the input type, or
rejected (and ’let go’) if not. This is illustrated in detail in Table 3.4
for the unigram tier and in Table 3.5 for the bigram tier on the basis
of the typo *pro-goverment as in the context: ‘by the *pro-goverment
political coalition’. All four bigrams derivable from this 2-1-2 window
happen to be in the lexicon used. To produce the results in this ta-
ble, the alphabet contained Avs for character unigrams and bigrams
only. The LD limit was set at 3. In the next paragraph we discuss what
happens when none of the four bigrams happen to be in the lexicon.
As the unigram tier table shows, only two CCs are finally returned.
The less desirable variant progovernment is not actually returned on
the bigram tier. Nevertheless, less plausible cCs are retrieved. The ccCs
over-reporting and mentor-protege are not retained: they match neither
front or back with the input word. The cC pro-agreement is passed on
to the upgrading step, but is not actually upgraded because its LD ex-
ceeds the limit and is therefore discarded in the final step. The best-first
ranked CCs on both unigram and bigram tiers are identical: the out-
put is in agreement and no further processing on the compound tier is
necessary.

When no output is returned by the unigram and bigram correction
tiers, or the results of these do not concur, the type is further checked
on the third tier, that of its substrings, i.e. the compounding parts
returned by the compound splitter, which we discuss further in 3.4.2.
The compound correction tier treats both LPC and RPC as words in their
own right, queries the system for correction candidates in the same way
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as on the unigram tier for both parts, i.e. making use of both the lexicon
and the input text derived list of word types and frequency information.
Finally, the top candidates returned are concatenated and proposed
as correction candidates. In the case of *pro-goverment without any
of the context bigrams being present in the lexicon, all is as in the
unigram correction table presented above. On the bigram tier, however,
only the cC pro-agreement is retrieved from the lexicon and discarded
because of its LD. The bigram tier then produces no CCs, agreement
between the unigram level and the bigram level is not possible and the
correction continues on the compound tier. This produces the single
CC pro-government: on the compound tier we retain only the best-
ranked cc found. The ccC returned by the compound tier is in full
agreement with the best-first ranked cC returned on the unigram tier.
What happens when no CC is returned on the unigram tier, because
the actual correct form to which the typo should be resolved is not at
all in the lexicon, we exemplify in 3.4.4.

Resolving ambiguous typos We next consider how the bigram tier
helps to resolve the correct ranking of the CCs in the case of ambiguous
typos, such as for instance *onjections which might resolve to either
objections or injections. Again, output on the unigram tier is necessarily
the same for the typo *onjections, regardless of whether it appears
in the context ‘most vehement *onjections lodged against’ or ‘painful
intramuscular *onjections received daily’. The contexts are fabricated:
we made sure all four bigrams are actually in the lexicon we used. Let
it suffice for the unigram tier that the 5 cCs retained in the end are,
in that order: injections, objections, projections, rejections, ejections.
In Table 3.6 we give the results obtained on the bigram tier. Given
that for the injections context the best-first unigram and bigram cc
are identical, the unigram list of CCs is output by the post-correction
evaluation module. Given that for the objections context the bigram
tier’s best-first CC is also present in the unigram tier’s list of CccCs, the
bigram tier’s best-first cC is output first, followed by the rest of the
unigram tier’s cCs. We see that given the perfect contexts, both typos
are resolved to their proper correct form, achieving perfect best-first
ranking.

Handling segmentation errors Due to the fact that the space char-
acter is included in the alphabet the outlier cCs never promote and its
anagram were retrieved on the unigram tier in the above. We handle
run-on errors, where two words happen to form a typo because the
space dividing them has somehow been lost, on this basis. During pro-
cessing on the unigram tier we gather cCs returned, if any, on the basis
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TABLE 3.6 Ranking performed by the bigram tier. Same typo, different con-

text.

Typo

| cos

| Upgraded count | LD

‘painful intramuscular *onjections received daily’

Bigram Tier: Upgraded ranking

210
48

1

I e

onjections | injections

onjections | objections

onjections | connections

onjections | conditions

Bigram Tier: LD filtered ranking
onjections | injections

onjections | objections

onjections | connections

‘most vehement *onjections lodged against’

d ranking

144
16
12
12
4

=W N W

Bigram Tier: Upgrade
onjections | objections
onjections | projections
onjections | connections
onjections | conventions
onjections | conditions
Bigram Tier: LD filtered ranking
onjections | objections
onjections | projections
onjections | connections
onjections | conventions
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| Corpus | NYT-BNC |  ILK-TWC |
language English Dutch
tokens 1,219,542,274 | 681,686,340
bigrams (frq.>2) 21,626,223 9,927,378
derived unigrams 797,532 861,604
keys/anagrams 13,421,017 9,000,131

TABLE 3.7 Statistics of NYT and ILK-TWENTE corpus and lexicon.

of the addition of the AV representing the space character in a separate
list. Those returned are returned because the actual bigram that can
be formed by adding a space character somewhere to the erroneous
string is present in the lexicon. This implies that solving run-ons is
dependent on the fact of the bigram being available. We do not return
all bigrams for all words that happen to constitute two other words
present in the dictionary, as by default ISPELL does. The cost of that
strategy we demonstrate in Chapter 4.

The other type of segmentation error, split words, we can correct on
the basis of watching out for cCs returned on the bigram tier on the
basis of subtraction of the Av for the space.

Having word bigrams in the lexicon represents a sizeable overhead,
but this is off-set, in part, by the fact that correction of segmentation
errors without an exponential explosion of possible edits to consider
becomes possible.

3.3 TISC corpus-derived components
3.3.1 The lexicon

A Ti1SC lexicon is derived from a large corpus of tokenized, but other-
wise raw text, from which all XML or other mark-up tags have been dis-
carded. We normalise the corpus by replacing all word-external punc-
tuation by a single unique mark, as well as all digits and numbers by
another. We apply the rule-based tokenizer we described in Subsec-
tion 2.1.3. and use the MU Statistical Toolkit for deriving a bigram
frequency list from the corpus (Clarkson and Rosenfeld, 1997). We dis-
card the tail of the bigram list below a threshold frequency, which we
further refer to as the cut-off. This ensures we do not incorporate the
bulk of erroneous types present in the corpus. Next the frequency infor-
mation is discarded and a unigram list is derived from the retained part
of the bigram list. We lowercase the unigram list and concatenate the
bigram list, the unigram list and the lowercased unigram list, removing
any doubles. Adding the lowercased list removes the need for having
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FIGURE 3.2 Plot of the number of bigram and unigram types in the combined
NYT-BNC lexicons per frequency cut-off.

character bigram values for lower /uppercase character combinations in
the alphabet, which reduces the total number of queries needed. If for
the first ranked ccC the list contains a matching cc differing only in that
its first character is capitalised, the upgrading process should push the
latter forwards as the first ranked cc, if it has higher cooccurrence
frequency counts.

Finally, we compute the anagram key values for the unigram/bigram
list. Together, the anagram keys and their lined-up unigrams or bigrams
constitute the lexicon. As the space is regarded as a character in its own
right no unigrams in the lexicon can line up with bigrams. Note that
the lexicon will contain names and recurrent typos whose frequency
exceeds the cut-off. Table 3.7 provides some statistics for an English and
a Dutch lexicon, both at cut-off frequency 2, i.e with hapax legomena
and dis legomena removed.

In the evaluations we present in Chapter 4, we used the combined
NYT and BNC corpora for English. For Dutch we used the combined LK
and TWC corpora.

For English, we combined the NYT and BNC corpora in order to em-
ulate an international English dictionary, which contains the regular
spelling variations between British and American English. We did this
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because the Reuters RCV1 corpus contains stories sent in from all over
the world, in both orthographies. An overview of the bigram list cut-off
points and the resulting size of the lexicons obtained in terms of the
unigrams and bigrams present is given in Figure 3.2. It can be seen
that the lexicon obtained at cut-off 1 (containing 23,182,623 bigram
and 1,156,351 unigram types), where only those bigrams occurring just
once in the whole corpus are discarded, is huge compared to regular
spelling correction systems’ dictionaries. Note that discarding word bi-
gram hapaxes is not the same thing as discarding the unigram hapaxes.
Both words contained in a bigram hapax may well be present with far
greater frequency in other bigrams. However, discarding the bigram
hapaxes effectively removes the unigram hapaxes. The fact that uni-
gram hapaxes are also removed may seem undesirable. Nevertheless,
it should become clear when we discuss our spelling checking strategy
in Section 3.4.4. that they would not have a useful role to play. We
have also seen in Section 2.2.6. that in the Rcv1 45% of the unigram
hapaxes are in fact typos. One does not want to incorporate these if
one’s goal is to remove as many typos as possible from a large corpus.
Only if the system were equipped with an additional trusted dictionary
would we be able to fruitfully employ word unigrams such as crayfishes,
hyphenations, unifications or whaleburgers, all of which are hapaxes in
the NYT. This is certainly an option, but one which is not explored in
the present work.

The lexicon obtained at the highest cut-off shown here, at frequency
999 (containing 118,272 bigram and 22,099 unigram types), is but small.
It represents only a basic vocabulary, though it should be trustworthy
to a high degree.

3.3.2 The alphabet

Transformations on the word type to be evaluated are necessary in or-
der to identify correction candidates. These transformations occur on
the anagram key of the word type under consideration on the basis of
the Avs for the alphabet which is made available to the system. The
alphabet used throughout this work, consists of the anagram key val-
ues for all character unigrams and character bigrams we want to work
with. We here experimented with both a larger and smaller alphabet:
with and without character trigram values added to the alphabet. The
smaller alphabet contains the unigram values for the apostrophe, dash,
A-Z and the special characters: a, &, &, ¢, é, é, 1, 1, 6, 0, 0, 11, as well
as the unigram and bigram values for the regular alphabet a-z and the
space. Added to this, for the larger alphabet, are the trigram values for
a-z, i.e. aaa to zzz. The smaller alphabet contains 498 Avs, the larger
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Combination | Count | Corpus examples

LPC count 37 bottled, bottlenose, bottleneck, bottles, ...

RPC count 3 Harbottle, bluebottle, milk-bottle.

LPB count 110 aspirin bottle, beer bottle, big bottle, blue bottle, ...

RPB count 82 bottle and, bottle bank, bottle containing, bottle feed, ...

TABLE 3.8 The cooccurrence counts are obtained by counting the combina-
tions observed in the lexicon which contain a particular word type. Example:
‘bottle’.

3,774. The special characters were derived from the Dutch corpus.

Replacing the actual character bigrams and trigrams by their corre-
sponding AVs represents a sizeable reduction of the search space: every
possible combination of two (two combinations) or three characters (six
combinations) is represented by a single numerical value. As we have
seen, this furthermore represents an abstraction away from the actual
character string sequence.

3.3.3 The cooccurrence information

From the word bigram and unigram lists we derive cooccurrence infor-
mation for all the word types present. For each word type we count the
number of times it forms the:

+ left part of a compound (LPC)

+ right part of a compound (RPC)
+ left part of a bigram (LPB)

« right part of a bigram (RPB)

The cooc table contains only the counts per word-type, not the ac-
tual cooccurring word types. It is derived from the same word bigram
list as is used to build the lexicon, i.e. the bigram list retained after
a particular frequency cut-off was applied. These four type frequency
counts are the only frequency information employed by the system in
its current implementation. Table 3.8 gives an impression of the cooc-
currence counts, further abbreviated as cOOCs, obtained for bottle.

3.4 TIsC: the implementation

A graphical overview of TISC’s architecture is given in Figure 3.3.
We have so far discussed blocks A and B: the preprocessing done on a
corpus in order to derive the lexicon and the cooccurrence information.
We have also in depth discussed block 3, i.e. how correction is effected.
We will now walk through blocks 1, 2 and 3 and illustrate the work-
ing of the various modules and more specific aspects of TISC on the
basis of a single typo in a newspaper article taken from our develop-
ment set for Dutch. The development set contains an article about the
threats posed by legionella, the bacterium responsible for legionnaires’
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disease. The typo is *egionellawaakhonden, which should have read le-
gionellawaakhonden [legionella guard dogs - official bodies that guard
over legionella outbreak prevention].

This is a rather special case, as the lexicon used during development
contains only the types legionella-bacterie and two bigrams: ‘legionella-
bacterie . and ‘de legionella-bacterie’. The compound is spelled with
a dash, which is not strictly necessary in Dutch, but is allowed. The
first bigram is the compound followed by a dot, which denotes any
kind of word external punctuation mark. The second has the Dutch
definite article de (the). Based on this the cooc-table offers only this:
‘legionella-bacterie RPB: 1 LPB: 1°, which means there are in all 2 bi-
grams containing the word. Note that the unsupervised method used
to build the cooc-file was not able to split the compound and count
the LPCs and RPCs because the stand-alone type ‘legionella’ does not
appear in the particular lexicon used.

Before we can walk through the system to see how a text is first
preprocessed, then spelling checked and finally corrected, we first need
to introduce Zipf Filters, an integral part of the spelling error detec-
tion mechanism we employ, and explain how TiSC effects compound
splitting.

3.4.1 Zipf Filters

Zipf (1935) stated that the frequency of a word is inversely proportional
to its length. This implies that we should expect to see more combina-
tions of any given short word, be it in bigrams or as part of compounds,
than of longer words. A long compound, e.g. one composed of three or
more shorter words, cannot be expected to further compound with very
many more words. Short words can be expected to combine in a myr-
iad of ways, be it as part of compounds or of numerous bigrams. We
exploit this in what we would like to call the Zipf Filters implemented
in our prototype. We make the number of expected cooccurrences of a
word dependent on the length of the word form. This then allows to
detect anomalies in the cOOCs for particular word types. We posit a
particular amount of times a string or substring is seen as sufficient to
conclude the string is likely well-formed as it is highly productive. To
this end we take a constant, which is higher for the shorter strings and
lower beyond a particular number of characters, divided by the num-
ber of characters in the string, or the string’s length. We compare the
C00Cs of a string to be evaluated with the outcome of this calculation
and accept the string as being well-formed when the COOCs are higher,
reject and thus send on to the correction module, when lower.

While the use of a particular, heuristically set, constant works, it
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is rather unsatisfactory in that it is not particularly well founded and
in that one intuitively feels this will not work in the same way if one
uses a very large rather than just a large corpus. We will revisit this
in Subsection 3.5 and there propose a corpus-derived and finer-grained
solution.

3.4.2 Compound splitting

Given that a language such as Dutch freely allows for compounding,
any text may contain quite a number of previously unseen compounds.
Any spelling checking system will therefore require ways of dealing with
this. Correct compound splitting is a hard problem, even if the com-
pound is correctly spelled. Many compounds allow for several readings,
depending on the dictionary used. We have, e.g., observed the Dutch
ISPELL splitting internetwinkel (internet shop) into interne twinkel (in-
ternal twinkle), which is somewhat unlikely, though perfectly valid. Its
dictionary was built in 1995 and lacks the word internet.

TISC currently proposes a single particular split to be further pro-
vided to the checking and correction modules. This was primarily based
on reasons of parsimony and may well not be the best possible solution.
Furthermore, the implementation currently allows for only a split in a
left and right part, even though we are well aware of Oflazer’s pertinent
criticism of this approach: this cannot work for agglutinative languages
whose millions of possible word forms can never be available in a static
dictionary (Oflazer, 1993). However, an example of where decomposi-
tion in more than two parts would validate an unacceptable compound
would be *vluchtvaartmaatschappij for luchtvaartmaatschappij (airline
company )(Metro, Dutch Edition, 2 March 2005, frontpage). Decompos-
ing the compound into vlucht (flight) + vaart (navigation) maatschap-
pij (company) would validate the three distinct parts and thereby the
whole. We follow Daelemans (1987) (p. 61) in assuming that in a single
composition, a maximum of two word forms is combined. So our exam-
ple would necessarily decompose first in luchtvaart and maatschappij
and then in lucht and vaart. The incorrect *vluchtvaartmaatschappij
cannot thus be decomposed, neither *vluchtvaart or *vaartmaatschap-
pij being acceptable.

Our decompounding mechanism operates as follows: While iterating
over the input word string to compute its anagram value, TISC repeat-
edly queries the lexicon to check for the presence of the substring han-
dled so far. If this is successful for the whole string, the substrings, if
any, which show the best balance between length and coocs are stored
with their anagram values. If no full parse was possible, the process
is repeated from right to left. A decision is then made over both the
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left-right and right-left parses and the split deemed most usable on the
basis of the compounding parts’ COOCs and length are stored for use
by the checking and correction modules.

Example We illustrate this with the typo *egionellawaakhonden. The
erroneous LPC *egionella does not appear in the lexicon. The trace of
the decompounding module gives:

egionellawaakhonden — e

egionellawaakhonden — eg

egionellawaakhonden — egi

egionellawaakhonden — egion

Moving from left to right ‘egion’ was the longest substring found in
the lexicon. As the remainder of the string was not found in the lexicon,
the type was re-evaluated by the splitting module from right to left,
providing the trace:
egionellawaakhonden — n
egionellawaakhonden — en [and]
egionellawaakhonden — den [pine, fir]
egionellawaakhonden — honden [dogs]
egionellawaakhonden — waakhonden [guard dogs]

The longest potential RPC ‘waakhonden’ has a coOOC of 5, whereas
the longest LPC ‘egion’, just 1 in lowercased form and just 1 in upper-
cased form (which may indicate it is a rather rare name). We choose
the longer, more frequent substring and store this as the RPC, together
with its anagram key value. The remainder and associated anagram
key value is stored as the LPC.

3.4.3 Studying the input text

Studying the input text amounts to collecting all useful information
from the text to be spelling checked. TISC is currently batch-oriented
and so has the full text at its service. The input text is first fully
analysed: anagram values are added to the type list derived from the
text, frequencies of types and their compounding parts are tallied, track
is kept of how many times the type was capitalised and recurrent LPC’s
not in the lexicon are stored for future reference. Table 3.9 exemplifies
this process for the single example word legionella. The legionella-article
contains 33 token occurrences of the type, of which 13 in compounds
and 6 in capitalised form. Given the freely occurring form, TISC tallies
how often this form occurs in the input text, whether free or as the LPC
of compounds, even if it does not occur in the lexicon.

This information will be used by the decompounding, checking and
correction modules. A spelling checking system which does not take the
input text into account and which does not have the type legionella in



TEXT-INDUCED SPELLING CORRECTION 73

| type frequency
legionella

Legionella
legionellamasterplan
legionellabesmetting
legionellabacterie
legionellavrij
legionellaschoon
legionellarisico’s
legionellaregeling
legionellapreventie
legionellamaatregelen
legionelladoden
legionelladiagnose
legionella-uitbraak
legionella-onveilig
legionella-notitie
Legionellapreventie

—_
o

e e T T T T S S Gy S S e Y NI NI N3

TABLE 3.9 The type ‘legionella’ and its compounds in the development set
article.

its dictionary (as is the case for both the Dutch 1SPELL and MPT), will
on this article produce 33 precision errors (token count), due to this
single missing word. TISC will produce none, given that in default of
too low COOCs, it accepts the 33 input text occurrences, provided the
COO0Cs or input text occurrences of the second part of all ‘legionella’-
compounds provide enough evidence to accept them.

EXAMPLES bizarre | bizzare
COMPOUND - LEFT 5 0
COMPOUND - RIGHT 0 0
BIGRAM - LEFT 712 5
BIGRAM - RIGHT 252 4
CcoocC 969 9
ZIPF FILTER THRESHOLD 14 14
DECISION let go | sent on

TABLE 3.10 Overview of coocs for bizarre and *bizzare, Zipf Filter threshold
and decision taken accordingly.
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3.4.4 Checking

We employ a simple but effective heuristic as the first step in deciding
whether a word type is erroneous or not, which is its frequency in the
input text. Word types occurring n times or more, are simply regarded
as being correct and not further evaluated. The threshold can be set
at run time and is set according to the length of the input text, higher
the longer the text.

All the types whose input text frequency is lower than the threshold
are sent to the spelling checking module. We do not have a trusted dic-
tionary, so we cannot content ourselves with simply checking whether
a type is present in the dictionary or not. Instead, we query the cooc-
currence information table to see whether the particular type’s coocCs
conform to our expectation of how many times a type of the given length
should have been incorporated in the lexicon, i.e. the expectancy level
or threshold set by the Zipf Filter. If the type’s cOoCs conform, the type
is not further evaluated, which we will refer to as ‘let go’. An example
is given in Table 3.10. If the type’s cOOCs do not conform, the coOCs
for its LPC and the RPC are evaluated against the Zipf Filter thresholds.
We do not, at this stage, want to risk to lose too many of the erroneous
types, so the level of expectancy is set rather high. We simultaneously
check whether perhaps the lexicon contains possible bigrams based on
the type’s anagram key value with the value for a space added. All the
types which did not conform to the expected levels or were found to be
present with an additional space, are further evaluated.

Further checking is a dual process. On the one hand we employ the
set of rules we present next. On the other hand we invoke the unigram
correction tier and see if that returns likely ccs. The additional rules
are:

.+ extra-space cases: If it turns out the lexicon contains only the in-
verted form with the added space (e.g. ‘koffiebekertje’ [coffee cup]:
not in the lexicon, but ‘bekertje koffie’ [cup of coffee] is present), we
accept the form as being correct, the rest are further evaluated. This
happens regardless of whether both forms actually mean the same
thing or not: it is assumed the orthography remains identical, even
if the semantics differ.

« we check whether perhaps the LPC was seen in various other input
text compounds or whether the RPC was perhaps seen as a word
in its own right with a given frequency in the input text, the other
part’s cOOCs conforming. Again those passing this test are let go.
See the example of legionella, above.

« we check whether perhaps the coocs for the LPC with first or all
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characters upper-cased conform to expectance.

« if the input type contains a dash, we check whether the coocs for
the type without the dash conform. Or perhaps whether the type
without the dash but with an extra space is present in the lexicon
and its cOOCs conform.

- finally we check those forms for which the cooccurrence table con-
tains no information at all. This would typically be the case for pre-
viously unseen compounds, e.g. neologisms. If the coocs for their
LPC and RPC exceed a high expectancy threshold, these are let go
too.

For the types that were not let go by one of these rules, we evalu-
ate the cCs returned by the unigram correction tier. The most likely
situation here is that the input word is returned as the best-ranked
CC as it occurs in the lexicon. We therefore check whether or not its
C00Cs are higher than the coocs of the second-best ranked cc. If
they are, we let the type go. Else we check if perhaps the second-
best ranked ccC is perhaps a more frequent morphological variant of
an otherwise correct input type. We therefore re-employ the ‘the-one-
fits-in-the-other’ upgrading rules. If one of these applies, we check the
c00Cs for the shorter word form and if these conform to the Zipf Fil-
ter threshold, we let the type go. An example would be a rarer adverb
such as tempestuously with coocCs: 2 in the NYT-BNC lexicon at cut-off
frequency 2, where the adjective tempestuous has coocs: 82. It will be
clear that language-specific morphological production rules would be
in order here. Nevertheless, the implementation has none.

In the cases where the unigram tier correction returned no CCs,
we take a close look at the input text derived type list to see if per-
haps enough evidence can be found there to validate the input type.
This would typically be the case for text specific compounds. Examples
here would be the correctly spelled legionellaschoon [free of legionella],
legionellamasterplan [legionella masterplan], legionella-notitie? [white
paper on legionella] from our development article.

All the types that could not be validated and let go, are sent on to
the full correction module.

To return to our development article about legionella: The type
*egionellawaakhonden has no coOOCs, which causes the type to be evalu-
ated on the basis of the coOCs for the LPC *egionella and RPC waakhon-

2 Three more Googlewhackblatts (on 22-06-2005), all referring to one document
on the web (URL: http://www.belproject.nl/default.asp?mid=2&nid=17), which
identifies our Metro-article as its source: Metro, Tuesday 3 june 2003, p 1, 12-13.
Our typo *egionellawaakhonden has there been corrected and constitutes a fourth
Googlewhackblatt.
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den, after we have ascertained the type is not present as a bigram in
the lexicon (unigram AV + Av for a single space). The Zipf Filter for
an RPC-type of length greater than 4 was set at 100 / length of string
(Lpc: 100 / 9 = 11, rPC: 100 / 10 = 10), which for the RPC means
that at least 10 occurrences were required, in this phase. Neither part
fulfils this requirement. No other reasons to let go the type are found in
further checking. It is therefore sent on to the full correction module.

3.4.5 Correction

A sufficiently high frequency in the input text of the correct form for
an incorrect compounding part may enable the system to correct the
error even if the correct form is not present in the lexicon. So, for our
example *egionellawaakhonden no ccs are found on the unigram tier,
nor on the bigram tier. Neither does the input text contain the correct
compound form. The type is therefore also sent through the correction
module at the tier of the compounding parts. We present the trace
produced for the LPC, after upgrading.

egionella — legionella 55

egionella — sigonella 15 [Sigonella: place in Italy]

egionella — algenbloei 11 [algae bloom]

We see that the cC legionella, which is derived from the input text
as it is not available in the lexicon, is ranked before sigonella, which
is in the lexicon and not in the input text. The upgraded retrieval
count of 55 for legionella is due to the fact that this input text derived
cc fulfils three upgrading rules compared with the LPC. The second
cc only fulfils the first-or-last-characters-matching rule. The third cc,
algenbloei, looks wide off the mark, but is actually a near anagram,
having only an extra b.

The rRPC trace is then:
waakhonden — waakhonden 115 [guard dogs]
waakhonden — waakhond 10 [guard dog]
waakhonden — onwaarheden 6 [falsehoods]

The RPC is in the lexicon and is returned as the best-first ranked cc,
followed by its singular form, followed by another implausible candidate
(a substitution of ‘k’ by ‘re’ in terms of the anagram key value).

Finally, both best-first ranked compounding parts are concatenated
to ‘legionellawaakhonden’, which is then proposed as the correction
candidate for the compounding tier.

Post-correction evaluation After correction on the tiers that were
actually invoked, the post-correction evaluation module decides on
what is to be output and in what order. We have seen that if the un-
igram and bigram tiers concur, the best-first ranked bigram tier cc is
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output first, followed by the rest of the unigram tier ccs. If there are
no CCs on the bigram tier, it is first evaluated if perhaps a run-on was
detected. If so, the bigram ccC returned for the unigram which was sent
through correction is output first, followed by the rest of the unigram
tier ccs. Else the output of the compounding parts’ tier is compared
to the unigram tier cCs and if in agreement, output first. In default
of cCs on the unigram tier, as was the case for *egionellawaakhonden,
the single cC obtained on the tier of the compounding parts is output.

We also employ two final resort back-off rules, which are specific for
English and can be invoked at run time. The first rule says that if the
input type was a compound written with a dash and if the unigram tier
CCs contain the same form written as a single word and with a space
instead of the dash, then nothing is output. The second rule says that if
the input type differs from the single ¢C by only the anagram value for
the difference between s and z (i.e. -ise/-ize, -isation/ization variation)
no output is generated either. These rules preclude a great number
of precision errors. We will say more on language-specific allowable
variation at the beginning of Chapter 4.

3.5 Refinements

In this section we address the two main problems affecting TISC as it
was described above.

In the next chapter we see that TISC’s performance in terms of recall
degrades when the lexicon cut-off is decreased. On the other hand,
we see that this boosts precision. The decline in recall is due to more
and more noise in the form of recurrent typos being incorporated in
the lexicon if we build it the way we described in Subsection 3.3.1. In
Subsection 3.5.1. we present an unsupervised method for reducing this
level of noise.

The second problem is related to our Zipf Filter settings. So far, these
were set manually, by positing a constant from which the threshold is
derived. In Subsection 3.5.3, we propose ways of setting the threshold
on the basis of corpus-derived values.

3.5.1 Corpus-Induced Corpus Clean-up

A next logical step is to apply our algorithm to the lexicon and derived
cooccurrences file themselves in order to overcome the vexing problem
of not being able to correct very common spelling errors. The way
we have up to now dealt with things, these errors quite simply occur
too frequently in the corpora employed, ending up in the lexicons and
eluding our Zipf Filters.

We built a simple lexicon correction module we will further refer to
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as cicCL for Corpus-Induced Corpus Clean-up. It uses as its input a
particular lexicon, its associated cooccurrences file and the alphabet.
While reading in the cooccurrences file we tally the right parts of com-
pounds and store the top 30 for the RPCs. This gives us in effect a
corpus-derived list of the most common suffixes in English.

Arbitrarily limiting ourselves to the 10,000 most frequently used
words in the lexicon we then run the TISC unigram correction module
to retrieve all CCs present in the lexicon itself. This process too was
restricted; we allowed retrieval only of variants within LD 1 and 2,
but LD 2 restricted to transpositions: if the anagram key value of two
character strings is the same and the LD is two, the less frequent string
contains a transposition. By allowing for LD 2 deletions, insertions or
substitutions we found we retrieved too many valid words and these,
of course, we aim not to lose.

CICCL is not fully language-independent. We found we had to model
a number of specifically English constraints for ensuring we did not
retrieve too many valid words when we applied CiCCL to the English
lexicon. After retrieval we apply the upgrading process as we do in TISC.
Here, however, the process is modified to up- or downgrade. Downgrad-
ing is subtracting from the number of times an item was seen. It reduces
the count to zero or less. Only word forms obtaining a count higher than
zero are eventually returned. Word forms retrieved that differ only in
their last characters by a value present in the RPC top-30 value list are
probably simple morphological variants and downgraded. Also, when a
variant is encountered which differs only in the value for a space, but
the input word’s list of CcCs also contains a variant differing only in
a dash, we downgrade. Variants differing only in first character capi-
talisation are likewise downgraded. The s-z variants are downgraded.
Finally, all variants that amassed a count greater than zero and whose
coo0cCs are lower than the Zipf Filter threshold set at 10, are passed
through to the following filters: we modelled the end e-y variation in
e.g. reasonable-reasonably and the end s-d-r variation in e.g. changes-
changed-changer as well as allowing for any final s to appear as ’s too
as in dogs-dog’s. All variants that pass through these filters are taken
to be unacceptable and output, paired to their correct form.

The system is lossy: we lost blooping through blooming and notionally
through nationally. Table 3.11 shows the 21 variants for government
that were retained by ciccL. Just 12 of these also figure in the list of
Reuters RCV1 variants we presented in Chapter 1.

The total list retrieved on the basis of the 10,000 high-frequency
words we let CICCL examine, contained 10,424 items. This means that
we found just over one variant per word inspected, on average. In order
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CICCL-collected variants

fovernment govenment govern ment governnment
gGovernment | govenrment | governement govternment
geovernment | goverment governent gvernment
goernment goverments government’ gvoernment
gopvernment | govermment | governmetn

gov ernment govermnent | governmment

TABLE 3.11
lexicon.

Variants for government retrieved by CICCL from a NYT-BNC

CICCL-Ilist and Ispell dictionary overlap |

economias | employeres | examinee expecially
economizes | employess | exampled expedience
edication encouragd | exchangers | expensed
eduction endorsee excising explictly
efficency enduing exected exployed
electroic enraging exection expresssion
electronis enterprisse | exercise’ extention
eliminate- | entourages | exigible extraordinarly
emphases equites exorcises

TABLE 3.12 Overlap between CICCL list and ISPELL expanded dictionaries:
excerpt: words beginning on e.

to check the accuracy of ciCcCL, we looked at the overlap between our
list and the expanded ISPELL dictionary3. We indeed found that 809
words appear in this ISPELL dictionary and so are supposedly correct
words we lose using cicCL. However, the ISPELL dictionaries are not
without their own problems, as was already pointed out by Zobel and
Dart (1995). Table 3.12 lists the overlap in words beginning on ’e’. We
see the list contains correct but rather more infrequently used words,
as well as unacceptable forms, typos derived from a corpus, probably.
We can only issue a note of warning to users of the ISPELL extra large
dictionaries.

This leaves us to conclude that cicCL has procured a reasonably
accurate list of recurrent errors present in the lexicon. We further re-
fer to the ciccL retained variants as the acquired errors. We might
have built new lexicons, removing these acquired errors from the initial
bigram list. This would enhance performance. Another option was to

3 Available from http://wordlist.sourceforge.net/
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simply let TISC have access to the list and to use these acquired errors
to perform absolute correction (Pollock and Zamora, 1984). We made
the necessary changes to TISC so that the list can be read in at run-
time and put to direct use, while retaining the uncleaned prior lexicons.
The idea behind this is that by giving TISC access to a list of known er-
rors, unnecessary replication of work can be avoided. The algorithm has
identified errors, so these are retained for further use: if a known error
is encountered in a new text to be spelling checked, appropriate steps
are taken: either the spelling detection system is bypassed or the cor-
rection module is bypassed. The former happens when CICCL returned
only a single possible correction candidate, in which case the error is
replaced by this cicCL candidate without further ado. When CICCL re-
turned more than 1 correction candidate, we perform context-sensitive
absolute correction: the error is passed on to the correction module,
where the bigram correction level will propose its specific ranking on
the basis of the input context.

Note that to all intents and purposes the Reuters RCV1 error list
would be an ideal substitute for or supplement to the acquired errors
list obtained by ciccL. As the Reuters RCV1 error list forms the basis
for our English evaluation sets this option was not open to us in the
present work.

3.5.2 Zipf Filters revisited

As we have seen in Subsection 3.4.1., manually setting the constant by
which the Zipf Filter threshold is set does not provide an intuitively
satisfactory solution in that it does not adapt to the size of the initial
corpus used. So, for a relatively smaller corpus, as the one used for
Dutch, the level set may be too high, with consequent deterioration of
performance.

Corpus-Induced Zipf Filter thresholds A solution to this pre-
sented itself when we studied the levels we had set. We had always
used a higher constant for smaller words, less than five characters long,
than for longer words. This is fully in line with Zipf’s law, which states
that shorter words will occur more often. We reasoned that our con-
stant must be akin to some sort of average level of use, or productivity
of a word. If this were calculated on the actual figures of productivity
as present in the cooc-list, we would have a more informed, corpus-
induced level of expectancy. This would also dynamically adapt itself to
the levels as observed in a smaller or larger corpus. And this we would
be able to do in a finer-grained way than the rather arbitrary boundary
between less characters than 5, or more. This can be calculated and set
per actual word-length.
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We changed the implementation in such a way that at start-up time,
for all words in the coocC-list, per word-length, it would be possible
to calculate the average, the median or a percentile of the number of
occurrences actually observed. These values are then used to set the
Zipf Filters. This introduces a new parameter, with which we can now
experiment to see which is the most performant.

In Table 3.13 we contrast the manually set values with those obtained
from the corpus, for the NYT-BNC lexicon at cut-off frequency 2. The
values for ‘manual’ are our constant values: the integer value of 1,000
divided by the word length for words smaller than 5 characters and 100
for words 5 character or more long.

We see that the mean values degrade more gracefully than the per-
centiles, which very quickly diminish to very low values. With these
very low values more word forms will meet the cooc threshold and be
validated. From this we can predict that with lower percentiles, we will
obtain lower recall and precision scores. The mean scores show a mix
of both higher and lower values than our manually set threshold levels.
We will therefore also see what happens when we either raise or lower
these thresholds, by doubling or halving or otherwise manipulating the
mean values.

3.6 Summary

We have in the above outlined our spelling detection and correction
mechanisms. We have introduced the notion of anagram-key based
hashing, which allows for quick retrieval of correction candidates within
the limits specified by both the alphabet and the Levenshtein distance
limit imposed. We have shown how having word unigrams as well as
word bigrams in the lexicon allows for the correction process to be ap-
plied not only to isolated words but also to words within their context.
We have shown how this facilitates best-first ranking. We have illus-
trated how we handle compounds and when spelling correction on the
tier of the compounding parts is effected. The resources used by TISC
are derived from corpora in a completely unsupervised manner. This
necessitates more informed typo detection strategies than simple dic-
tionary look-up as performed by most spelling error detection systems.
We have introduced the notion of Zipf Filters, thresholds set manu-
ally or derived from the corpus-derived lexicon and we have described
how these help us to distinguish between correct and erroneous word
forms. We have extensively used examples to illustrate how the various
modules act and interact. We have finally shown how the core correc-
tion mechanism can be applied to the TISC lexicons themselves to filter
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Word length [ Manual | Mean | 90% | 70% | Median [ 30% [ 10% ]
1 1,000 [ 11,586 | 22,584 [ 5,161 [ 3,423 [ 72 [ 6
2 500 1,223 | 1,040 | 240 | 92 23 |4
3 333 192 162 35 10 4 1
4 250 110 83 19 7 3 1
5 20 59 45 9 4 2 1
6 16 42 37 6 3 2 1
7 14 39 36 6 2 1 1
8 12 33 32 5 2 1 1
9 11 29 30 5 2 1 1
10 10 25 27 5 2 1 1
11 9 20 22 4 2 2 1
12 8 16 19 4 2 2 1
13 7 13 16 4 2 2 1
14 7 9 12 3 2 2 1
15 6 6 10 3 2 2 1
16 6 5 8 2 2 2 1
17 5 4 7 2 2 2 1
18 5 4 6 2 2 2 1
19 5 3 5 2 2 2 1
20 5 3 5 2 2 1 1
21 4 2 4 2 2 1 1
22 4 2 4 2 2 1 1
23 4 2 3 2 2 1 1
24 4 2 3 2 2 1 1
25 4 2 2 2 2 1 1
26 3 1 2 2 2 1 1
27 3 1 2 2 2 1 1
28 3 2 2 2 2 1 1
29 3 1 2 2 2 1 1
30 3 1 2 2 2 1 1

TABLE 3.13 Overview of manually set threshold and
mean and median values.

automatically derived
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highly recurrent typos from them. The errors acquired in this way then
form the basis for context-sensitive absolute spelling correction.

In the next chapter, we extensively test TISC’s performance first on
its own, then in comparison with the state-of-the-art systems available
today. We test performance for two languages, English and Dutch. We
test the systems’ correction capabilities on lists containing only real-
world typos. The systems’ error detection and correction capabilities
are then tested on real texts, containing typos to greater and lesser
extent, the latter arguably reflecting typos’ natural distribution.






4

Evaluation

In the previous chapter we have described our proposal for a spelling
error detection and correction system. In this Chapter we evaluate the
system’s performance, both on its own terms and in comparison to other
spelling error detection and correction systems. We first introduce the
metrics we use in these evaluations. Next we discuss some preliminaries
such as the actual types of errors we do and do not evaluate on, how we
score results and the terminology we employ. We describe the evaluation
sets we derived from the Reuters RCV1 corpus and present a range of
evaluations on English in which we gauge TISC’s performance under
varying conditions. We then compare the performance results obtained
by ISPELL, ASPELL, the Microsoft Proofing Tools (MPT) and Tisc. This
is followed by qualitatively different evaluations on Dutch, where the
focus is more on the systems’ performances in light of whether the typos
are presented within more or less context. To this aim we compiled an
evaluation benchmark set of full newspaper articles containing one or
more typos as they occurred in the printed edition of the Dutch Metro.
We again compare TISC’s performance on the Dutch benchmark set to
that of ISPELL and MPT.

4.1 Evaluation metrics

Figure 4.1 gives a graphic representation of the tasks involved in
spelling error detection and correction. The large box represents the
set of word strings in a text or language. The typically much larger,
left portion depicts the correct or acceptable word forms, the smaller
portion to the right the incorrect or unacceptable word forms. These
are split by a dashed line, representing the fact that the boundary
between these two categories is not always razor-sharp, what is and
what is not correct depending on the definition used. Words to the left
of the boundary are non-target items for spelling error correction, the

85
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TN FN

FP . TP

Retrieved

Non-target ! Target

FIGURE 4.1 Schematic representation of the task faced by a spelling error
detection and correction system.

Target | Non-target
Selected TP FP
Not selected FN TN
Totals P N TOTAL

TABLE 4.1 Confusion matrix. P = positive, N = negative T = true, F = false.

words to the right form the target. The diagram therefore describes the
problem of distinguishing between correct words (true negatives or TN)
and incorrect words (the target). The system selects a set of words of
which it assumes that they are incorrect (the selected set). The false
positives or FP are those retrieved that are in fact correct word forms.
The part of the target which was not retrieved by the system forms
the false negative or FN set. The intersection between words retrieved
and the target set defines the set of incorrect words correctly identified
as such and corrected (true positives or TP). The aim of any spelling
error detection and correction system will be to maximize the overlap
between the target and retrieved sets, achieving perfection when this
is 100%.

The interrelations between true and false positives and negatives are
conventionally represented in a confusion matrix (often referred to as
a contingency table). This is shown in Table 4.1. From the confusion
matrix many metrics can be derived.
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From the TP, FN and FP we can derive recall and precision (van
Rijsbergen, 1975), as follows (Manning and Schiitze, 1999) (p. 268-269):

« Recall = R = TPZ_%

TP
TP+FP
The harmonic mean of R and P, the simplified F measure, F', is given
by:
e
We fully motivate the choice for these metrics in Chapter 5.

« Precision = P =

4.2 Preliminaries

We evaluate TISC in various ways, using as the evaluation metrics recall
on its own and recall and precision as combined in the F measure.
We first evaluate TISC on its own. Both English and Dutch versions
are then compared with three state-of-the-art-systems available today:
ISPELL (version 3.2.06), its successor ASPELL (version 0.50.3) and the
Microsoft Proofing tools (Microsoft Office Word 2003 (11.5604.5606),
Microsoft Office Professional Edition 2003), henceforth abbreviated as
MPT.

In spelling correction there is an intricate interplay between various
factors. First, there is the error model available to the system: what
types of errors is the system equipped to deal with? Next, there is its
dictionary: what does it contain and how many items does it contain?
Third, is it or is it not equipped with a language model? In what follows
we try to dissect this interplay by presenting experimental results where
as far as possible these factors are analysed, first in isolation, then in
combination.

4.2.1 Error correction evaluated on error lists

The first series of tests is run on error lists and allows us to present re-
sults on the limited task of correcting typos under varying conditions:

« results of experiments with only a dummy dictionary, i.e. the lexicon
contains only the correct forms for the incorrect ones presented in
the test material

 results obtained when TISC’s lexicon can be trusted, i.e. when it is
given ISPELL’s expanded dictionary

- results obtained when TISC’s lexicon is built in a supervised way,
i.e. when the corpus-derived bigram list is filtered on the basis of
ISPELL’s expanded dictionary
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« results obtained with TISC’s unsupervised, corpus-derived, noisy lex-
icons

+ results after adding the list of acquired errors produced in an unsu-
pervised manner by Corpus-Induced Corpus Clean-up (CICCL).

Performance on the error lists is measured as correction recall: in
these tests, a correction candidate is considered correct if the correc-
tion as defined in the evaluation files is found among the correction
candidates or CCs returned. What constitutes the correct form for a
particular typo correction is determined by the typo’s context as ob-
served in the Reuters RCV1 corpus. We also report the best-first rank-
ing scores. Since we aim at ultimately obtaining automatic correction
in batch mode, we deem other n-best scores largely irrelevant: an auto-
matic system would only use the best-first ranked correction candidate
for replacing an error. However, since TISC’s output is limited to the
5-best and some of the scores reported in the literature are also based
on the 5-best, we list these too when necessary. Scores for these tests
are obtained on types, not on tokens: in a list of errors, each error
occurs only once.

4.2.2 Error detection and correction evaluated on typos in
context

The second series of experiments allows us to present results on the full
task of not only correcting typos, but first detecting them: to this end
the typos are presented within their original real-world contexts. We
again vary the conditions:

- we vary the Levenshtein distance (LD) limit we set in TISC

« we vary the amount of context surrounding the typos

+ we determine what the contribution is to performance of the refine-
ments we discussed in Chapter 3, Section 3.5, i.e. the contribution
of ciccL and the automatic Zipf Filter threshold settings.

Performance for the full task is measured as recall and precision,
resulting in their harmonic mean, the F-score. (van Rijsbergen, 1975).
Scores are on tokens, not on types: in text, errors may recur and this
needs to be measured.

4.2.3 Evaluation terminology

In order to avoid confusion, we specify more closely what is meant when
we talk about recall.

Some of the tests we run involve adding all the correct word forms
for the typos to be corrected to the dictionaries or lexicons used. This
allows for measuring the upper bound on correction attainable by a
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particular system to be measured; it effectively removes the effect of
dictionary shortcomings on recall. We therefore refer to this as the
upper bound recall, henceforth abbreviated as UBR.

The recall achieved without ensuring that all the correct forms are in
the dictionary or lexicon, we then refer to as true recall, abbreviated
as TR. By extension, we also talk about true scores.

When we measure recall without taking into account the ranking of
the cCs we call this overall recall or OR. Overall recall may be reported
for the upper bounds, i.e. when it is ensured that the dictionary contains
all the correct words for the typos to be corrected, or for the true scores,
when this is not the case. We need to distinguish between overall recall
obtained on lists of typos and overall recall obtained when typos are
presented within context. In tests on lists of typos, each typo represents
one word type. The score for true positives is therefore increased by one:
we measure on types. In tests on text containing typos, the same typo
may recur. The score for true positives is therefore increased by the
typo’s token frequency in the input text: we measure on tokens.

When we focus on best-first ranking of the candidates and measure
those that effectively are ranked with the desired candidate given the
context presented first, we measure best-first ranking recall. On
occasion we also report scores on rank 5, however. So we abbreviate
best-first ranking recall as RR1 for recall on rank 1 and RR5 for recall
on rank 5. The same distinction as in overall recall applies for tests on
lists versus tests on running text.

4.2.4 Adverse effect on precision by allowed variation

Both English and Dutch allow for a certain amount of variation in their
orthography. Non-exhaustively, for English, types of allowable variation
would be: harbour - harbor, center - centre, defenceman - defenseman
and even: feminity - femininity. For English a lot of this variation is due
to the divergence between British and American English. No codifica-
tion has been imposed. For Dutch, up to 1995, examples would have
been: chronisch - kronisch [chronic], theorie - teorie [theory], examen
- eksamen [exam], cultuur - kultuur [culture]. For Dutch, what is and
what is not allowed has been codified, by law, and is officially published
as the ‘Woordenlijst Nederlandse Taal (Word list of the Dutch Lan-
guage), better known as "het Groene Boekje' (the Green Book) (Woor-
denlijst Nederlandse Taal, 1995). Incidentally, het Groene Boekje forms
the basis for both the Dutch 1SPELL! and MPT (van den Heuvel, 2003)
dictionaries. The spelling change adopted in 1995 disallowed most of the

Thttp://fmg-www.cs.ucla.edu/fmg-members/geoff/ispell-dictionaries.html
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variations we listed above and which were permitted before. A revision
of the 1995 spelling changes is currently underway: decisions taken ten
years ago about the spelling rules for linking consonants in compounds
are again under review.

As we are concerned only with word variants that really may ob-
struct communication, we have largely ignored these matters. Wishing
to keep TISC as language-independent as possible, we have striven to
incorporate as few language specific rules as possible. However, the s-z
variation and compound variation in English we found we could not
ignore as they had a heavy toll on precision. We implemented a switch
that tells TISC to not pass on the results of the correction module in
those cases where the only correction candidates returned by the cor-
rection module differ from the input word only by the anagram value
difference between s and z. We did likewise for the space/dash/nospace
variation. This switch was turned on for the English evaluations, off for
Dutch.

In Dutch, diacritics are also often used to put extra emphasis on
words, so ongeveer [about, as in: ‘She is about 20°] appears as ongevéér
in the Dutch benchmark evaluation set and TISC returns the normal
orthography as the correction candidate, which is then counted as a
precision error. To remedy this, this should be modelled in the Dutch
version. This we have not done either, since we wished to find out what
can be achieved using next to no language specific knowledge. Adding
more language specific filters would be relatively easy to do, would to
a high degree be learnable from the specific language’s lexicon and is
probably desirable seeing the adverse effect not doing it has on the
precision of the system. Nonetheless, we did not add more.

We do not evaluate on split words, e.g. ‘ingredients of *alcoho *lic
beverages’ for ingredients of alcoholic beverages. Our implementation
currently does not deal with split words, although TISC in principle is
able to and we have experimented with it in the past. However, split
words present a difficulty in accounting: how should they be counted:
as 2 errors constituting 2 problems to be solved or as one correction
effected? We do not know and have not made up our minds about this.

4.3 Evaluation on English
4.3.1 Evaluation: the test sets

Error lists

The Reuters RCV1 error list we selected randomly and manually pro-
vided with corrections was 12,225 items long. The error type breakdown
of this list was presented in Chapter 2, Table 2.3. From this list we re-
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| Reuters Rcv1 benchmark |

sentences 2,736
tokens 95,104
types 16,000
type/token ratio | 16.82%
€rrors 3,022
error/type ratio | 18.89%
error/token ratio | 3.18%

TABLE 4.2 Statistics of Reuters RCv1 benchmark evaluation file.

moved the 53 split words and 134 typos for which we could not decide
on what their correction should be. This left us 12,038 typo/correction
pairs for evaluation purposes. We randomly chose 2,000 items from this
list, 10 times. Overlap between the sets was allowed. This set we re-
fer to as 10x2K. We first report results obtained on this set. Next we
present results on the full 12,038 error list. To this list we further refer
as 12K.

For all sets, we present results obtained on the errors in isolation
and on the errors within a 2-1-2 context window. The input contexts
employed in these tests were the first context for a particular error
encountered in the Reuters corpus.

Typos in context: benchmark evaluation set

Apart from the 12,038 typos, selected randomly from the 33,488
Reuters RCV1 typo list and provided with their correction(s), we se-
lected another 3,300. This too was done randomly, but this time we
allowed for the same error to be selected several times: more highly
recurrent errors had a higher probability of being reselected. For these
errors we extracted the context from the tokenized corpus, the context
in principle being limited to the sentence the error occurred in. Also,
as regards context, the selection was made randomly from all available
contexts. The 3,300 contexts were proofread manually and all further
errors encountered marked as such. Over 300 contexts had to be dis-
carded: they did not provide running text, but rather captions from
tables and suchlike. The greater part of these 300 were abbreviations
rather than typographical errors proper. For evaluation purposes, we
finally provided all the errors identified with the proper correction as
dictated by the context. In this way, we obtained a benchmark set of En-
glish spelling errors of all types, in all 3,022 errors within 2,736 context
sentences (or short paragraphs, when the initial sentence tokenization
had failed). Further statistics are provided in Table 4.2. Table 4.3 lists
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| Not evaluated on: |

Category Total
repeated words 13
missing words 2
confusables 66
split words 22

TABLE 4.3 Error type breakdown of the Reuters RCV1 benchmark evaluation
set: error types not evaluated on.

the error type breakdown of the benchmark set for the types of errors
present in the Reuters RCv1 benchmark set we do not evaluate on, in
all 103 errors. As can be seen, the benchmark set contains confusables
and split words, too, error types not dealt with in the present work
and further left out of the accounting. Table 4.4 lists the error type
breakdown of the benchmark set for the types of errors present in the
Reuters RCV1 benchmark set we do evaluate on, in all 2,919 typos. It
can be seen that the error type distribution in the benchmark set is in
line with the statistics of the full error list we presented in Chapter 2,
Table 2.3.

4.3.2 Evaluation: Recall on error lists
Test 1: 10x2K: The lexicon contains only the correct words

The first test allows us to determine the upper bound on what the
spelling correction mechanism can possibly achieve: given the range of
spelling errors encountered in real data and given that there is no (or
only very limited) confusion possible with other non-target words in its
dictionary, how many can the system correctly resolve to their correct
form? In this test, we only activated TISC’s correction mechanism on
the unigram tier; the bigram and compound tiers were not activated.
We ran this test with the larger alphabet, containing 3,774 anagram
key values.

In Table 4.5 we present the results for TISC when it is given no
real lexicon, only the correct word forms for the erroneous ones it is
presented with. TISC manages to correct 99.6% on average of the errors
on ten sets of 2,000 randomly chosen real-world errors. The standard
deviation in upper bound recall between the sets is very low at 0.0012.
The table further shows how many typos were corrected within what LD
to the correct form, thereby giving an idea of the error type distribution
within the sets. It can be seen from the standard deviation per LD that
the number of items per LD has an even distribution over the sets. No
errors exceeding LD 4 happened to be included in any of the sets by
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Evaluated on: |

Category LD 1 LD2 | LD3 | LD 4 | Total %
deletion 1,333 51 3 1,387 | 47.516
insertion 647 19 4 670 | 22.953
transposition 332 332 | 11.374
substitution 309 20 329 | 11.271
multiple 57 14 1 72 2.467
run-on 58 58 1.987
capitalisation 24 24 0.822
multisingle ) 6 1 12 0.411
space to dash 35 35 1.199
1st ch. delet. (21) (21) | (0.719)
1st ch. insert. (5) (5) | (0.171)
1st ch. transp. (7) (7) | (0.240)
1st ch. sub. lc. (21) (21) | (0.719)
1st ch. sub. uc. (18) (18) | (0.617)
total 2,406 484 27 2 (2919

% 82.425 | 16.581 | 0.925 | 0.069 100

TABLE 4.4 Error type breakdown of the Reuters RCV1 benchmark evaluation
set: error types evaluated on.

| 10x2K | Return | Correct | LDl | 1p2 | LD3 | LD4 | UBR |
Mean 1993.1 1992.5 1546 | 421.5 | 22.6 2.4 | 0.9963
Std.dev. 2.47 242 | 10.64 | 11.42 | 2.94 | 1.36 0.0012

TABLE 4.5 Test results averaged over the ten sets of 2,000 randomly chosen
typos, TISC LD restriction on CCs returned set at LD 4: We show the average
number of typos for which a correction was returned, the average number for
which the correct one was present, average number of typos corrected per LD
and upper bound recall. Standard deviations per result are also given.
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the random selection procedure. The results presented were obtained
with LD restriction on CCs returned set at LD 4. We ran tests with the
LD set at 2, 3, 4 and 9. We found that at LD 2 recall is lowest: this is
only to be expected, because this prevents the system from correcting
errors that require greater edits. The highest recall is reached with the
LD restriction set at 4, with no further gain when set higher. At LD
9 just about anything could happen, most words could effectively be
transformed in just about any other word, within the limits imposed
by the alphabet. The fact that the same recall is reached at LD 9 as
at LD 4 might lead one to conclude that apparently the system can do
without an LD check, but this would be a mistake. We return to this
matter later.

For this test, we do not report on best-first ranking scores. There
being no lexicon to speak of, TISC’s ranking mechanism has next to no
words to work with and so cannot do its job. The system here has access
to all correct word forms, and only these. Many are closely resembling
word forms and fall well within the limits set by the LD, e.g. for *openion
TISC here returned: option, opinion. The second CC is what is wanted
given the context: ‘world public *openion by pretending’.

We believe the score on overall recall firmly establishes that what
we have is a powerful correction mechanism. We next discuss its few
residual errors and the causes for no correction being made or the
correct form not having been retrieved.

Residual errors
Typos for which no correction candidates were returned:

« *report-Kremlin, *yields-Rothfos, but also: *struc-tures: LD1: This
type represents the majority of residual errors, 35 of 89 cases (39%
of the residual errors). These fell victim to our space-dash-nothing
variation modelling. The unigram tier did produce the corrections,
but no output was produced because the only correction candidate
retrieved differed from the input only by the Av for a dash. The filter
should not have been activated in this test, it is meant to prevent
precision errors due to allowable variation. Under normal working
conditions it is unlikely only one cc would be returned. Note that
these cases could be seen as examples of bad tokenization, rather
than as typos. They are prevalent as an error type, as we have seen
in Chapter 2, Table 2.3.

+ *added.if and *announcement.in: LD 1 : All 17 cases (19% of the
residual errors) are bad-tokenisation examples of two existing words
joined by a dot: this is an oversight. The implementation contains
a filter which prevents the dot being sent to the correction module,
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whether on its own or embedded in a character string. Only the
former should not be sent on.

*participatipation for participation and *willingfully for wilfully:
both are LD 4. It concerns four consecutive characters in both cases.
We do not have 4-character anagram values in the typo-derived ana-
gram value list, we have modelled for insertions only up to LD 3. For
a while we considered using the powerset of input word characters
for deriving the TAvs, but this proved prohibitively expensive.
*momopology for monopoly: LD 3: This should have been within
reach, but the trigram character value for m + og was not present
in the TAV: we only calculate the values for consecutive characters.

*parashooter for parachuter: LD 3: Same as the above. Allowing for 4
to 3 character substitions would give the correction mechanism too
much scope.

*partizan for partisan and *pazteurization for pasteurization: both
are LD 1: these fell victim to the s-z variation modeling, which should
have been modelled as is-iz variation. This would still have lost us
the former. The correction candidate was proposed by the correction
module but filtered out before the final output was produced.

Typos for which correction candidates were returned, but where the
correct one was missing from the 5-best list:

*concensut for consensus, correction candidate returned: coconut.
This two-point error reveals a weakness of our system for LD 2 cases.
A substitution needs to be made, but the type-derived anagram value
for the character combination ¢ + ¢ was lacking, as only the TAVs
for adjacent character bigrams are calculated. The LD between *con-
censut and coconut is actually only 3.

*skilless for skill-less, CCs returned: smokeless, sickness. No anagram
values for dash-+character bigrams are available in the alphabet.
*seeked for sought, cCs returned: second, secede, shied, signed,
passed : LD 5: Out of reach of the TAVs and AAvs.

*lae for led, cCs returned: later, sale, table, lauds, value. LD 2: The
correct form did not make it into the 5-best list. The same typo in
another of the ten test sets was ranked fifth and was therefore ’'cor-
rected’. This suggests there is room for improvement in the ranking
mechanism on the unigram tier. Ties in the upgraded retrieval counts
are not currently resolved.

*olp for to, cCs returned: only, step, one, on. LD 3: The correct form
to was retrieved, but not upgraded: neither front nor back does it
match the typo. This problem occurs only with very short words.
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| 10x2K | mean UBR | std. dev. | mean RR1 | std. dev. |

UNI-A1 0.9780 0.0028 0.9184 0.0051
UNI-A2 0.9785 0.0020 0.9216 0.0057

TABLE 4.6 Test results at LD 4 - average scores over 10 random sets: 10x2K:
ISPELL dictionaries, smaller (A1) and larger (A2) alphabets. Tests run on
unigram tier only. Upper bound overall recall and best-first-ranking recall.

« *wouldn for wouldn’t, returned: would, wounded. LD 2: No anagram
values for apostrophe+character bigrams are available in the alpha-
bet.

The examples of the correction candidates are illustrative: it may seem
strange that step is suggested for *olp. It should be borne in mind that
this entails the word step appeared in the correct word list for this
test set, thus was present in the lexicon and was retrieved and ranked
among the five best because it

« was within reach of the restrictions imposed on TISC, i.e. two to three
character substitutions were allowed by the character trigram values
in the large alphabet used here

+ this suggestion made it into the 5-best list because no other words
which have a greater ‘resemblance’ were available in the correct-word
list lexicon, which would be the case when a normal lexicon is used.

Test 2: 10x2K experiments with the ISPELL dictionaries.
Unigram tier only.

In this test we determine what TISC can achieve given its correction
mechanism and given the collated dictionaries that come with ISPELL.
This word list contains 144,106 word types from both the standard and
expanded US and UK ISPELL dictionaries. All correct forms are again
made available to the system. This test necessarily runs only on the
unigram tier, there being no bigrams in the dictionary. We run this
test, 10 times, with both the larger alphabet, which contains 3,774
anagram key values, and with the smaller, containing 498 items.

As can be seen from Table 4.6, results given the larger alphabet,
which allows for richer edits to be made and potentially more errors
to be corrected, are only slightly better. Given its order of magnitude
higher processing cost we will not further conduct tests with the larger
alphabet. This will mean that TisC cannot and will not be able to
correct three character deletions in the further tests. We think this is a
small price to pay, given the above results. Three character insertions
remain within its reach as these values are derived from the input word,
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| 10x2K | mean UBR | std. dev. | mean RR1 | std. dev. |
[BI-AL [ 09819 ] 0.0016 | 0.9135 [ 0.0045 |

TABLE 4.7 Averaged test results at LD 4 for 10x2K given a semi-supervised
lexicon, smaller (Al) alphabet. Upper bound overall recall and best-first-
ranking recall. Results obtained with all three tiers invoked and context
available.

given that this is longer than five characters. Three to two character
substitutions are also still within reach, but two to three character
substitutions are not.

Test 3: 10x2K experiments with the ISPELL dictionaries.
Bigram and compounding tiers too.

We next study what happens when we supervise the building of TIsC’s
lexicons: we use the words available in the expanded ISPELL dictionary
to filter the bigram list underlying TISC’s own, fully unsupervised, lexi-
cons. The bigram list is filtered as follows: we accept only those bigrams
of which both words are in the ISPELL dictionaries. The bigram list thus
obtained amounts to 21,812,660 bigrams. We apply no further filtering
on the basis of some frequency cut-off to these. In effect, the lexicon
derived from this bigram list should allow us to determine the contri-
bution a simple bigram language model has to TISC’s performance. The
aim of this test is to see what the benefit is of also activating TISC’s
bigram and compound correction tiers. This test was run using only
the smaller alphabet. Table 4.7 shows that including the word bigrams
to the TisC lexicon has only a slight positive effect on TISC’s overall
recall in these upper bound tests. Standard deviation between the sets,
however, is lower than in the unigram tier only results.

In comparison with the first test, both the second and third tests
establish that in upper bound recall experiments the effect of the dic-
tionary is only slight. Practically without interference of the words in
the dictionary as in the first test or with possible interference of over
20 million unigram and bigram types as in this third, when all the cor-
rect forms are available, we see a loss in overall upper bound recall of
only 0.015 or 1.5%. In the discussion of the fourth test, we analyse this
interference in more depth.

This third test also appears to show that having these millions of
bigrams in the lexicon has practically no effect on performance. That
this is not in fact the case, we show in Test 4. That this is in fact an
artefact of performing upper bound recall experiments, we show in Test
6.
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Test 4: 10x2K: Regular TisC lexicons derived from NYT-BNC
corpus bigram lists

Next we measure the performance of TISC given its proper, corpus-
derived and noisy, lexicons. These were derived from bigram lists ob-
tained from the combined NYT and BNC corpora, in order to emulate
an international English dictionary, as we explained in Chapter 3. We
present the results obtained when the bigram lists from which the lex-
icons are derived are cut off at various frequencies. The overall recall
presented for TISC is obtained by taking the 5 best correction candi-
dates into account. Remember that the input contexts employed in
these tests were the first context for a particular error encountered in
the Reuters corpus. In these tests, best-first ranking recall is therefore
relative to the real-world input context.

In this upper bound evaluation experiment on 10x2K we again en-
sure that all the correct word forms for the typos are present in the
lexicon. In this way we can measure the upper bound recall obtainable
by TISC given NYT-BNC lexicons and associated COOC-tables obtained
from a particular corpus bigram list cut-off. We again compare the re-
sults obtained when correction is performed only at the unigram tier,
i.e. the input context window of the two words preceding the error and
the two words following is not presented to the system, versus those
obtained when the context is presented and correction also takes place
on the tier of the word bigrams and possibly on the compound tier.

Figure 4.2 shows that adding the bigram correction tier does not
add a lot to the overall upper bound recall obtained. At lower cut-
offs, we observe some gain. We also see that we lose nearly 3% upper
bound recall using the largest lexicon versus using the smallest. All
the words necessary to effect correction were available, so that cannot
be the cause. What happens here is that the system was run with a
wide reach in LD: it could return ccs differing from the typo by up
to 4 edits. With ever larger lexicons more and more words within that
reach are available, irrespective of the question whether or not they are
correct words. This is best illustrated by an example: Table 4.8 lists the
unigram tier ranked cCs per frequency cut-off for *fiture, which should
be corrected as future given its original context: ‘the bank has a policy
of no comment on speculation about what it might or might not do in
the *fiture.’.

At cut-off frequency 1 we see two French (loan-)words and what is
another typo for future (context: ‘... that makes it incumbent upon the
industry to start focusing on the *futre and doing it now.”). These grad-
ually disappear with the larger cut-offs allowing for the actual correct
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FIGURE 4.2 Evaluation results: average overall upper bound recall over 10
random sets (10x2K): LD 4. Tests run with proper NYT-BNC corpus-derived

TISC lexicons with increased cut-off frequency.

| Frq. | rank 1 | rank 2 | rank 3 | rank 4 | rank 5 |

1 friture | fixture | furtive | futre fuire

3 friture | fixture | furtive | futre fire

6 friture | fixture | furtive | fire ture

9 friture | fixture | furtive | fire ture

19 fixture | furtive | ture fire future
49 fixture | furtive | ture fire future
999 | fixture | fire future | figure | fixtures

TABLE 4.8 Unigram-tier ranked ccs for *fiture per lexicon cut-off frequency.
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FIGURE 4.3 Evaluation results: average best-first ranking upper bound recall
over 10 random sets (10x2K): LD 4. Tests run with proper NYT-BNC corpus-
derived TISC lexicons with increased cut-off frequency.
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| Frq. | U1l | U2 | U3 | U4 | U5 || B1 | B2 | B3 | B4 | B5 |
1 zid zida | zidi zide | zind zid zida | zidi zide | zind
9 zidi zide | zaid | zind | ziad zidi | zide | zaid | zind | zeid
19 zaid | zind | ziad | did bid did | zaid | zind | ziad | bid
49 ziad | did bid id cid did ziad | bid id cid

TABLE 4.9 Ranked ccs for *zid per lexicon cut-off frequency. To the left: Ul-
5: cCs ranked 1 to 5 proposed by the unigram tier, right B1-5: cCs ranked 1
to 5, reranked by the bigram tier.

candidate to make its way into the 5-best ranked list. So, allowing for
greater LD CCs to be retrieved (furtive is at LD 4 from *fiture) and for
more near-neighbours to be available in the lexicon, may crowd out
the actual correct form expected. We therefore call this phenomenon
crowding. Crowding is in a way an artefact of the fact that we only
retain the five-best ranked candidates at the unigram tier, as well as not
employing other ranking mechanisms there. It is also partly an artefact
of the way we tested here, invoking only the unigram correction tier.

We next discuss what the contribution of the bigram correction tier
is to the proper ranking of the ccCs retrieved. This effect can be seen
in Figure 4.3. We see that on the unigram tier only we lose nearly 25%
in best-first ranking going from the lean and clean lexicon at cut-off
frequency 999 to the big, noisy one at frequency 1. The contribution of
the bigram tier at 999 is negative: there simply are not enough bigrams
available to help in the ranking. At frequency 9 this is another story:
we achieve best-first ranking in 91.3% of the cases versus 87.9% on the
unigram tier only. This we illustrate in Table 4.9 by the short typo *zid
for did (2-1-2 context: ‘. why *zid it take’). The bigram tier in all cases
returned did as its best-first ranked cc. We see that only at cut-off
frequency 19 the correct candidate did is no longer outcrowded, it has
entered the list of 5-best CCs: this makes it concur with the best-first
bigram-tier CC, whereupon the list is reranked accordingly. All the ccs
one does not recognise as English words turned out to be lowercased
names. This shows the hidden cost of lowercasing the frequency lists
when we build the lexicon. This problem is most acute for shorter words
and at the lower cut-offs, as can be seen by the drop in best-first ranking
there.

Apart from invoking the bigram tier correction, we have other strate-
gies to outdo the effects of crowding. The contribution of one of these
is the subject of the next test.
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Test 5: 10x2K: CICCL’s contribution to performance

In this paragraph we present the scores obtained by TISC when we
rerun the experiments on English as presented in the previous test. All
else being equal, we now give TISC access to the CciCCL-derived list of
acquired typos culled from the NYT-BNC word bigram list.

Figure 4.4 shows that nothing much happens on the level of overall
recall, when we give TISC access to the list of acquired errors and let
TISC effect absolute correction. On the level of best-first ranking, as
can be seen from Figure 4.5, we see a very noticeable effect, particu-
larly with the smaller frequency cut-offs. It is striking that the effect
of ciccL when correction takes place only on the unigram tier, with
the larger lexicons, is more marked than the effect when the bigram
tier is invoked too. This was to be expected, the lower the cut-off the
more recurrent erroneous forms are incorporated in the lexicon. CICCL
effectively manages to remove part of this noise. This is less markedly
apparent when correction on the bigram tier is invoked too: there the
bigrams by themselves steer the solution away from the noise, as we
have seen in the previous paragraph. In the case of *zid, this did not
help: remember we set a threshold on CICCL: no variants were sought
for words less than 7 characters long.

Test 6: 12K: Results on the full 12,038 error list

In this paragraph we present the results obtained on the full 12,038
Reuters rCV1 error list. In the previous paragraph we showed that
CICCL contributes to performance. Results shown here were obtained
by using the list of acquired errors. What we contrast with here, is with
the results TISC obtains when the correct words are not added to the
lexicon. We therefore determine here what the system’s true recall is,
given a particular lexicon and the benefit of absolute correction.

Figure 4.6 shows the true recall obtained by TIsSC (restricted to LD
3) on the full 12,038 error list, with the higher score curves represent-
ing upper bound recall, obtained when all the words to be corrected
were added to the lexicon, and the lower score curves the overall true
recall: the actual results obtained with the real lexicons. The difference
between the best true recall and its associated upper-bound recall, a
drop from 0.989 to 0.918 at frequency 19, is: 7%.

Figure 4.7 shows performance at rank 1. Again, we see the contri-
bution by the bigram tier is substantial: while we witness a drop from
upper bound recall 0.910 to true best-first ranking recall at 0.834 on the
bigram tier, this is 6.1% better than the true best-first ranking recall
at 0.773 when only the unigram tier is invoked.
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FIGURE 4.4 Evaluation results: average overall upper bound recall over 10
random sets (10x2K): LD 4. Tests run with proper NYT-BNC corpus-derived
TISC lexicons with increased cut-off frequency, as well as with ciccL list of
acquired errors.
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FIGURE 4.5 Evaluation results: average best-first ranking upper bound recall
over 10 random sets (10x2K): LD 4. Tests run with proper NYT-BNC corpus-
derived TISC lexicons with increased cut-off frequency, as well as with CICCL
list of acquired errors.
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Intermediate conclusions

This concludes the tests on recall obtained on error lists. We have now
established that we have a powerful correction mechanism and that
TISC obtains far better results by performing correction on the three
tiers than when only the isolated word tier is invoked. Further, that
given its own corpus-derived lexicons, the system benefits from em-
ploying absolute correction on the basis of the ciccL-derived list of
acquired errors. Finally, that there is a substantial difference in per-
formance if true recall is measured rather than upper bound recall. In
this we have again seen a substantial contribution of the bigram tier to
performance expressed in best-first ranking recall.

In the next subsection we address how the system performs in the
full task of first detecting, then correcting typos in their natural envi-
ronment: the context.

4.3.3 Typo-in-context evaluation: F-score on full task

In this subsection we address what we consider to be the full task.
Rather than merely measuring correction recall as we did before, we
here present the system with typos in their original context: the sen-
tence containing the typo which was chosen randomly from the Reuters
RCV1 corpus. We measure performance in terms of the F-score. Given
that the system is presented with errors in a context, we do not solely
measure its ability to correct incorrect forms, but also to discern be-
tween correct and incorrect input forms. The fact that the context is
limited to just the sentence means that the distribution of errors ver-
sus non-errors is skewed compared to their actual distribution in the
full Reuters RCV1 corpus. We later demonstrate what happens when
more and more context is present. Of the word forms for which cor-
rection candidates are returned, we check if the output contains the
correct form. If so, the score for successful correction, i.e. overall recall,
is calculated on the basis of its input context frequency, i.e. the typos’
token count, no account being taken of the ranking of the correction
candidates. The score for best-first ranking is likewise incremented if
the first correction candidate is actually the correct form as specified
in the evaluation file. The score for false positives, i.e. precision errors,
is incremented in the same manner by the type’s token frequency for
those types for which the system returns correction candidates, but
where the correct one is missing as well as for those where CCs are
returned when the input word was not erroneous.

An issue not addressed in any other study we know of, is the ef-
fect that modelling greater edits has on precision. What gain in recall
there can be made, may very well be undone by the loss in precision
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caused if this is evaluated in the real world task of identifying the errors
first and then correcting them. Further to be considered is the possible
drop in best-first ranking of the correction candidates. The experiments
performed were designed to shed light on these questions.

Test settings and evaluation results

For T1sc we report score curves obtained by varying the threshold at
which the corpora’s bigram lists were truncated (cut-off frequencies: 1—
19, 29, 39 49 and 99 for NYT-BNC). The implementation used was the
same as for Dutch as it contains no provisions specific to either, apart
from the allowed-variation switch mentioned earlier, which was here
turned on. The input text frequency threshold, which prevents words
appearing frequently from being sent on to the correction module, was
set at 20, for all tests. The system was here run with the ciccL-derived
list of acquired errors made available to it. We present the score curves
for tests run with the LD limitation on correction candidates returned
set at LD 2, 3 and 4.

Results presented here were obtained on tokens. Figure 4.8 shows
the recall and precision obtained on the benchmark data. The figure
introduces a new feature. The curved, dotted lines are isometrics:
collections of points with the same value for the metric (Flach, 2003).
Here, the isometrics depict the F-score, the top right point being perfect
performance, i.e. an F-score of 1.0 and so the isometrics from right-up
to left-down represent the F-scores at 0.9, 0.8 and 0.7, in this figure.
Our results thus fall in between the 0.8 an 0.9 F-score isometrics.

Figure 4.9 shows the results obtained on best-first ranking.

We see that TISC’s lexicons based on the lower frequency cut-offs
produce the highest precision. Recall rises to a particular ceiling as
the cut-off frequency is set higher, precision drops, with less and less
information being available. The same pattern is repeated in the best-
first ranking scores, though at consistently lower recall and precision
levels. As concerns overall F-score, we only see divergence between the
three LD-levels score curves at the lower frequency cut-offs. This is
even more apparent in the best-first ranking scores. What is happening
is that with lower frequency cut-offs more of the types’ variants in
the corpus are present in the lexicon. More of these are retrieved as
correction candidates and competition for the best-first ranked place
is tougher, whereby the correct form does not always make it to its
rightful first position through crowding. Limiting the LD to 2 reduces
crowding: fewer correction candidates are returned, allowing for better
best-first ranking and thus somewhat higher precision and recall on
rank 1. While higher LD is necessary to be able to correct typos which
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FIGURE 4.8 Evaluation results: English - Reuters RCV1 benchmark data:
Precision and overall true recall. Shown are results obtained with LD 2, 3
and 4. Leftmost point: cut-off frequency 1. In sequence left to right: cut-offs
2-19, 29, 39 49 and lowest point: 99. Our results fall in between the 0.8 and
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FIGURE 4.9 Evaluation results: English - Reuters RCV1 benchmark data:
Precision and best-first ranking recall. Shown are results on best-first ranking
obtained with LD 2, 3 and 4. Leftmost point: cut-off frequency 1. In sequence
left to right: cut-offs 2-19, 29, 39 49 and lowest point: 99.

require more edits to be resolved to their correct form, this is actually
counterproductive: there are far fewer of these higher LD typos in a
natural distribution of error types and striving to resolve these implies
retrieving more correction candidates and lower precision overall.

4.3.4 Evaluation of mean-median-percentiles parameter

We ran experiments to measure the effect of the mean-median-percentile
parameter on the Reuters RCv1 benchmark set. We compared the per-
formance of the hand-tuned Zipf Filter constant with results obtained
with the mean setting and with the percentiles at 10, 20, 30, 40, 50
(the median), 60, 70, 80 and 90%.

The corpus-derived thresholds do not improve on the manual set-
tings, at least not on overall F-scores. The mean settings consistently
produce somewhat lower scores than the manual Zipf Filter settings.
Given the percentiles based settings, at the very lowest frequency cut-
offs, there is gain in precision, with attendant loss in recall. This is also
reflected in the best-first ranking scores, where we also observe a small
gain in precision. We observed the following pattern: higher percentiles
settings make the system perform on a par with the mean settings.
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run on Reuters RCV1 benchmark set with LD 3 and lexicon cut-off frequencies:
1-19, 29, 39 and 49 (top left to bottom right).
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| factor | R | P | F | rrl | PRl | FRl |
mean / 0.5 ] 0.896 | 0.759 | 0.822 | 0.843 | 0.714 | 0.774
mean / 1 0.886 0.817 | 0.850 0.840 | 0.774 | 0.806
mean / 1.5 | 0.876 | 0.845 | 0.860 | 0.834 | 0.804 | 0.818
mean / 2 0.867 | 0.862 | 0.865 | 0.826 | 0.820 | 0.823
mean / 2.5 | 0.848 | 0.870 | 0.859 | 0.807 | 0.828 | 0.817
mean / 3 0.835 0.878 | 0.856 0.797 | 0.837 | 0.816
mean / 4 0.812 0.899 | 0.853 0.775 0.859 0.815
mean / 5 0.791 | 0.904 | 0.844 | 0.755 | 0.863 | 0.805

TABLE 4.10 Dividing the mean value obtained from the corpus by a small
factor enhances recall, dividing by larger factors enhances precision.

The lower the percentiles are set, the higher precision, outranking the
manual settings, but with attendant loss in recall, resulting in slightly
lower F-scores. This can be explained by the fact that lower percentiles
put the threshold very low, validating too many types and correcting
too few. Since the ratio of incorrect versus correct types is very skewed
in favour of the correct types, this explains the higher precision ob-
tained. The fact that this does not cause recall to drop completely is
explained by the interaction between the Zipf Filter thresholds set and
the unigram correction tier which is also invoked during the spelling
checking phase. In Figure 4.10 we contrast the results obtained with
the manual, mean and median (percentiles: 50) settings on best-first
ranking on the Reuters RCv1 benchmark set.

We further experimented with manipulating the mean settings. In
Table 4.10 we list results obtained by dividing the mean values by a
number of factors. We see this acts as a moveable threshold, which
can be set to let the system focus on achieving higher recall or higher
precision, as warranted by the specific application one has in mind.

4.3.5 Discussion of performance in comparison with ISPELL,
ASPELL and MPT

In this subsection we compare three isolated-word spelling error de-
tection and correction systems, each of which has trusted dictionaries,
with TISC, a context-sensitive system equipped with lexicons derived
in an unsupervised way from corpora, supplemented with a list of ty-
pos unsupervisedly derived from the lexicons. The research questions
we try to answer here are, first, whether it is feasible to perform cor-
rection up to the levels attained by the state-of-the-art systems given
the novel correction algorithm we propose and the corpus-derived data
we employ. Second, given that the typos are presented to the systems
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in their real-world context, to what extent TISC’s word bigram based
language model and the cooccurrence information derived from the bi-
gram list help the system to avoid reporting false positives compared
to the isolated-word systems.

How we tested

Both 1SPELL and ASPELL were run with the same dictionaries. These
were the concatenated standard ISPELL US and UK dictionaries, which
are by default supplemented with a medical dictionary. As a separate
test, we further augmented these concatenated dictionaries with the Us
and UK extra large dictionaries.

ISPELL was run in its native batch-mode. However, the fact that it
evaluates compounds written with a dash as two separate words and
returns them on separate lines, obliged us to rewrite these cases as sep-
arate words, in both input and evaluation files used with ISPELL. So
the original pair ’rollar-coaster#roller-coaster’ was rewritten as ’rol-
lar#roller’; the RPCs here being omitted by virtue of being identical
and therefore correct words. This might have a slight impact on per-
formance, the pair 'sea-sawed#see-sawed’ turning in ’sea#see’, both of
which are correct words. In any case, these compound-confusables are
rare. In the same vein, we let ISPELL have the apostrophe as an extra
valid word character. This enables it to suggest Glencore’s for *Glen-
core’w. By default ISPELL sorts its suggestions alphabetically. We used
the option of not sorting the CCs, which produces the output in the
order in which the suggestions were arrived at:

+ unsorted: & mnister 4 0: minister, minster, mister, meister
+ sorted: & mnister 4 0: meister, minister, minster, mister

The unsorted items show that ISPELL first searches for deletions, then
transpositions, insertions and substitutions. ISPELL does not perform
any other ranking of its suggestions. We nevertheless report its score on
best-first ranking, so as to get an idea of what is achieved without an
explicit ranking mechanism. Bear in mind that for the majority of typos
only one correction candidate is possible and that this one suggestion
is then perforce perfectly ranked.

ASPELL was run in ISPELL compatibility mode, which means that
apart from the correction engine, all else was equal to the ISPELL eval-
uations.

MPT was run with both its UK and US dictionaries separately. We
saw no way of providing it with a hybrid American/British English dic-
tionary. We do not know how large MPT’s dictionaries are. We added
the correct forms for the typos evaluated as the user’s dictionary: ‘cus-
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| System | Dictionary | # Words | OR | RR1 | RR5 |

upper bounds: correct word forms added to dictionary

ISPELL | UK-US-MED-COR 40,934 0.918 | 0.831 | 0.901
ISPELL | UK-US-MED-XLG-COR 94,601 0.910 | 0.814 | 0.891
ASPELL | UK-US-MED-COR 40,934 0.992 | 0.840 | 0.967
ASPELL | UK-US-MED-XLG-COR 94,601 0.991 | 0.811 | 0.960
MPT UK-COR unknown | 0.942 | 0.873 | 0.938
MPT US-COR unknown | 0.941 | 0.873 | 0.937
TISC NYT-BNC/23-COR 196,883+ | 0.988 | 0.920 | 0.988
true scores: proper dictionaries

ISPELL | UK-US-MED 36,472 0.875 | 0.789 | 0.858
ISPELL | UK-US-MED-XLG 90,277 0.886 | 0.792 | 0.867
ASPELL | UK-US-MED 36,472 0.945 | 0.800 | 0.920
ASPELL | UK-US-MED-XLG 90,277 0.965 | 0.791 | 0.935
MPT UK unknown | 0.923 | 0.856 | 0.919
MPT Us unknown | 0.913 | 0.846 | 0.909
TISC NYT-BNC/23 196,883 | 0.926 | 0.844 | 0.926

TABLE 4.11 System evaluated, dictionaries used, number of words in dic-
tionary (lemmata for ISPELL and ASPELL, expanded word forms for TISC),
overall recall and recall in ranks 1 and 5, upper bound and true scores.

tom.dic’. MPT only offers an interactive mode, which was not appealing
given the amount of text we intended to check. We had a macro de-
veloped in Visual Basic 2, to be run in Microsoft Excel, which simply
collects the correction candidates returned and pastes them in succes-
sive columns, the first column after the typo corresponding to the cor-
rection candidate ranked first, the second to the second, and so forth.
Paired with the input text token frequency info per type and the evalu-
ation file containing, per typo, the desired correction, this nevertheless
automated the evaluations of MPT.

For TisC we list the scores obtained with lexicon cut-off frequency
at 23, i.e. with just under 200,000 expanded word types available to it.
TISC had access to the ciccL-list of acquired errors and was run with
the LD limit set at 2.

Evaluation results for the full error list: 12K

In Table 4.11 we present the upper bound and true recall scores ob-
tained on 12K by the four systems evaluated.

2We are indebted to Jozef Vancoillie, autodidact hacker/problem-solver, for pro-
viding us with this macro.



EvaLvuAaTION 115

The upper bound recall scores show us that given a ‘perfect’ dictio-
nary, i.e. one in which all the correct forms for the typos to be corrected
are present, ASPELL and TISC perform practically on a par in overall
recall. MPT performs 4% worse and ISPELL, through its limitation to
Damerau-edits, 7%. On best-first ranking and 5-best ranking, TISC out-
performs all other systems. MPT performs markedly better in best-first
ranking than ASPELL, which in that respect is outclassed even by 1S-
PELL.

As regards the true scores, ASPELL outperforms the other systems
in overall recall and 5-best ranking recall, but only attains the level of
ISPELL in best-first ranking. TISC is runner-up to MPT in best-first rank-
ing and to ASPELL in 5-best ranking, both by about 1%. The greater
difference between ASPELL and TISC on true overall recall is the result
of T1SC here being limited to LD 2. However, TISC’s score on true overall
recall and best-first ranking recall dropped by about 1% when run with
LD limits set at 3 and 4.

We think these scores allow us to conclude that spelling error cor-
rection on the basis of unsupervised corpus-derived lexicons nearly on
par with the level of performance obtained by state-of-the-art systems
is feasible and has here been achieved.

Scoring and evaluation results for typos within a limited
context

We measure performance for all four systems in the way we set out
in 4.3.3. For all the correct types marked by ISPELL, ASPELL or MPT
as ‘not in the dictionary’, or for which cCs are returned by ISPELL,
ASPELL, MPT or TISC, the score for false positives (precision errors) is
incremented by the type’s token frequency in the input text. The results
presented in Table 4.12 were thus again obtained on tokens, for all four
systems. For ISPELL, ASPELL and MPT we used the dictionaries as in
the test on the 12K error list. Here we did not test with all the correct
forms added. For TiSC we report three scores: the one which achieved
best recall, the one which achieved best precision and the one where the
best balance between the two was achieved, resulting in best F-score.

ASPELL obtains the best overall recall. It tries hardest and reports
most CCs. This achievement is offset, and in part explained, by its very
poor precision. This translates into the lowest F-scores of the systems
tested. It is striking that it performs so badly, in perspective, on best-
first ranking. We see its best-first recall scores are 3 to 4% lower than
ISPELL’s, which does not even ‘do’ ranking.

TISC’s best performance as regards overall recall on the English
benchmark set was obtained with lexicon cut-off frequency 3 and the
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| System | Dictionary | = | p | F |

true scores: overall

ISPELL | UK-US-MED 0.885 | 0.523 | 0.657
ISPELL | UK-US-MED-XLG | 0.881 | 0.543 | 0.672
ASPELL | UK-US-MED 0.938 | 0.415 | 0.575
ASPELL | UK-US-MED-XLG | 0.935 | 0.468 | 0.624
MPT UK 0.925 | 0.543 | 0.684
MPT Us 0.917 | 0.511 | 0.656
TISC-R | NYT-BNC/3 0.915 | 0.662 | 0.768
TISC-P | NYT-BNC/2 0.782 | 0.934 | 0.852
TISC-F | NYT-BNC/8 0.854 | 0.920 | 0.886
true scores: rank 1

ISPELL | UK-US-MED 0.817 | 0.483 | 0.607
ISPELL | UK-US-MED-XLG | 0.805 | 0.496 | 0.614
ASPELL | UK-US-MED 0.785 | 0.348 | 0.482
ASPELL | UK-US-MED-XLG | 0.764 | 0.382 | 0.509
MPT UK 0.855 | 0.502 | 0.632
MPT Us 0.848 | 0.472 | 0.607
TISC-R | NYT-BNC/3 0.859 | 0.621 | 0.721
TISC-P | NYT-BNC/2 0.731 | 0.874 | 0.796
TISC-F | NYT-BNC/8 0.798 | 0.860 | 0.828

TABLE 4.12 System evaluated for typos within a limited context, dictionary
used, recall (R), precision (P) and F-score (F). Overall and best-first ranking
scores.
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the Zipf filter threshold: mean values times four. Best precision was
obtained with cut-off frequency 2 and the Zipf filter threshold set man-
ually. Best F-score was obtained with cut-off frequency 8 and the Zipf
filter threshold set manually. Results for TiSC reported at rank 1 were
those obtained with the same settings as the overall scores reported.
Only as concerns precision did we observe a higher score on rank 1
with different parameter settings: with percentiles set at 40% and lex-
icon cut-off at frequency 1: recall: 0.649, precision: 0.891 and F-score:
0.751.

It may come as a surprise that TISC’s manual Zipf filter settings pro-
duced the highest performance as concerns precision and F-score. This
may be due to the fact that as a consequence of fine-tuning on the de-
velopment set, we eventually had slightly different settings in the check-
ing module than in the correction module. With the automatic settings
these are the same throughout the program. However, the runners-up
with the automatic settings are close. For precision we see that cut-
off frequency 1 and percentiles at 40% gives: recall: 0.680, precision:
0.932 and F-score: 0.786. For F-score at cut-off 11 and percentiles at
40% , we get: recall: 0.842, precision: 0.898 and F-score: 0.870. Based
on this we think it is very likely that had we covered the full gamut
of cut-off frequencies and threshold settings in the automatic tests, we
would have encountered the optimal settings that would outperform
the manual ones. As there were about 20 automatic threshold settings
to explore, we did not think this was called for. We are also confident
that these optimal settings would prove to be found in manipulating
the mean threshold values.

We see that in overall recall TISC lags behind the performance of
MPT by 1% and of ASPELL by 2%. In best-first ranking, TISC manages
to slightly outperform MPT, but greatly outdo ASPELL. We further see
that TISC can outperform both ISPELL and MPT by as much as 40% and
ASPELL by 50% in overall precision. Precision reduced by the pursuit
of the highest possible level of recall is still 12 to 15% above ISPELL
and MPT, both of which attain the same level, and 20 to 25% above the
level reached by ASPELL. The balance in recall and precision which is
obtained by TISC translates into an F-score which lies 20% higher than
what MPT achieves. This is true on the best-first ranking level as well.

We believe the results shown here prove sufficiently that context-
sensitivity as provided by the simple word bigram model we employ
greatly reduces the false positive rate incurred by isolated-word sys-
tems.
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Obtaining balanced precision and recall

We think we may conclude that in order for a spelling checking and
correction system to obtain a balance between recall and precision

+ it should be provided with far more lexical information than has
been the norm to date;

« it is beneficial to restrict the scope in LD of the correction mechanism;

« it should be provided with context information.

As we have seen, ASPELL achieves a high overall recall, but only a
low precision. The more information, i.e. the larger the lexicon available
to TISC, the higher precision it reaches. At the very top, i.e. with all
the information in the corpus save the word bigram hapaxes, precision
still is better than with more information discarded, admittedly at the
cost of recall. Recall and precision are in balance at cut-off frequency 8,
for this particular hybrid British and American English lexicon, tested
on this particular benchmark set.

This concludes our evaluations of the English version of Tisc. We
have shown that Text-Induced Spelling Correction is a viable and com-
petitive spelling error detection and correction solution for English. In
the next section we investigate whether the same goes for Dutch.

4.4 Evaluation on Dutch

Dutch is a language related to English, both being members of the fam-
ily of North-Sea Germanic languages, but has a richer morphology and
its highly productive compounding produces more word types because
compounds are written as single words. In this section we investigate
whether the same Text-Induced Spelling Correction methodology we
have demonstrated to work for English, works for Dutch as well.

In our evaluations on Dutch we concentrate on the full task of de-
tecting and correcting typos within their context. We here employ a
realistic context size for spelling checking: the full newspaper article
the particular typos appeared in. We study the effect of having more
or less context surrounding the typos, the effect of using a greater or
smaller LD restriction on the correction candidates returned, the effect
of the automatically set Zipf Filter thresholds, and finally, the effect of
having a larger corpus to derive the lexicons from. For Dutch we did not
apply CICCL, note therefore that all results reported here were obtained
without employing a list of acquired errors. In the last subsection, we
compare TISC to the Dutch versions of ISPELL and MPT.
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4.4.1 Composition of the evaluation files

For evaluation purposes, we proofread the Dutch version of the newspa-
per Metro during April-May 2003 and collected the non-word errors en-
countered. This amounts to 129 non-word errors, which were extracted
from the online version with the full article they appeared in. We used
this first batch (Metrol) for development purposes. A second bout of
proofreading yielded a second, similar batch, which we reserved for test-
ing purposes only. We report the scores on the benchmark evaluation
set: Metro2, which contains 126 typos. Further statistics on develop-
ment and benchmark sets are provided in Table 4.13.

While still a far cry from the total amount of word tokens published
in the full editions of the Metro, we believe the benchmark test set
represents a more realistic sample of text to be spelling checked. The
error ratio observed here, i.e. 1 in 200 words represents a typo, is about
twice that made by competent typists (Grudin, 1983) or that observed
in the Reuters RCV1 corpus. These news stories were published and one
may therefore assume they had been subjected to proofreading and/or
automatic spelling checking prior to publication.

Collecting the development and evaluation sets was no sinecure. We
proofread the paper version and then used the portable document for-
mat version which is daily posted on Metro’s website to extract the
electronic version of the articles in which we had found errors. This
we did by copying the text from Adobe Acrobat Reader to an edi-
tor. Unfortunately, this is a lossy process: due apparently to ‘ligatures’
this loses all occurrences of the letter combinations fl and fi. Apos-
trophes are also lost. So the Dutch word financieel becomes *nancieel,
which is a non-word, but the word fiets (bike) becomes ets (etching),
which is a real word. So after extraction, another round of proofread-
ing was required for text running up to 50,000 words, about the size
of a small novel. We also tried using optical character reading (OCR)
to circumvent this problem, but that proved futile: it introduced even
more OCR-induced errors.

4.4.2 Test settings

For T1sc we report score curves obtained by varying the threshold at
which the corpora’s bigram lists were truncated (frequencies: 2-10 and
15 for ILK-TWENTE). The implementation used was the same as for the
English evaluations and so was the input text frequency threshold, set
at 20, above which words are never sent on to correction. However, the
switch telling TISC to accept the specifically English admissible variants
detailed above, was here turned off. We also had to lower the constant
set for the Zipf Filters. When we first ran preliminary, development
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Set Metrol Metro2
Status Development | Evaluation
context article article
tokens 21,919 25,750
types 5,747 6,441
type/token ratio 26.22% 25.01%
errors 129 126
error/type ratio 2.25% 1.96%
error/token ratio 0.59% 0.49%

TABLE 4.13 Statistics of Metro development and evaluation sets.

| Category | 1pl1] tp2]| D3 | Total | % |

deletion 54 3 57 | 45.238
insertion 34 1 1 36 | 28.571
substitution 16 16 | 12.698
transposition 3 3 2.381
multiple 2 2 1.587
space deletion 8 8 6.349
space to dash 2 2 1.587
capitalisation 1 1 0.794
multisingle 1 1 0.794
1st ch. delet. (1) (1) | (0.794)
1st ch. insert. (1) (1) | (0.794)
1st ch. sub. uc. (1) (1) | (0.794)
total 115 10 1 126

% 91.270 | 7.937 | 0.794 100

TABLE 4.14 Error type breakdown of Metro2 benchmark evaluation set.
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set, tests on Dutch evaluating on tokens instead of on types we ob-
tained poor precision results, in the 40% range. The results reported
in Reynaert (2004) were on types. We had then used the same settings
for Dutch as for English and obtained reasonably satisfactory results.
False positives are often correct words which occur more than once in
the input text and thus have a heavier toll on precision when tokens
rather than types are counted. The Dutch corpus is smaller than the
English one. This was further compounded by the greater sparseness of
Dutch due to its richer morphology. Consequently, the COOCs observed
at a particular bigram list cut-off are relatively higher for English than
for Dutch. This observation formed the basis for the automatically set
Zipf Filter thresholds we discussed in Chapter 3. Results reported be-
low were obtained with the Zipf Filter constant still set at 1,000 for
words shorter than 5 characters, but lowered from 100 to 50 for those
of length 5 or more. This results in more types being sent to the cor-
rection module, more erroneous ones being corrected, hence a rise in
recall and accompanying rise in precision.We also report on tests with
the automatically set Zipf Filter thresholds.

4.4.3 Error list: Gauging the level of difficulty of the Dutch
benchmark set

Before we move on to the evaluation on the full task, we present an
estimate of the level of difficulty presented by Metro2. A breakdown of
the actual error types in the Dutch benchmark set is given in Table 4.14.

As we have seen above, MPT scores very well on recall for English.
We therefore take MPT’s true recall score on types on the list of typos
in the Dutch benchmark set to be indicative of the benchmark’s level
of difficulty. The overall true recall score on types for MPT on Metro2
is 0.675. Best-first ranking recall is 0.627. When we compare the level
of overall recall reached on Dutch with that reached on English, we see
the score on Dutch is far lower. Apparently, Dutch presents a greater
challenge to spelling correction systems.

4.4.4 Typo-in-context evaluation: F-score on full task
TEST 1: Effects of context size

For Dutch, we report scores obtained with the full evaluation files
as well as with the errors within a 3-sentence context, extracted from
the full articles. This was designed to reveal the difference in precision
which results from more context. The more context given to the errors,
the more skewed the distribution of errors versus non-errors becomes,
which is more in line with the distribution naturally seen in reality.
Remember we have observed 1 error per 400 words of running text
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FIGURE 4.11 Evaluation results: Dutch - Metro2 benchmark set: effects of
more context. LD limit at 3. Lexicon cut-offs: 2 to 10 and 15: top left of curves
to bottom left. Remark the loss in precision due to more context, but also the
shift to the right due to greater recall of the full article (FA) curve compared
to the 3 sentences (3S) curve.
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in the Reuters RCV1. Given the longer contexts here, we are at about
1 in 200. More context gives more word types, and more scope for
the system to report false positives. This is reflected in the scores on
precision obtained.

Discussion of context effects

The score curves for Dutch are more erratic than they were for English.

This can be explained by the facts that

+ the corpus contained only half the number of tokens as the English
one: this results in lower frequencies for the types incorporated in
the lexicon and less reliable coOCs overall.

+ the error to type ratio was much lower than that for English: this
is due to our employing more input context, but also to the richer
morphology of Dutch, which results in a higher type to token ratio
than one would observe in English.

The effect of more context is particularly striking as regards preci-
sion. Nicely observable is the fact that given more context, TISC may
reach higher levels of recall due to input-text derived information that
aids correction. All else but the context being equal, at frequency cut-
off 4 which gives us the best F-score for the full articles, i.e. 0.611, we
see a drop in precision of 28%, from 0.807 to 0.526. The gain in overall
true recall is then: 3.17%, from 0.698 up to 0.730.

Having established the importance of studying the import of error
to token ratio in spelling error detection and correction, we now move
on to seeing what the effect is of variation in the scope of the correction
mechanism on performance.

TEST 2: Effects of LD restriction

Another factor which has an impact on performance is the scope, ex-
pressible in LD, given to a system. Allowed a larger LD to search for
correction candidates, a system selects or retrieves more correction can-
didates and ranking becomes harder to perform correctly. We study
that effect here.

Table 4.15 lists the scores obtained at cut-off frequencies 2 and 15
with LD limit set at 3, 4, 5, 10 and 99.

Discussion of LD restriction effects

We see that varying the LD at cut-off frequency 2, affects recall and pre-
cision. The lower level of recall at frequency 2 is the effect of crowding.
At LD 4 we get the highest recall. Nevertheless, the higher precision at
LD 3 still makes for the best F-score, though with a small margin.

At cut-off frequency 15 we see no variation in recall at all anymore:
widening the search space does not allow for more typos to be corrected.



124 TEXT-INDUCED SPELLING CORRECTION

[tb | or | P | F |
FRQ 2

LD 3 0.659 | 0.568 | 0.610
LD 4 0.667 | 0.560 | 0.609
LD 5 0.659 | 0.516 | 0.578
LD 10 | 0.651 | 0.474 | 0.548
LD 99 | 0.651 | 0.456 | 0.536

FRQ 15
LD 3 0.738 | 0.372 | 0.495
LD 4 0.738 | 0.350 | 0.474
LD 5 0.738 | 0.329 | 0.455
LD 10 | 0.738 | 0.292 | 0.418
LD 99 | 0.738 | 0.284 | 0.411

TABLE 4.15 Metro2 benchmark set: effect of varying the LD on overall recall
(oR), precision (P) and F-score (F).

It does still allow for more correction candidates to be retrieved, which
explains the attendant loss in precision. Note that at LD 99 the only
restriction on retrieval is the restriction imposed by the alphabet. The
lower precision reached at frequency 15 is the result of the smaller lexi-
con: less of the information needed is available, both lexical information
and derived coocs will be less complete and reliable.

TEST 3: Effects of using a larger corpus

This test allows us to study the effects of using more data. We built new
Dutch lexicons and cooccurrence tables, adding the Twente Update to
the Twente Corpus used so far. We present a range of scores, obtained
with varying automatic Zipf Filter settings based on manipulated mean
settings and percentiles.

Table 4.16 lists the scores obtained with the lexicons derived from
the 1ILK-Twente corpus as well as from the concatenated ILK-Twente
and Twente Update corpora. Lexicon cut-off frequency was 4. The LD
was set at 3.

Discussion of the effects of using a larger corpus

Using a larger corpus, we are confronted with the limitations of our
approach. We gain precision, but the gain is in part offset by a loss in
recall. Simply looking at the number of typos which were not sent on
to correction, 26 for the ILK-Twente and 33 for the ILK-Twente and
Update lexicons, tells us that using a larger corpus means incorporating
more and more of the errors to be corrected in the lexicon, with higher
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| |  ILK-TWENTE | + UPDATE |
SETTING OR P F OR P F
25% 0.595 | 0.600 | 0.598 | 0.571 | 0.632 | 0.600
50% - median | 0.643 | 0.566 | 0.602 | 0.603 | 0.589 | 0.596
75% 0.706 | 0.509 | 0.591 | 0.683 | 0.558 | 0.614

mean / 0.25 0.778 | 0.142 | 0.240 | 0.754 | 0.210 | 0.328
mean / 0.5 0.778 | 0.196 | 0.313 | 0.746 | 0.288 | 0.416

mean 0.754 | 0.281 | 0.409 | 0.714 | 0.391 | 0.506
mean / 1.5 0.738 | 0.342 | 0.467 | 0.698 | 0.456 | 0.552
mean / 2 0.722 | 0.397 | 0.513 | 0.659 | 0.509 | 0.574

mean / 2.5 0.690 | 0.433 | 0.532 | 0.627 | 0.527 | 0.572

TABLE 4.16 Metro2 benchmark set: effect of varying the corpus size on on
overall recall (OR), precision (P) and F-score (F). Cut-off frequency: 4. LD
limit: 3.

coocs, more likely to be validated. Looking at the actual typos missed,
we see that most of these involve missing diacritics or other highly re-
current typos (e.g. *comissie for commissie (commission), *geweldadige
for gewelddadige (violent)). These are prime candidates for systematic
prior corpus normalisation and for CICCL, steps we will take in the
future.

Nevertheless, given the larger corpus, the gain in precision is substan-
tial: with just the Twente corpus, we had 124 false positives, 79 with
the Update (TISC settings: cut-off frequency 4, LD at 3, average divided
by 2). Examining the data, we see that rarer morphological forms: e.g.
definitiever [more definitive], haperendste [most wavering], wurmt [wrig-
gles], compounds: e.g. nekkenpakkende [neck grabbing], nietsverhullende
[hiding nothing], names: Hulk, Calypso and finally foreign words: talks,
wish, are now being properly validated.

This does not mean the same levels of recall as with the smaller
corpus cannot be reached with the larger. It means we will have to use
a larger cut-off. At that larger cut-off, we should find we attain similar
recall, but higher precision.

4.4.5 Performance in comparison with ISPELL and MPT

How we tested

Both 1SPELL and MPT were run with their standard Dutch (Nether-
lands) dictionaries, the first in its native batch mode, the second with
the Excel macro. We ran ISPELL in two modes: one using the -C param-
eter which is provided for compounding languages and which tells the
system to not further evaluate words it can split into two in-dictionary
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| System | Dictionary | TR | P F

true scores: overall

ISPELL (-¢) | dutch 0.627 | 0.054 | 0.099
ISPELL (+4c) | dutch 0.516 | 0.073 | 0.128
MPT dutch (NL) | 0.659 | 0.081 | 0.143
TISC-R ILK-TWC/2 | 0.794 | 0.164 | 0.272
TISC-P ILK-TWC/2 | 0.540 | 0.660 | 0.594
TISC-F ILK-TWC/2 | 0.683 | 0.610 | 0.644
true scores: rank 1

ISPELL (-¢) | dutch 0.548 | 0.047 | 0.087
ISPELL (+¢) | dutch 0.460 | 0.065 | 0.114
MPT dutch (NL) | 0.611 | 0.075 | 0.133
TISC-R ILK-TWC/2 | 0.675 | 0.139 | 0.231
TISC-P ILK-TWC/2 | 0.460 | 0.563 | 0.507
TISC-F ILK-TWC/2 | 0.571 | 0.511 | 0.539

TABLE 4.17 System evaluated on Metro2 (typos within full newspaper ar-
ticles), dictionary used (for TIsC: /2 indicates lexicon cut-off at frequency
2), on true recall (TR), precision (P) and F-score (F), overall and best-first
ranking. TISC-R is the version of TISC optimized to obtain the best recall,
TISC-P the version of TISC optimized to obtain the best precision and TISC-F
the version that obtained the best F-score.

words, the second mode without this switch, as it was run for English.
For TisC we present the best scores obtained on recall, precision and
F-score and discuss which settings these were obtained with.

Scores obtained by ISPELL, MPT and TISC are presented in Table 4.17.

Discussion

We see that TISC outperforms both the Dutch MPT and ISPELL on both
recall and precision when evaluated on typos within the full texts they
appeared in. This achievement is due to TISC’s context-sensitivity. We
have shown that given more context, TiSC’s recall rises. This is the
effect of evidence found that a word is acceptably spelled within the
wider context, especially in cases where e.g. part of a compound is not
at all present in the lexicon, but amply in the context: remember the
case of *egionellawaakhonden discussed in Chapter 3, Subsection 3.4.4.
Note that these results were obtained without running CiCCL on the
lexicon, so TISC was run without a list of ‘acquired errors’. This means
that there is further scope for improvement, yet. What we think is even
more encouraging, is the fact the performance on best-first ranking of
the candidates is also markably better for T1SC. However, the top score
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is an F-score of 0.539, with balanced recall and precision, both over
50%. In everyday terms this means that given typos in full context, we
correct over half of the typos and the list of items returned contains
target and non-target items in about equal proportions: just over 1
in 2 items returned is a corrected typo. If one were to let the system
work in a fully unsupervised, automatic mode, the resulting text would
improve, but only very slightly. We return to this topic in the next
Chapter.

The ISPELL results with and without using the -C parameter are
particularly enlightening. We see that when ISPELL does not further
evaluate compounds for which it finds the two compounding parts in
its dictionary, it achieves a precision nearly on par with the precision
achieved by MPT. When it does further evaluate, it actually corrects
more typos, reflected in the higher recall. This causes a steep drop in
precision, however. If we compare ISPELL’s output with that of MPT,
we see that actually MPT employs a strategy very similar to the one
offered when ISPELL’s -C parameter is activated. MPT’s higher recall
seems then simply due to the fact it can handle greater edits. For
both systems, precision is quite low, a direct result of the dictionaries
containing insufficient information. For MPT this seems also the result
of allowing for the scope of the search in terms of LD to be too wide.

We looked into this more closely by varying the amount of context.
We made three test sets: the original one with the typos within their
full article, a subset of this with the typos within their sentence only
(1S) and another with the sentence preceding and following added to
this sentence (3S). We then ran MPT on these three sets. The results
in Table 4.18 show clearly that while recall is not affected, precision
drops steeply given more context. Remark that precision on the single
sentence test, while lower than that we reported on the English single
sentence benchmark set, can still be said to be at a comparable level.
We have no doubt that had we had a full article English benchmark set,
we would there too have seen a comparable drop in precision attained
by the systems we evaluated.

In van den Heuvel (2003) an example was given of Dutch MPT output
where the system suggests olieproductie (oil production) for the input
word liposuctie (liposuction). These have an LD of 4. In order to find out
what the LD permitted by the Dutch MPT is, we measured this for the
correction candidates returned on Metro2. On this list the maximum
LD observed was 7, as can be seen from the examples in Table 4.19. This
explains the low precision attained by the system: its dictionary is too
limited and it searches too far. The latter seems a consequence of ap-
plying too many point-edits. Turning godfather into hoofdader requires
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| System | Context | R | p | F |

true scores: overall

MPT 1 sentence | 0.659 | 0.444 | 0.530
MPT 3 sentences | 0.659 | 0.249 | 0.362
MPT full article | 0.659 | 0.081 | 0.143

TABLE 4.18 MPT: effect of context size on overall recall (R), precision (P) and
F-score (F).

a substitution of the first character, an insertion after the second, a
transposition of the third and fourth and substitution of sixth and sev-
enth into a single character. This seems an overly powerful correction
mechanism, most likely due to the application of phonetic rules, which
van den Heuvel (2003) tells us the Dutch MPT applies. The resulting
great scope in LD stands in contrast to what the permitted LD in the
English version of MPT appears to be. We found that 4 is apparently the
maximum allowed. As can be seen from the examples, even this is quite
a distance for words as short as 4 characters (out-of-vocabulary foreign
currencies, all), especially in combination with multiple point-edits.

We think the above amply demonstrates that in evaluating spelling
error detection and correction systems measuring recall only will not
do because it does not tell the full story. Only by measuring recall in
combination with precision can particular aspects of particular systems
be brought to light. We devote the best part of the next chapter to fur-
ther investigating issues involved in evaluating spelling error detection
and correction systems. To conclude this chapter on evaluation, we now
summarize our findings.

4.5 Summary
In this chapter we have established that:

+ the correction mechanism we propose can resolve virtually any type
of error encountered in a real-world corpus. The few types of errors
it cannot resolve typically involve higher LDs and multiple errors.
These are very rare in keyboard-input text.

« using a smaller alphabet, i.e. an alphabet not including character
trigram values, results only in a minimal loss of performance.

«+ performing correction not only on the isolated word tier, but also
looking at the immediate context has only a slight effect on overall
recall but improves the best-first ranking of the CCs.

« the corpus derived lexicons can to a certain extent be cleaned in an
unsupervised way
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| Input | Output | LD |

MPT: DUTCH

Presley Porselein (Porcelain) 5
Selassi Easy 5
Sydney Ziende (Seeing) 5
Viktor VITO 5
godfather hoofdader (mother lode) | 5
Applegate Kabelgaten (Cable holes) | 6
Noord-Ierse (Northern-Irish) Ordners (Files) 6
Zuid-Spaanse (Southern-Spanish) | Uitspansel (Firmament) | 7

MPT: UK + US

rupiah repaid 4
ecus issues 4
fpritns (forints) fronts 4
hrivnia hiving 4
hryvnia triennia 4

TABLE 4.19 MPT output: some examples of overly high LD correction candi-
dates for Dutch and English.

+ for the full task of detecting and correcting typos within running
text we have seen that precision keeps rising the more information
is provided to the system, i.e. the lower the frequency cut-offs used

« with manually set Zipf Filter thresholds this results in loss of recall
through crowding by incorrect variants included in the lexicon. This
calls for more rigorous corpus normalisation during pre-processing
and for applying absolute correction.

+ using corpus-derived thresholds we can manipulate the levels of pre-
cision and recall and can force the system to focus on the one. This
is to the detriment of the other, but a good balance can be achieved.

« given a realistic amount of context, i.e. typos within their full news-
paper article, we reach a level where for every error removed, only
one correct word would be replaced, if the system were run in a fully
unsupervised, automatic fashion. This we have shown to be the case
for Dutch, which we have also shown to pose greater challenges to
spelling error detection and correction systems than English.

« for both languages English and Dutch, TisC outperforms the state-
of-the-art systems available today. For English we showed that this
is the case for ASPELL, ISPELL and MPT, for Dutch: ISPELL and MPT.

On the basis of these findings we conclude that Text-Induced Spelling
Correction is a viable alternative to the approaches to spelling error
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detection and correction as embedded in the state-of-the-art systems
available today.

In the next chapter we discuss TISC in light of the state-of-the-art as
proposed in the literature. We also discuss by what means we believe
we can further enhance TISC’s recall without affecting its level of preci-
sion. We finally examine the question what constitutes fully automatic
spelling error detection and correction and whether we have achieved
that goal. More than anything else, our focus is on how and why spelling
error detection and correction systems should be evaluated and what
the proper metrics to that end are.



5

Evaluation of the evaluations

In this chapter we first discuss TISC in comparison with a state-of-the-
art spelling correction system as presented in the literature. We show
that even if the same metrics are used in evaluation, real comparison
between two systems remains problematical if the actual data used are
not available, even if more is known about the data than a rather min-
imal description. We propose ways of describing the data so that more
of the information necessary for eventual replication is made available.
This leads to an exploration of the role we see for TISC and whether
the system is capable of filling that role. We next discuss two prepro-
cessing techniques we might fruitfully employ and which should further
enhance TISC’s performance. Then we examine a number of questions
concerning evaluation methodology and reliability of evaluation sets
and evaluation metrics. We consider the question when a system would
be fit for performing fully automatic spelling error detection and correc-
tion and whether the system we propose has advanced the field towards
fully automatic spelling error detection and correction. We conclude the
chapter with an evaluation of whether another metric, the area under
the curve, which has in recent years gained acceptance and popularity
in Machine Learning, would serve as well as the F-score to evaluate
spelling error detection and correction systems.

5.1 Related research: TISC in comparison with the
state-of-the-art in the literature

We compare the English version of TISC as a spelling checking and cor-
rection system with state-of-the-art-systems proposed in the literature.

Brill and Moore (2000) report an excellent accuracy, 98.8%, on a
test set of 2000 erroneous word/correction candidate pairs. Accuracy is
another of the metrics derivable from the confusion matrix we described
in Chapter 4 and is defined as follows:

131
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TP+TN

Accuracy = A = PN

Now, by measuring performance on a list containing only erroneous
word forms, the terms TN and N in the definition reduce to zero, which
leaves %, which shows that what was being measured is recall = R.
This is what we measured and reported on in the first series of eval-
uations, which should facilitate comparison between the systems. We
shall here further refer to the scores obtained by Brill and Moore (2000)
as recall as this removes any objections that have been raised in the
literature against the use of accuracy as a performance metric. (Provost
et al., 1998).

What is effectively measured by recall in these kinds of tests, is the
ability of a correction system given a typo, to produce its correct form,
regardless of the means used to arrive at the correct form. We believe
this is a valid and necessary measurement. If a system cannot handle
more than for instance single character Damerau edits, it will not be
able than correct more than about 90% of the natural distribution of
the typos we have observed in the Reuters RCV1.

The score attained by the noisy-channel based approach proposed by
Brill and Moore (2000) begs the question what kind of errors it failed to
correct. A discussion of these residual errors appeared in Toutanova and
Moore (2002), where Toutanova argues the residual errors can mainly
be seen as examples of phonetic errors and adds a separate error model
for word pronunciations, thereby achieving even better performance.
Both studies report on the recall of their noisy-channel based systems
under ideal conditions, i.e. with all the correct forms for the words to be
corrected present in the dictionary. This means that in the terminology
we have used throughout, they report upper bound recall and upper
bound best-first ranking recall. Though not explicitly stated, the reason
why the systems were tested with a dictionary present and not without
as we did in our first test, must have been to study the extent to which
what we have come to call ’crowding’ affects performance. The strategy
employed by Brill and Moore (2000) is that they try to ‘find the word
w € of D (the dictionary) that is most likely to have been erroneously
input as §’. Their error model is the noisy channel model and is based on
the probability that when a user intends to type the string a;, (s)he types
the string § instead. This probability is derived from a training corpus
of errors, in their case, 80% of a 10,000 word corpus of what they say
are common English spelling errors, paired with their correct spelling.
The approach they take is to have their system return an n-best list of
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correction candidates according to the error model and then to rescore
these candidates by taking into account the source probabilities.

In Subsection 4.2.2 we have evaluated TISC in the same way as was
described in Brill and Moore (2000).

Likely due to space limitations, Brill and Moore (2000) provide very
little information on their 10,000 typo/correction pair list. We wanted
to be able to compare our approach to theirs. The list is considered
proprietary by Microsoft. This precludes direct comparison by testing
TISC on the same evaluation set. In order to nevertheless open up the
possibility of comparing both approaches, the authors provided us with
the next best thing: the list with the actual words masked in such a way
that the typo pattern is apparent but the actual underlying words are
not. This was done by replacing all matching characters by M, marking
a deletion with D, an insertion by I and a substitution by S. Transposi-
tions of two adjacent characters were marked with a single 7. The pair
actress/*acress is then represented by the string: MMDMMMM. Note
that especially with pairs involving multiple edits, various readings may
be possible. We do not know exactly which readings their transcription
system was biased to. We transcribed our own RCV1 list in the way set
out in Appendix 1. We do not think that our conclusions regarding the
differences between the composition of the lists will be unduly biased
by possible transcription differences.

The full Brill/Moore list contains 9,774 items of which there are
1,463 unique patterns. The 12,094 items RCV1 list contains 1,163 unique
patterns. The larger diversity in the Brill/Moore list is no doubt due
to the greater share of multiple errors in it. It is immediately obvious
that substitution errors predominate.

Some patterns recur with great frequency. The three most common
patterns in the Brill/Moore list as displayed in Table 5.1 would actu-
ally fit the -ise(d)/ize(d) variation. Remember that we did not mark
allowable variation as being erroneous in the rRCV1. However, as the
examples in Table 5.2 show, the patterns may represent very diverse
errors, not mere systematical variation. In the table we have marked
recurrent erroneous substrings. It would be these that would be learned
by the noisy channel approach taken by Brill and Moore (2000). These,
however, would not present undue problems to TiSC, without any train-
ing and thus without the need for training material. We actually think
the major strength of the system proposed by Brill and Moore (2000)
lies in the fact that it can handle multi-point multiple errors well. Its
weaknesses may very well be comparable to the ones we have detailed
for MPT and ASPELL, namely loss in precision. Then again, that might
be mitigated by the more specific error-targetting allowed by modelling
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| Rank | Brill/Moore | frq. | RCV1 | frq. |
1 MMMMSMM 258 | MMMDMMMM 126
2 MMMMSM 251 | MMMMMDMMM 125
3 MMMMMSMM 214 | MMMMDMMMM 118
4 MMDMMM 205 | MMMMDMMM 117
5 MMMSM 201 | MMMMMDMMMM | 107
6 MMMMSMMMM 195 | MMDMMMMMM 106
7 MMMSMMMM 181 | MMMDMMMMM 105
8 MMMSMMM 178 | MMDMMMMM 104
9 MMMSMM 166 | MMDMMMM 104
10 MMMMSMMM 164 | MMMMMDMM 102
11 MMMMMSMMM 151 | MMMMIMMMM 98
12 MMMDMMM 148 | MMMMIMMM 98
13 MMDMMMM 146 | MMMMMMDMM 97
14 MMMMMSM 142 | MMMMMIMMM 96

15 MMMMMMSMMM | 132 | MMMMDMMMMM | 95
16 MMMMMMSMM 132 | MMMMMMDMMM | 92

17 MMMMMMSM 115 | MMMDMMM 90
18 MMSMM 110 | MMIMMMMMM 87
19 MMMMMSMMMM | 109 | MMMIMMMMM 85
20 MMIMMMM 108 | MMDMMM 85
21 MMIMMM 104 | MMMMDMM 84
22 MMMDMMMM 91 | MMMDMMMMMM | 82
23 MMSMMM 89 | MMMMMIMMMM 81
24 MMMSMMMMM 85 | MMMIMMMM 81
25 MMMMDMMM 81 | MMMMMMMDMM | 80

TABLE 5.1 Comparison of top 25 patterns and their frequencies in left: Brill
and Moore (2000) and right: RCV1 list.

longer substrings and the positional information employed. But this we
do not know: the authors did not in any way test this, by measuring
only their system’s recall.

In the Brill and Moore (2000) list we find the first deletion pattern
on rank 4, whereas in the RCV1 list we observe nothing but deletions
until rank 11, where we find an insertion pattern, after which we ob-
serve only a mix of deletion and insertion patterns in the top 25. In the
RCV1 the first transposition pattern: MMMMTMM with frequency 78,
was observed at rank 28. It is only at rank 91 in the RCcV1 list that we
find the first substitution pattern not involving capitalization: MMM-
MMSMMM with 38 occurrences. Note that this pattern corresponds to
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Correct / Typo

Correct / Typo Correct / Typo |

abnormals / abnornals cigarette / cigaratte postponed / postpgned
abundance / abundence | communist / commumist | published / publiched
adherence / adherance company’s / compahy’s retreated / retreited
affiliate / affillate jubilance / jubilence scheduled / schedeled
algorithm / algorythm necessary / necesaary secretary / secrerary
aluminium / alumimium | obstacles / obstables severance / severence
ambitious / ambituous operating / operaring something / sometning
ancillary / anciliary perimeter / perimiter stratagem / strategem
~— ~—
assiduous / assidious permanent / permament | sybaritic / sybaratic
automatic / automotic permitted / permiited utilities / utililies
auxiliary / auxillary pessimism / pessisism vigilance / vigilence
~— ~—
awareness / awaremess plausible / plausable worldwide / worldvide
challenge / challange plummeted / plummtted

TABLE 5.2 38 correction/typo pairs from the Rcv1 list fit the pattern MMM-
MMSMMM. Underlined: recurrent -ance/-ence variation. Overbraced: recur-
rent jous/uous variation. Underbraced: recurrent llary/liary variation. Note
the bidirectionality of all three recurrent types of variation.

the pattern on rank 3 in the Brill-list. Numbers two and one of their
list follow at rank 113 with frequency 34 and rank 158 with frequency
25, respectively. So it is not that we have not observed the same pat-
terns. It is that we have observed other patterns, involving other types
of transformations, more frequently. As a matter of fact, the lists share
453 patterns or 20.85%.

What the table shows most clearly is that while both approaches
have the stated aim of performing spelling correction, the actual defi-
nition of spelling correction handled differs widely.

Table 5.3 lists the error type statistics we obtained from this list.
We see there are a few types of errors not present in the list: run-ons
and splits, especially. We do not know whether capitalization errors are
present, but given the first character statistics, we doubt it. In terms of
LD-distribution we see a fairly normal slope, which is nevertheless less
steep than what we observed in the RCV1. This means there are some-
what less LD 1 errors than what we observed, but more LD 3 and higher
errors. The main difference lies in the share taken by substitution er-
rors: these represent nearly half of all the errors. This is very different
from what we observed, in the RCV1 substitution errors occur least of-
ten of the four basic categories. We also see that in the Brill/Moore
list there are about 10% more multi-point multiple errors. In our list
we have examples such as: vehicle *vechile, restaurants: *restaraunts,
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[ Category [ w1l ] 2] 3] tb4] b [ Lb6 [ Total | %
deletion 1,818 20 1 1,839 18.815
insertion 1,250 5 1,255 12.840
substit. 4,167 448 24 1 4,640 47.473
transpos. 304 304 3.110
multiple 1,024 254 53 6 1 1,338 13.689
multisingle 305 84 8 398 4.072
1st ch. del. (34) (14) (6) (6) (60) (0.614)
1st ch. ins. (3) (1) (1) (5) | (0.051)
1st ch. sub. (55) (30) (16) (10) (1) (112) (1.146)
Total 7,235 2,106 363 61 7 1| 9,773
% 74.023 | 21.547 | 3.714 | 0.624 | 0.072 | 0.010 100

TABLE 5.3 Statistics of the error categories in the Brill and Moore (2000)
typo/correction list. Counts between brackets are subsumed by the parent
category.

*restaruants. Note that the way we count these, non-adjacent transpo-
sition errors are counted as multi-point multiple errors.

The high number of substitution errors is explained by Dr. Moore
as follows (personal communication):

It appears, anecdotally, that the vast majority of errors in our data
are cognitive errors. It seems to me that what type of errors predomi-
nate would depend on the source, and in the case of published text, the
point in the production chain where the errors occur. Microsoft is inter-
ested mainly in errors that occur at the beginning of the chain, during
composition, since this tends to be where Microsoft products (Word,
PowerPoint) are used. I would expect that cognitive errors would pre-
dominate there. In the case of published news text, which I presume
the Reuters corpus is, I believe the standard production chain is com-
position = copy editing = typesetting. In this process, most cognitive
errors should be corrected by copy editing, and it may be that most of
the errors in the final product are actually introduced in typesetting. It
would not surprise me if deletions predominate here, since typesetters
strive for speed, which would tend to lead to skipping characters or
failing to hit the key for a character hard enough to register.

In Table 5.3 we present the breakdown of the nearly 2,000 item test
set employed by Brill and Moore (2000). This was obtained from the
full list by taking every fifth item. We see that this strategy produces
a nearly identical error distribution as we saw in the full list, which
allows us to conclude that the test set is a reliable subset of the full
list, which should allow for a valid estimation of the system’s recall.

It is only by virtue of this statistical breakdown in error types that
we have been able to see that the problem addressed by Brill and Moore
(2000) is very different in nature than the problem we have been ad-
dressing throughout this work. The information available in the paper
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[ Category [ ol ] 2] 3] wd][ b5 [Lb6 [ Total ] % ]
deletion 364 2 366 18.731
insertion 228 1 229 11.720
substit. 852 78 1 931 47.646
transpos. 62 62 3.173
multiple 216 61 11 1 289 14.790
multisingle 61 15 1 77 3.941
1st ch. del. (8) (2) (1) (11) (0.563)
1st ch. sub. (9) (6) (2) (5) (22) (1.126)
Total 1,444 420 77 12 1 1,954
% 73.900 | 21.494 | 3.941 | 0.614 | 0.051 100

TABLE 5.4 Statistics of the error categories in the Brill and Moore (2000)
test set. Counts between brackets are subsumed by the parent category.

concerning the 10.000 typo/correct word list, which amounts to the
statement: ‘a list of 10,000 common English misspellings’, did not al-
low us to deduce that their system is meant to be able to correct highly
deformed word strings. We address primarily the naturally occurring
mild cases. Both MPT and ASPELL cater for the orthographically chal-
lenged. We think that our evaluations have conclusively shown that
this has a heavy cost as regards a system’s precision. The authors have
not measured the precision of their system, but we think the system
by Brill and Moore (2000) with its very powerful correction mechanism
is also in danger of allowing the scope of the search in terms of LDs
covered to be too wide.

Catering for poor spellers further seems to inevitably entail inter-
active spelling help during composition. Interactive use entails that
the writer views the context, which means the system can be limited
to isolated-word correction. Hence we have seen no further research
in context-sensitive non-word error correction and no regard has been
given to context and its possible contribution to correct ranking. Fi-
nally, we now understand why no advance has been made towards fully
automatic, non-humanly supervised spelling correction.

On the basis of TISC’s performance in the evaluations, we should
conclude that it probably cannot in its present implementation perform
equally well as the Brill and Moore (2000) system as regards multi-point
multiple errors. Its strength would lie in the unsupervised detection and
correction of those typos which either escaped the copy-editing process
or were introduced during type-setting. It could be put to good use just
before going to press, as a quick final check on the copy. So TISC would
fill an altogether other niche than either MPT or ASPELL.

Powers (1997) uses a copyleft book to test the system he proposes
for the detection of confused words. Of a limited set of confusables, his
system detected 6 instances in this highly-edited text. When reading
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the book’s copyrighted version by Penguin Books we had seen and
noted one typo, on page nine: ‘[Graham] Bell himself, as an *elecution
teacher and gifted public speaker, [...]. A logical step was therefore
to run the electronic version of the text through TisC and see whether
our system could be fruitfully applied to a highly-edited text to weed
out editorial oversights at little cost.

The copyleft book is Bruce Sterling’s ‘The Hacker Crackdown - Law
and disorder on the electronic frontier’, which is available on the web®.
The book describes the history of the tele- and datacommunications
industry and the attendant use and abuse that is and can be made of
cyberspace, the ‘parallel world’ the industry has spawned. The book is
not overly technical, but nevertheless and unavoidably contains a cer-
tain degree of domain-specific terminology. It actually contains a tran-
script of 6 pages of telecommunications administrative technospeak and
directory listings of bulletin board systems, full of the kind of cryptic
abbreviations one finds in directories. The book certainly presents a
challenge to a spelling checking and correction system.

We ran TISC with settings which should give good recall. We used
the NYT-BNC lexicon with cut-off frequency 5. We set the input text
frequency threshold at 5. We used the ciccL-derived list for absolute
correction, i.e. we still used our fully-unsupervised system, although we
might have added or used our Reuters RCV1 list of manually acquired
typos. We set the LD at 2 and percentiles at 80%.

The book consists of 120,717 word tokens, good for 13,855 word
types. Of these, TISC returned a manageable list of 397 items. Most of
these were false positives. This is probably unavoidable given text such
as

Then the two groups conflated into the Legion of Doom/Hackers, or
LoD/H. When the original "hacker” wing, Messrs. ” Compu-Phreak”
and ”Phucked Agent 04,” found other matters to occupy their time,
the extra ” /H” slowly atrophied out of the name;

TISC managed to validate the first hacker name on the basis of in-
put text evidence. All things considered, TISC’s offering of cCs for the
second name was not so far off the mark: shucked, chucked, ducked,
Tucked, fucked. The ranking was off: the lexicon does not have the
word, let alone the bigrams; it is a hapax in the text. A lot of the
false positives, however, are compounds which through bad tokeniza-
tion had lost their hyphen in those cases where the LPC was at the
end of the original line and the RPC at the beginning of the next. This
is something we need to look into in the future. An example of these

Thttp://www.dcs.gla.ac.uk/SF-Archives/Bruce.Sterling/ The. Hacker.Crackdown/
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is: freespirit, CCs: free-spirit, free spirit, free spirits, freer spirit, tree
spirit. The space-dash-nothing variation rule did not fire here through
the presence of the last three cCs. The fact that TISC draws attention
to these cases is actually correct.

More importantly, the list proved to contain 22 (21 + *elecution)
in-original-text true positives: typos which had escaped the author’s
and editor’s attention. We list them in Table 5.5. While the correct
type harassed does not appear in the text, we do find: harassing [1],
harassment [4] and harass [1]. We think the status of *mimickry as a
typo may be disputable, but it is not in the dictionaries we consulted.
Further in the text we find mimicking [2] and mimic [1]. The type
nineteenth appears only in compound form: nineteenth-century [7] and
unprecedentedly only as the adjectival form unprecedented [8]. Cases
marked by ‘-P’ also survived the editing process prior to publishing by
Penguin Books.

This result shows that TiSC is capable of filling the niche we see for
it as a system that allows for a quick final pre-publishing check. We
believe this also shows that our system would be a valuable addition
to any professional text writer’s toolbox.

5.2 How to further boost TISC’s performance?

5.2.1 Related research: useful corpus preprocessing
techniques

We have seen that TISC’s recall in real-world tests on English lags
slightly behind that of ASPELL and MPT. We have shown by evaluating
the correction mechanism on its own that it is capable of correcting
virtually any type of error within the bounds of the types we have
observed in the RCV1. We lose recall due to the noise in the lexicon
which, it was found, it is not always possible to circumvent with the
techniques we have applied. In what follows we will describe two tech-
niques that by their application in the corpus preprocessing phase prior
to deriving TISC lexicons and COOC-tables would most certainly help
to reduce the level of noise incorporated and would thereby allow TISC
to achieve better recall, if not even higher precision as well. We have in
Chapter 2 described the minimal preprocessing we have applied prior to
evaluation. We here describe proven techniques for largely eliminating
capitalization and accent related noise. Both are in themselves regarded
as simple problems. However, both techniques have been proven to aid
in NLP tasks. Lita et al. (2003) convincingly argue for normalizing cap-
italization to be an essential part of preprocessing. The distribution of
the Dutch TWC corpus contains a set of corpus normalization tools.
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Correction

Original text typo in context

anomalous [2]-P
anomalous [2]-P
around [59]-P
becoming [6]
besieged [0]

beyond [10]
Cincinnati [1]

considered [39]
entertainingly [1]

graffiti-tagged [0]-P
graffito [0]-P

harassed [0]
hierarchy [2]

hierarchy [2]
mimicry [0]

nineteenth [0]
top-to-bottom [0]

non-hierarchical [1]
unmistakable [2]

unmistakable [2]
unprecedentedly [0]

one of the many *anomolous outcomes of the Hacker
Crackdown .

only one Barlow , and he was a fairly *anomolous
individual .

It will be an impossible millstone *aroung the neck

of tomorrow’s organizations .

The puzzle *becaming much stranger some five minutes
later .

the tiny band of techno-rat brothers ( rarely ,

sisters ) are a *beseiged vanguard

altered his consciousness *beyone the ability to
Racketeering Bureau conduct ”Operation Sundevil”
raids in *Cincinnatti, Detroit, Los Angeles

began by saying he *consided computer-intrusion

to be morally wrong

which always looked *entertainly wacky , but
certainly harmless enough

Some passing stranger has *grafitti-tagged this door

it bore a huge , badly-erased , spray-can *grafitto
around its bottom

and they will be *harrassed or arrested.

the central switching stations , which are ranked

in levels of *heirarchy , up to the long-distance

a symbolic , deliberate slap in the face for the Apple
corporate *heirarchy .

certainly not cruel *mimickry , one-upmanship and
outrageous speculation

” pioneers ” of the *nineteeth and twenty-first centuries
the Bell employee corps were nurtured *top-to-botton
on a corporate ethos of public service .

The Internet is decentralized , *non-heirarchical ,
almost anarchic .

she tells him with *unmistakeable sixty-thousand-watt
sincerity .

gives off an *unmistakeable air of the bohemian literatus
AT&T suspected there might be shakedown problems
with the new and *unprecedently sophisticated
System 7 network .

TABLE 5.5 Twenty-one extra typos present in the original text of the Hacker’s
Crackdown and detected by Tisc. Text frequency of correct types between
square brackets. Items marked by -P are also in the copyrighted Penguin
paper edition.
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How and why to go about text normalization, at least for Dutch, is in
detail set out in Ordelman (2003). Our own system would undoubtedly
benefit from applying these tools prior to deriving lexicons from the
corpora.

Accent restoration Yarowsky (1994) categorizes the problem of ac-
cent restoration in the same class of errors as capitalization restora-
tion. Both are part of the class of closely-related problems which fur-
ther includes word-sense disambiguation, word choice selection in ma-
chine translation and homograph and homophone disambiguation. An
overview of corpus-based approaches to accent restoration is provided
in Yarowsky (1999). It was shown by Simard and Deslauriers (2001)
that accent restoration can be performed with over 99% accuracy for
French.

A language independent solution is offered by Mihalcea and Nastase
(2002). Instead of relying on dictionaries and other resources such as
Part-Of-Speech taggers, which may well not be available for languages
for which very few such resources exist, the task is learned on the
letter level by Machine Learning methods from a modest size corpus of
raw text containing diacritics. The features required for the Machine
Learner are directly derivable from the corpus in that they consist of
nothing but a window, i.e. a context, of surrounding characters. They
found a window of five characters preceding and 5 characters following
the ambiguous character works best. For four languages for which few
resources exist they collected corpora containing only between about
1.5 and 3 million words and reached over 98% accuracy.

Their method is based on the ‘forgetting examples is harmful in lan-
guage learning’ observation due to Daelemans et al. (1999) and there-
fore employs Memory Based Learning as the chosen Machine Learner.

Mihalcea and Nastase (2002) also provide an overview of the diacrit-
ics used in 38 European languages. They conclude that only English
has no accent restoration problem. Dutch, on the other hand, they list
as having by far most diacritics of all: 21. All those listed involve com-
binations of vowels with diacritical marks. This points out to us that
the alphabet we used in this study may not have been complete. The
12 diacritics we incorporated in it were the ones observed within the
Dutch corpora we employed, i.e. the ILK and TWC corpora.

Capitalization errors Whether capitalization errors pose a prob-
lem very much depends on the application. In many applications case
differences are obliterated by upper- or lowercasing everything. Badly
capitalized words can be seen as a specific type of substitution error
and are handled as such by the system we propose.
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However, we are sure our system would benefit from applying true-
casing, defined by Lita et al. (2003) as the process of restoring case
information to raw text. Besides enhancing rEaDaBILiTY, truecasing
improves the quality of case-carrying data, bringing into the picture
new corpora originally considered too noisy for various NLP tasks. It
can be used as a normalization tool across corpora in order to produce
consistent, context-sensitive, case information. The statistical model
Lita et al. (2003) propose captures local context through a word tri-
gram language model. Making use of the collection of local contexts
for a given ambiguous word, the case label is decided at the sentence
level on the basis of a Hidden Markov Model from which the highest
probability state sequence can be computed to yield the desired case
information. The system is evaluated on three NLP tasks. First, as
regards named entity recognition a 26% F-score improvement is ob-
tained. Second, in automatic content extraction from text obtained by
automatic speech recognition, which was therefore uncased prior to ap-
plying truecasing, mention detection is improved by a factor of eight.
Third, legibility of machine translation output, which is also uncased,
is improved by 80% as measured by the relevant metric.

Chelba and Acero (2004) report on how to adapt a Maximum En-
tropy Capitalizer by means of relatively small quantities of in-domain
data. As is common practice in statistical approaches to NLP tasks,
the data used to train the system are taken from a disjoint corpus or
corpus than the data used to test. It is here shown how to use small
quantities of still disjoint, but same domain data as the test data to
further improve automatic capitalization.

5.3 Evaluation of the evaluations

What constitutes a reliable evaluation set? We have above
shown that the test set used by Brill and Moore (2000) is representa-
tive of their full data set. Apart from the question whether a test set
is representative of the data, one may wonder what size a test should
be to be representative of the various types of errors one may find and
thus to constitute a reliable test set.

The aim of the evaluations on 10 sets of 2000 randomly chosen ty-
pos was to answer that question. Often in the literature systems are
compared and evaluated on far smaller test sets. By the ’order of mag-
nitude’ rule of thumb we proposed in Chapter 2, for a test set to be
representative over the range of LDs 1, 2 and 3, the set ought to con-
tain a ratio of one thousand typos with LD 1, one hundred LD 2 cases
and ten LD 3 cases. The LD-distribution of our ten sets was shown in
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Table 4.5. What we see there is that the randomly chosen sets pretty
well conform to the rule-of-thumb. We also noted a very low standard
deviation in the performance attained by TISC on those tests. We take
the low standard deviation to indicate a high degree of homogeneity in
their composition. We conclude from this that given a random selection
of 2,000 cases from a sufficiently large sample, i.e. 10,000 items as in
Brill and Moore (2000) or 12,094 RCV1 items, should give a reliable
test set.

Circumstances may preclude collecting test sets of this size. We have
above discussed the problems associated with collecting real-world non-
word errors from published newpapers. A typical daily edition yields 2
non-word errors on average. It would then require three years’ worth of
proofreading the daily edition to collect a sample of sufficient size, by
our own standards. A possible way out would be to collect a random
sample of 2,000 typos from a corpus, as we did from the Reuters RCV1,
with limited context. For a further subsample of, say, 200 randomly
chosen typos, to collect and proofread the full articles. Then, to provide
a description of the data along the lines we have done here. Finally, to
evaluate as we have done on the lists for English, and on the texts for
Dutch. This would provide the full picture, for a particular language, for
a particular spelling detection and correction system. We now see that
doing this would have made our own evaluations for both languages
more complete.

What constitutes reliable evaluation data? Bigert (2005) pro-
poses a system for the fully automatic evaluation of NLP systems.
Chapter 10 in Bigert’s recent PhD-dissertation is devoted entirely to
the unsupervised evaluation of three Swedish spelling checking systems:
Stava (Kann et al., 2001) and the Swedish versions of ISPELL and MPT.
He advocates the use of artificially created typos and provides software,
called MISSPLEL, to introduce these into clean text, as well as software
for the automatic evaluation of NLP-systems’ output, called AUTOEVAL
(Bigert et al., 2003). The main motivation behind this is to reduce the
expensive and time-consuming manual labour involved in evaluation.
Bigert (2005) (p. 88) writes:

We have chosen to use [Damerau type errors| to keep the evaluation
procedure language independent. In the light of the previous work [i.e.
Agirre et al. (1998) and Paggio and Underwood (1995)], our contribu-
tion is a detailed and thorough investigation of Swedish spelling check-
ers as well as an open-source test bed for unsupervised evaluation of
spell checkers, applicable to any language and text type.

In what follows we show that:
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+ introducing only Damerau-type errors does not allow for a complete
measurement of spelling correction systems’ strengths and weak-
nesses

+ the evaluation procedure is not language independent

+ the metrics borrowed from the previous work do not include mea-
suring the systems’ precision and therefore provide an incomplete
assessment

These three criticisms translate into an incomplete evaluation of the
Swedish spelling checkers and an open-source test bed that cannot pro-
vide what is claimed it provides.

Artificially created Damerau-type typos

We have three objections to the artificially created Damerau-type
typos. First, Bigert (2005) introduces typos in what he assumes is clean
text: 14,000 word tokens, about 1,000 sentences, from a Swedish corpus.
The corpus was the Stockholm-Umea corpus (further abbreviated as
suc). On page 89, however, he writes:

The word lists for MISSPLEL were built from the SUC corpus while none
of the spell checkers obtained dictionaries or other information from
suc. Thus, the suc defined whether or not a word was misspelled.

We see a potential problem in this quote. On page 54, Bigert writes:

The dictionary required to determine if a word is existing or not can
be built unsupervised from large amounts of text.

He adds that this was exploited for the spelling checker evaluations he
performed. Now we have seen in Chapter 2 in the present work that
a word type list derived from a large corpus may contain more than
20% of typos. Included in this number are the most recurrent typos
in the language. So, in introducing artificial errors and checking for
the resulting string’s existence in such a list, all recurrent errors which
happen to be produced by the error generator, would be validated by
this list and not be introduced. This would bias the system towards
introducing the less recurrent types of error.

Second, MISSPLEL, the program to introduce typos into text, can be
configured to introduce 4 types of errors: Damerau-type errors, split
compounds, competence related errors and syntactic errors. However,
in his evaluations Bigert introduces only Damerau-type errors. MISS-
PLEL thus introduces only LD 1 errors: single character deletions, in-
sertions or substitutions, or transpositions of two adjacent characters.
Now, STAVA and ISPELL handle precisely, and only, the LD 1 types of
errors MISSPLEL introduces. MPT, as we have demonstrated in Chapter
4, is fully capable of handling higher LDs. This strength of MPT is not
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| Results | STAVA [ ISPELL | MPT |
error coverage | 92.2% | 97.3% | 95.5%
‘precision’ 97.2% | 92.8% | 89.4%

TABLE 5.6 Evaluation results of three Swedish spelling correction systems
due to Bigert (2005). Error coverage and ‘precision’ due to Agirre et al.
(1998). Error coverage is our overall true recall on detection. ‘Precision’ is
our overall true recall on correction.

at all measured. In Table 5.6 we reproduce the evaluation results on
the three Swedish systems tested by Bigert. ISPELL appears to perform
best on recall. In light of its performance on English and Dutch as pre-
sented in Chapter 4 in the present study, we think this is an artefact
of using artificially introduced typos of the Damerau-type. What this
shows is that ISPELL’s correction strategy is robust towards the arti-
ficially introduced errors. MPT most likely employs language-specific,
probably noisy-channel based, correction strategies which would not
be robust against artificially introduced typos. However, to prove this
would require testing the systems on real-world typos. What gave As-
PELL and MPT the edge in recall in our tests, was the fact that they can
handle higher LD typos well. These were not introduced by MISSPLEL.
The system proposed by Bigert also does not measure the attendant
loss in precision given a system’s great recall capabilities on higher LD
typos, which we have demonstrated for both MPT and ASPELL. That,
however, is due to the metrics he uses, which go back to prior work
by Agirre et al. (1998) and Paggio and Underwood (1995). We further
discuss the metrics in more detail.

Third: by default, MISSPLEL assigns equiprobability to the four Dam-
erau types. In Chapter 2 we have demonstrated that, first, the natural
LD-distribution of typos follows a Zipfian distribution and is in no way
restricted to LD 1. Second, that the types of errors are not evenly dis-
tributed: that for typos we find about three times as many deletions
and two and a half times as many insertions than both transpositions
and substitutions. Bigert concedes in his concluding remarks that it is
difficult to determine which types of errors to introduce and to what
amounts, which leads to a rather strange circularity in his thinking in
that he states this could be learned from error annotated corpora: it
was the unavailability of error annotated corpora which prompted the
introduction of artificial errors in artificial quantities in the first place.

Language dependency of typographical errors The assump-
tion that performance errors, i.e. typographical rather than cognitive
errors, are language independent is not valid. As discussed in Chapter
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2, Pollock and Zamora (1983) have shown that typos are character fre-
quency related more than anything else. Character frequencies differ
per language, Dutch e.g. uses the k far more often than English. This
fact is, for instance, being exploited to determine what character en-
coding a web browser should display a specific web page in given the
language is not specifically identified in the page’s code (Li and Momoi,
2001). The LD-distribution of typos is probably language-independent.
The actual transformations occurring will not be. In order to accurately
model these, an in-depth study of the types of error actually occurring
in a particular language along the lines of Pollock and Zamora (1983)
will be required.

Confused evaluation metrics

As we discussed and showed graphically at the beginning of Chapter
4, the aim of a spelling detection and correction system is to maximize
the overlap between the items retrieved and the set of target items,
the typos within the text. Full overlap would give 100% recall and
100% precision in the sense of the terms as they were were defined by
van Rijsbergen (1975) and used throughout this work. In what follows
the terms will recur in reference to subsequent work in which they
were used with very divergent definitions, giving rise to possible cause
for confusion. In our evaluations we have tried to capture a system’s
overall performance, i.e. the performance on both the detection and the
correction of typos, in one single measure: the F-score. Besides that,
we have then reported the best-first ranking score, again expressed in a
single F-score. Besides being practical, we believe we have shown that
the metrics of precision and recall have the ability to shed valuable light
on detection and correction strategies used in the implementations of
which little or nothing is publicly known otherwise.

The spelling error detection and correction evaluation metrics in
Bigert (2005) are in fact a mixture of metrics defined by Agirre et al.
(1998) and Paggio and Underwood (1995). The metrics Error Cov-
erage and ‘precision’ are due to Agirre et al. (1998). Error Coverage
is defined as ‘the amount of errors [the system] detects of all errors in
the misspelled text’. ‘Precision’ as due to Agirre et al. (1998) is then
‘the number of detected errors where the original word is among the
suggestions (including errors with no suggestions)’. In fact, Agirre’s ‘er-
ror coverage’ is Van Rijsbergen’s recall applied to the detection phase.
Agirre’s ‘precision’ is overall recall in the correction phase. Agirre et al.
(1998) worked with error lists and therefore did not measure preci-
sion. The metric lexical coverage is due to Paggio and Underwood
(1995) and is also referred to as ‘recall’: ‘the degree to which the checker
accepts all the valid words of a language (does not produce ‘false flag-
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gings’)’.

It is unfortunate and confusing that the two key evaluation terms,
precision and recall, as defined by van Rijsbergen (1975) have thus
been introduced into the field of evaluating spelling error detection and
correction with quite different meanings.

As is explained in TEMAA (1996) measuring lexical coverage involves
creating ‘base’ lists for the particular language, on the basis of cor-
pora. A base list would contain the top frequency word types of the
language. The list is then used to gauge the system’s lexical coverage:
it is run through the correction system and measured how many of the
words are not accepted. We think that given base lists derived from
different corpora the actual lexical coverage results obtained are bound
to diverge to a great extent and will therefore not result in consistent
measurements.

The TEMAA (1996) work complements 1SO 9126 (Software Product
Evaluation - Quality Characteristics and Guidelines for their Use) and
has thereby become an international standard to be followed. This is
perhaps why Bigert adopts lexical coverage and error coverage as eval-
uation metrics. Lexical coverage is measured on the clean text. Error
coverage is then measured on the text with typos introduced. There is
no relationship between the two measurements: they cannot be com-
bined into one single score as e.g. Van Rijsbergen’s recall and precision
can be in the F-score. This means that the scores obtained by lexical
and error coverage are less informative: we have seen that higher recall
affects precision, remember the rather extreme case of ASPELL. By us-
ing the measures lexical coverage and error coverage, this connection
does not show up. By employing the metrics recall and precision and
by employing typos within their natural context instead of using sep-
arately and rather arbitrarily compiled lists of typos and valid words,
we believe the task of evaluation is beter served by being accomplished
in one go.

Bigert (2005) (pag. 63) investigating the impact fully automatic cor-
rection might have on a parser’s performance writes:

Using the first suggestion from STAVA we would correctly change about
85% of the misspelled words into the correct word. However, the re-
maining 15% of the misspelled words would be changed into another,
unrelated word.

He next presents results obtained by one of the parsers he evaluates
after he effected fully automatic correction and notices a consistent drop
in performance, greater the more errors the evaluation file contained,
rather than an improvement. This leads him to conclude:
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Evidently the 15% words that are changed into an unrelated word
make the processing difficult since the tagger’s inherent robustness to
misspelled words cannot be used.

We offer another conclusion, which Bigert could not reach since his
evaluation does not produce the required statistics. Bigert does not
measure precision as defined by van Rijsbergen (1975):

TP
TP+ FP
Bigert does not measure the number of false positives. He therefore fails
to see to what extent correct words in the text are erroneously replaced
by the automatic spelling correction procedure. We have shown the
low precision obtained by isolated-word correction systems on Dutch
full text. There is no reason to believe STAVA for Swedish would do
any better than ISPELL, ASPELL, or MPT in that respect. Swedish, like
Dutch, is a compounding language. Precision for Dutch, we have seen,
was well below 10%. Bigert concluded that the ratio of false positives
to false negatives lay at the root of the reduced performance of the
parser after letting the system correct the text automatically. While
there is that, the amount of false positives will be much higher than
the amount of false negatives. Their combined effects are what causes
the parser’s weaker performance.

We fail to see why Bigert did not continue in line with the metrics he
used in the evaluation of the algorithm he proposes for detecting real-
word errors. He there, as in the parser evaluation, uses van Rijsbergen
precision and recall, as we have done. The TEMAA (1996) recommen-
dations were also not adopted by Starlander and Popescu-Belis (2002),
who nevertheless refer to the work and state explicitly to want to follow
the 1S0 standards. Their notions of precision and recall are precisely
ours, fit for deriving the F-score. Starlander and Popescu-Belis (2002),
however, diverge from us in that they do not measure precision at the
correction level:

Precision = P =

The capacity of the program to suggest the right correction for the de-
tected mistake must finally be measured. It seems fair to take here into
account only the suggestions concerning mistakes that were correctly
detected. Otherwise, for wrongly hypothesized mistakes, the suggestion
would be necessarily wrong (because the text is correct) and this would
penalize the checker twice (once for the previous score [on detection]
and once here).

It will readily be seen that we did penalize the system for ‘wrongly hy-
pothesized mistakes’: to us they are precision errors and we have shown
that these constitute an important part of a system’s performance. In
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that we have not measured the performance on detection alone, we
have not unfairly penalized the systems twice. We have shown that it
is because the error model employed by the system is too powerful that
a lot of these false detections arise. It is therefore futile to want to
measure a system’s detection capabilities or lexical coverage not taking
into account the correction mechanism. In fact we think that in these
approaches to evaluation the stress is laid too strongly on the detec-
tion side of things. This may have historical reasons, indeed what we
in Chapter 1 have called first generation systems such as SPELL per-
formed only detection. So the way of looking at the performance of
second generation systems was still strongly influenced by what first
generation systems were capable of. TISC is a context-sensitive third
generation system. We have indeed compared it to second generation
isolated-word systems. By doing this on third generation evaluation
terms, by acknowledging the typos’ context is important and helps to
define the system’s level of performance, we have been able to highlight
weaknesses in the second generation systems that before were probably
not deemed relevant or were taken to be unavoidable. We stand firmly
by our approach to evaluation.

5.4 What level of performance is necessary for fully
automatic spelling error correction?

In order for a system to be useful for fully automatic use, the system
would naturally have to be able to detect and correct more of the pos-
sibly very few typos present than it would erroneously replace any of
the far more prevalent correct words in the text, as well as the typos it
replaces by the wrong correct word. At what level of performance would
fully automatic spelling error detection and correction be achieved? We
have so far presented evaluation results in terms of recall and precision
as combined in the F-score. At first sight, neither of these measures
tells us about the possible usefulness of a system for fully automatic,
humanly unsupervised spelling error detection and correction. Recall
does not measure a system’s performance in spelling error detection. A
good F-score, we have seen, can be obtained by having a great recall,
to the detriment of precision, or by focusing on great precision, to the
detriment of recall. Both can naturally also be in balance. But what
should one focus on, if one wishes to achieve a level of performance
that would be acceptable for fully-automatic use? The F-score alone
simply does not tell us that. Yet the information collected to obtain
the F-score does tell us more. It is worth pondering what precision re-
ally says about a system’s performance. If precision is 0.5, half of the
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items returned actually correct a typo. This is irrespective of how many
of the total amount of typos present are actually corrected. The other
half of the items returned replace correct words by other correct words
and the resulting text cannot actually be said to have been improved.
If precision is higher than 0.5, the system is fit for automatic correction
purposes: more typos will have been removed than correct words erro-
neously replaced. If lower, the system erroneously replaces more correct
words than it corrects true errors: the text in actual fact deteriorates.

Seeing the levels of precision obtained by ISPELL or MPT, neither are
fit for automatic correction®. Neither is TISC fit when it is focused on
obtaining the best possible recall. It is fittest when on the other hand
it is focused on obtaining the best possible precision. If we look at the
precision that goes with the best F-score we obtained for TiSC, we see
that for Dutch when the errors are effectively presented within the full
articles they appeared in, we actually only reach break-even point. If
we were to let the system work automatically, it would replace one
correct word by another for every typo it would correct. While spelling
checking a single full story is a realistic task, viewed from the point
of detecting errors within the full text of the whole daily edition of a
newspaper or a corpus of a newspaper’s output over a couple of years,
performance would undoubtedly drop well below this break-even point.
So, on that level, we have not achieved automatic correction.

5.5 Evaluating another metric: F-score versus AUC

In the above we have seen that precision is strongly determinative of
a system’s fitness for automatic correction. We have known at least
since Pollock and Zamora (1984) (p. 104) that ‘Automatic correction
requires a much more precise detection phase than manual correction
and, surprisingly, it seems easier to achieve high accuracy in correc-
tion than in detection.” Throughout the development of TISC we have
used the F-score to gauge progress. The F-score has guided us in de-
ciding on the value of the various components and of changes to the
implementation. We here explore whether had we instead used another
metric, the area under the ROC curve or AUC, we would likely have
taken different decisions. Bradley (1997) was the first to advocate the
AuC. He shows that the AUC is a more sensitive measure than overall
accuracy. Ling et al. (2003) formally prove that the AuUC is a statisti-
cally consistent and more discriminating measure than accuracy. Flach

2In Reynaert (2004) we proposed the ratio of errors corrected versus correct
words erroneously replaced to be a measure for a system’s fitness for automatic cor-
rection or FAC. The information given by the metric is actually given in normalized
format by precision.
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(2003) provides a derivation of ROC space from first principles through
three-dimensional ROC space and the skew ratio, i.e. the ratio of nega-
tive examples over positive examples. The skew ratio is used to obtain a
two-dimensional ROC space from the three-dimensional ROC space. In
two-dimensional space different isometric plots are derived depending
on the skew. This allows for analysing the metrics accuracy, precision
and F-score (and others, irrelevant to our purposes here) in terms of
their sensitivity to skew.

The AUC is a single scalar value between 0.0 and 1.0 representing a
system’s performance. The AUC is a reduction of a Receiver Operating
Characteristic or ROC curve depicting performance. A ROC curve is
obtained by plotting the systems’ False Positive Rates on the X-axis and
the True Positive Rates on the Y-axis (Fawcett, 2003). ROC curves are
insensitive to changes in class distribution. In that the AUC is derived
from these, it too should be insensitive. To calculate the AUC we need
to know the True and False Positive Rates of a classifier.

+ True Positive Rate = TPR = T—;

« False Positive Rate = FPR = FTP

Remember we have shown in Chapter 4 that TPR = recall R.
The formula for the AUC of a single discrete classifier is (as derived
from Fawcett (2003)3):

+ Area under the curve = AuC = ((0.5  (tpr * fpr)) + (tpr = (1.0 —
for)) + (0.5 % ((1.0 — tpr) * (1.0 — fpr))))

How this works is illustrated on the basis of Figure 5.1. The single
point P denotes the intersection of a discrete classifier’s performance
in terms of True Positive Rate and False Positive Rate. From there the
line is drawn to the point (0,0) and to the point (1,1). The Auc is the
area under these lines. This is measured by the formula as the sum of
the areas of triangle A (the first term of the formula), rectangle B (the
second term), and triangle C (the third term).

In Subsection 4.3 we have shown that the performance of MPT as
expressed by the F-score degrades significantly given the typos are pre-
sented with more and more context. More and more context offers more
and more scope for a system to report False Negatives. In Table 5.7 we
report the AUC for the experiments performed in Subsection 4.3. We see
that the AUC remains virtually constant, while the F-score decreases by

3We are indebted to Dr. Antal van den Bosch for this derivation
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FIGURE 5.1 ROC curve for a single discrete classifier.
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| System | Context | Tokens | Rec. | Prec. | F-score | AUC |

true scores: overall

MPT 1 sentence | 2,840 0.659 | 0.444 | 0.530 0.811
MPT 3 sentences | 6,843 0.659 | 0.249 | 0.362 0.811
MPT full article | 25,749 | 0.659 | 0.081 | 0.143 0.812

TABLE 5.7 MPT: effect of context size on overall recall, precision, F-score and
AUC.

almost 40% going from typos presented within a one sentence context
to the full article they appeared in. Fawcett (2003) (p. 8) writes: ‘class
prevalence may change drastically without altering the fundamental
characteristics of the class, i.e. the target concept’. This he illustrates
with plots showing essentially the same difference between AUC and
precision-recall curves under varying class skew as we demonstrate in
Table 5.7.

Table 5.8 now allows us to again compare the systems we tested in
Chapter 4, though this time in terms of the AuC. We now see that the
systems’ ranking is different: the AUC defines the TISC version optimized
for recall as the best corrector, then comes MPT and only then the
TISC version which had the highest F-SCORE. While we see only a 3%
difference in terms of the F-score between the TISC version optimized
in F-score terms and the version with the highest precision, we observe
a 10% drop in terms of the AUC between the AuC-preferred system and
the highest precision TISC. This reranking of systems was also noted
by Fawcett (2003) (p. 9): ‘In some cases the decision of which classifier
has superior performance can change with a shifted distribution’. The
difference in system ranking between F-score and AUC is due to the
fact that the AUC is insensitive to class skew changes and the F-score
is sensitive to class skew changes. To again quote Fawcett (2003) (p.
7-8):

Consider the confusion matrix [...]. Note that the class distribution
(the proportion of positive to negative instances) is the relationship of
the left (+) column to the right (-) column. Any performance metric
that uses values from both columns will be inherently sensitive to class
skews. Metrics such as accuracy, precision [...] and F scores use values
from both columns of the confusion matrix. As a class distribution
changes these measures will change as well, even if the fundamental
classifier performance does not. ROC graphs are based upon TP rate
and FP rate, in which each dimension is a strict columnar ratio, so do
not depend on class distributions.

Consider the following: a human proofreader is given three texts to
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proofread: the single sentence Metro evaluation set, the three sentences
set and the full article evaluation set. All three contain the same set
of 126 typos. Yet the error to token ratio of the first is 4,33%, that
of the second 1,80%, while it is 0,47% for the latter. The proofreader
has to work his way through 2,840 word tokens, 6,843 word tokens and
25,750 word tokens respectively. The task clearly differs. Likewise for
the MPT: its AUC score may very well be the same on all three texts,
but the amount of work it presents to the user differs widely: in the first
instance, it calls attention to only 187 items, to 333 in the second and
1031 in the third case. The proportion of true to false alarms differs
considerably. An evaluation metric should, we think, report the fact.
The situation concerning the AUC is quite simply this: with ever increas-
ing total number of tokens, given the definition of FPR above, the FPR
reduces to virtually zero and the TPR or recall becomes ever more pre-
dominant. Hence AUC’s preference for correction systems that do well
on recall. A spelling detection and correction system is sort of hybrid.
Fundamental correction performance may not vary given more context
(though in TISC’s case we have shown that recall may improve given
more context). Fundamental detection performance certainly changes.
If one is only interested in correction performance one can rest content
with measuring recall as we have done in Evaluation 1. In that case, one
focuses on nothing but typos, makes sure no confusion in performance
arises through the effect of the lexicon and decides which is the best
corrector. However, as we have shown extensively, correction is only
one part of the task. Detection is another and more context effectively
changes the classifier’s performance. In that this needs measuring, the
AUC is not the best metric to decide on which corrector performs best.

Of course, this conclusion has heavy consequences for the work that
is required to properly evaluate a spelling detection and correction sys-
tem. If we had a metric that could tell us which corrector works best
regardless of the error to token ratio, we would be in the more com-
fortable position of being able to use, say, typos within their single
sentence context. While still presenting a sizeable amount of work to
gather 2,000 typos within a single sentence context, we are here forced
to conclude that this does not suffice. What seems to be required is
typos in their natural distribution. This is an unfortunate situation,
but we see no way around it.

Consider these two hypothetical correction systems: for a 10,000
token text containing 1% of typos, i.e. 100 typos, system A returns
the full 10,000 item list with 100 best-first ranked corrections. System
B returns only 100 items with 50 best-first ranked ccs. The scores are
listed in Table 5.9. It can be seen that in terms of the AUC both systems
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| System | Dictionary | Recall | Precision | F-score | AUC |

true scores: rank 1

ISPELL (-¢) | dutch 0.548 | 0.047 0.087 0.748
ISPELL (+c) | dutch 0.460 | 0.065 0.114 0.714
MPT dutch (NL) | 0.611 | 0.075 0.133 0.788
TISC-R ILK-TWC/2 | 0.675 | 0.139 0.231 0.827
TISC-P ILK-TWC/2 | 0.460 | 0.563 0.507 0.729
TISC-F ILK-TWC/2 | 0.571 | 0.511 0.539 | 0.784

TABLE 5.8 Best-first ranking results for Dutch Metro2: system evaluated,
dictionary used (for TISC: /2 indicates lexicon cut-off at frequency 2), recall,
precision, F-score and AUC. In bold: highest score per metric.

| System | Returned | Corrected | Rec. | Prec. | F-score | AUC |

true scores: rank 1
A 10,000 100 1
B 100 50 0.50

0.010
0.50

0.020
0.50

0.750
0.747

TABLE 5.9 Results for two hypothetical correctors on the basis of a fictitious
10,000 word token text containing 100 typos. Shown are items returned, items
corrected, recall, precision, F-score and AUC.

are near equivalent, with a score which is halfway between random and
perfect behaviour. The F-score for system B tells us that the job was
half done. For system A the F-score clearly indicates that this is not
so, with precision stating the obvious fact that the full list returned is
a hundred times longer than the one returned by system B.

System B thus requires only one hundreth times the work to get half
the job done right than system A requires to get the full job done. In
the absence of fully automatic systems with great precision as well as
great recall, we think system B, requiring us to examine a 100 item list
to reduce error with 50% is the better option than system A requiring
us to examine the full list to get the job done to perfection. Humans
being error-prone, the latter is unlikely to come to pass, anyway. The
former, TISC currently achieves. This is an order of magnitude better
than what is achieved by the isolated-error correction systems, which in
themselves reduce the total amount of work by an order of magnitude.
We believe this information is better captured by the combination of
recall and precision scores than by the Auc.



156 TEXT-INDUCED SPELLING CORRECTION

5.6 Evaluation versus real life

There is quite a large element of artificiality in evaluating a spelling
error detection and correction system. We have undertaken the task
of identifying thousands of typos in a list, thereby obtaining in effect
two lists: one of these contains our positive class, i.e. the object of our
studies: typos and the other our negative class: validated words. Yet,
all we used both lists for was evaluation purposes: to show that the
system we built performs adequately and demonstrably better than its
predecessors.

In real life, we would use these lists to enhance our corpus-derived
system: we would give TISC the list of typos to perform absolute correc-
tion where possible. We would also give TISC the list of validated words,
to perform absolute detection of valid words and avoid perhaps the ma-
jority of wrong decisions it is bound to make due to data-sparseness.
If we were to attempt fully automatic spelling detection and correction
in real life, we would simply marshall all the resources at our disposal.
We would use absolute correction, we would certainly employ CICCL, we
would normalize the corpora used more thoroughly during preprocess-
ing. We would not only use a disjoint out-of-domain corpus but at least
incorporate what ‘came before’: we would most certainly train our sys-
tem on the specific newspaper’s output till now, to correct tomorrow’s
edition.

5.7 Summary

In this chapter we have first discussed the state-of-the-art as proposed
in the literature and on the basis of our evaluation of the data used
in those studies, have had to conclude that the approach by Brill and
Moore (2000) differs from ours to such an extent that comparison is
futile. While their system is geared to correcting the output of possibly
very poor spellers, ours aims at reducing the residual noise after text
has been edited and published. We have explored this niche for TISC by
running a copyleft book, representing highly-edited text, through it. We
found the system in actual fact identified 22 typos which had escaped
the attention of author and editors, qualifying it for its role as a quick
residual noise eliminator. We have then discussed what would consti-
tute a representative and reliable test set for evaluating spelling error
detection and correction systems. We have criticized a recent proposal
for fully automatic evaluation of spelling checkers both on the basis of
its underlying assumptions, of the kinds and distribution of the errors
automatically introduced as well as the metrics adopted for evaluation.
We have shown that confusion was created in the field of evaluation
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by unfortunate use of terminology. We also examined at what level of
performance a spelling error detection and correction system would be
usable for fully automatic use. We have explained that van Rijsbergen
precision shows exactly when a system is fit for fully automatic correc-
tion, i.e. when precision is higher than 0.5 more errors are corrected
than correct words erroneously replaced. We have had to conclude that
for Dutch, the work presented here presently only reaches break-even
point.






6

Multilingual TISC

In this chapter we wish to explore whether TISC can be used unmodified
to adequately perform spelling error detection and correction on mixed
language text. We equip the system both with a bilingual, English-
Dutch, and a trilingual, English-Dutch-French, lexicon. We then present
it with a mixed language English-Dutch evaluation file and gauge its
performance, all else being equal to the monolingual evaluations.

This work was inspired by the EAGLES-I (1996) final report on
‘Evaluation of Natural Language Processing Systems’, which lists as a
‘dream tool’':

A multilingual spelling checker which automatically recognizes what
language is being dealt with and switches to the appropriate spelling
checker for that language.

We here explore the possibility of not performing explicit language de-
tection. This was prompted by the observation that language detection
in an isolated-word system may easily get confused. Take the Dutch
newspaper Metro headline ‘Crime passionel in Gronings zwembad’
[Crime of passion in Groningen swimming-pool (21-10-2003)], which is
a typical example of mixed language text, containing the typo *pas-
sionel, which in French should be spelled passionnel. The Microsoft
Proofing Tools (MPT), for instance, can be set to automatically detect
the language. Given the journalist is Dutch, the MPT would typically
have Dutch as its default language and so does not switch languages
given the headline’s first word crime is a loan-word and present in
the Dutch dictionary. It then encounters *passionel and proposes the
correct, Dutch, forms: passionele and its lemma passioneel. Where-
upon the journalist, not being too versant in French, is likely to let his
original pseudo-French *passionel stand. The Dutch part of the web
provides many more instances of this same error, as does the English,

Thttp://www.issco.unige.ch/projects/ewg96 /node259.html
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| Anagram key | anagrams

75123219269 | gerti, giert, griet, regit, riget, tiger, tigre
95176774701 | ce tigre

95236791144 | gerits, gierst, gister, greist, griest, griste, tigers,
tigres

95666874202 | de griet, de tigre, dreig te, giert de, tigre de
103824131401 | agresti, gaiters, sigaret, staiger, tigresa, tirages
107081254058 | dreigt u, du tigre, it urged, u dertig, u dreigt,
urged it

115780446077 | de gierst, de tigres, gerst die, get rides, griste de,
its greed, tigres de

126783862653 | gister te, greet its, it greets, tigres et, tire gets
127194825933 | de rustig, drug ties, it surged, rustig de, surgit de,
tigres du, urged its

129962785833 | a stringed, and tigers, art design, dangers it, de
ratings, drang iets, gradins et, grand site, granted
is, gratin des, is granted, its danger, its garden,
rating des, ratings de, red giants, sign trade, tigers
and, tigre dans

TABLE 6.1 Extract from a trilingual (English, Dutch, French) Tisc lexicon
with the anagram keys and associated, chained anagrams.

for that matter. Our system being context-sensitive, we therefore ex-
plore whether its word bigrams alone aid the detection and correction
of this kind of error, even when no further explicit language detection
is done and no switching to another language dictionary occurs, its
dictionary containing a mix of its various languages.

6.1 A multilingual lexicon makes a multilingual TISC

To make a multilingual version we concatenate the different languages’
bigram lists. All other preprocessing is done as described for the mono-
lingual version in Chapter 3, Subsection 3.3.1. We present an extract
of the trilingual lexicon in Table 6.1.

6.2 Evaluation
6.2.1 Evaluation method rationale

To put TISC’s performance on this task into perspective, we offset its
results against the scores obtained by ISPELL when it is equipped with
the same corpus-derived multilingual dictionaries. For both systems we
used the lexicon obtained with bigram list cut-off at frequency 8.
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6.2.2 TISC test settings

For testing the bi- and trilingual TISC versions, we limit ourselves to
tests with the bigram list cut-off set at frequency 8. The aim of the test
is primarily to show that bi- and trilingual spelling error detection and
correction using the approach taken here is feasible, not to search for
the best possible parameter settings or lexicon cut-off.

All test were run with the LD-limit at edit distance 3. We ran the
tests with the following percentiles and mean settings: percentiles: 25,
50, 75; mean: mean value times: 0.25, 0.50, 1, 2, 3, 5.

6.2.3 Composition of the evaluation files

Dutch: For Dutch we used the Metro2 benchmark set as described in
Subsection 4.3.1.

English: For English we used the Reuters RCv1l benchmark set as
described in Subsection 4.2.1.

Dutch-English: For the bilingual tests, we concatenated the Metro2
and Reuters RCV1 benchmark sets and sorted the lines alphabetically,
thereby obtaining a mixed language file.

6.2.4 Scoring and evaluation results

We measure performance on the full task of detecting and correcting
errors in context for monolingual test sets, given both a bi- and trilin-
gual lexicon, for both English and Dutch. The same is repeated for
mixed language text, where the Metro Dutch benchmark set and the
Reuters English benchmark set have been mixed. The results presented
in Table 6.2 were obtained on the word tokens, for all systems. We now
report not only scores in term of recall and precision, as combined in
the F-score, but also the area-under-the-curve (AUC).

As can be seen from the table the AUC consistently favours the high-
est recall. For only one of the subtests do we find an AUC which is higher
than the AUC associated to the highest recall obtained. The highest pre-
cision on the Dutch monolingual test remains below 0.5: remember we
have not searched for the settings resulting in the best performance.
Compare rather to the results obtained with the same settings on the
fully monolingual task. While we may see a significant drop in F-score
due to loss in precision, the AUC may nevertheless remain relatively
unaffected.

It can also be seen that adding French to an already bilingual lexicon
does not drastically change the percentile/mean values obtained. For
both the monolingual and bilingual tests the almost consistently same
mean/percentile settings produce the best results we have seen here in
terms of recall, precision or F-score.
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| Settings IE B | F | auc |
Dutch: Metro benchmark set
ISPELL: BI 0.538 | 0.189 | 0.279 | 0.502

TISC-AUC: BI/Ax2 | 0.675 | 0.339 | 0.451 | 0.834
TISC-R: BI/Ax0.5 0.675 | 0.165 | 0.265 | 0.829

TISC-P: BI/25% 0.524 | 0.485 | 0.504 | 0.761
TISC-F: BI/50% 0.579 | 0.480 | 0.525 | 0.788
ISPELL: TRI 0.532 | 0.189 | 0.279 | 0.502

TISC-AUC: TRI/Ax2 | 0.659 | 0.309 | 0.420 | 0.826
TISC-R: TRI/Ax0.5 | 0.667 | 0.158 | 0.256 | 0.825
TISC-P: TR1/50% 0.579 | 0.406 | 0.477 | 0.788
TISC-F: TRI/50% 0.579 | 0.406 | 0.477 | 0.788
English: Reuters benchmark set

ISPELL: BI 0.597 | 0.530 | 0.562 | 0.439
TISC-R: BI/Ax0.5 0.853 | 0.649 | 0.737 | 0.919
TISC-P: BI/25% 0.769 | 0.875 | 0.818 | 0.883
TISC-F: BI/50% 0.789 | 0.865 | 0.825 | 0.893
ISPELL: TRI 0.586 | 0.522 | 0.552 | 0.426

TISC-R: TRI/Ax0.5 | 0.852 | 0.654 | 0.740 | 0.919
TISC-P: TR1/25% 0.763 | 0.875 | 0.815 | 0.880
TISC-F: TRI/50% 0.784 | 0.868 | 0.824 | 0.890

Dutch-English: Mixed Metro-Reuters benchmarks

ISPELL: BI 0.595 | 0.497 | 0.541 | 0.457
TISC-R: BI/Ax0.5 0.843 | 0.583 | 0.689 | 0.914
TISC-P: BI/25% 0.756 | 0.845 | 0.798 | 0.876
TISC-F: BI/50% 0.778 | 0.835 | 0.805 | 0.887
ISPELL: TRI 0.583 | 0.489 | 0.532 | 0.446

TISC-R: TRI/Ax0.5 | 0.842 | 0.589 | 0.693 | 0.914
TISC-P: TRI/25% 0.752 | 0.846 | 0.796 | 0.874
TISC-F: TRI/50% 0.775 | 0.836 | 0.804 | 0.885

D-E Upper bounds: averaged monolingual results

ISPELL 0.795 | 0.029 | 0.056 | 0.696
TISC-R 0.848 | 0.600 | 0.703 | 0.917
TISC-P 0.765 | 0.856 | 0.808 | 0.881
TISC-F 0.790 | 0.842 | 0.815 | 0.893

TABLE 6.2 Statistics of best test scores on best-first ranking. Shown are the
test settings in terms of bilingual or trilingual lexicon used, and the percentile
or mean value employed. Given are the scores on recall R, precision P, F-score
F and area-under-the-curve AUC.
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6.2.5 Discussion

Bilingual task: Table 6.2 presents the best results on the bilingual
English-Dutch correction task obtained by TiSC and ISPELL with dic-
tionaries based on the same bilingual (D-E) (BI) and trilingual (D-E-F)
(TRI) bigram lists. These results are contrasted to upper bounds repre-
sented by the average of the monolingual results on the two evaluation
sets obtained by ISPELL. The result shown is the average of ISPELL’s
results for Dutch obtained without using the -C switch and the English
result obtained with the largest native ISPELL dictionary.

A rather striking result is that ISPELL’s performance is drastically
improved by providing it with a much larger dictionary. The presence
of names alone in the dictionary provided by us must account for the
better part of the gain in precision. What we see is an order of magni-
tude improvement in F-score, even though we lost 20% recall due to the
noise in the lexicon and ISPELL’s lack of features to handle such noise.
TISC’s in-built features for handling such noise, i.e. reliance on the Zipf
filter thresholds instead of simple dictionary verification, allows it to
largely maintain the levels of performance reached on the monolingual
tasks as represented by the upper bounds, even with a bi- or trilingual
lexicon.

What we primarily learn from this exercise is that TISC is robust in
light of mixed languages. We have shown that mixing two or three lan-
guages hardly affects correction performance. This is a valuable finding.

Simply mixing three languages seems to have no adverse effect on
TISC’s capability of performing correction to these levels of perfor-
mance. Nevertheless, the fact remains that this strategy entails that
one particular type of errors will go undetected, namely those errors
in a specific language that result in a valid word in one of the other
languages in this type of multilingual system. These would have to be
called bilingual or translingual confusables. Our evaluation files happen
to contain a few of them, e.g. polite which should have read politie [po-
lice] in the Dutch evaluation set. The fact that these are a lot rarer
than errors which do not form a valid word in any of the languages,
obscures their effect. Note that these would throw a non-context-aware
system which does attempt to do language detection off balance. We
think context-awareness here too should help remedy this shortcoming
of our non-language-detecting approach. Provided the error detection
module is made to take into account the word bigram information in
much the same way as the error correction module currently does, it
should also be possible to detect these anomalies. This may be a nice
pointer to the way we should direct our future work, in that this at least
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hints at ways the harder task of detecting and remedying monolingual
confusables may be tackled.

Another corollary of these results settles a question which has en-
gaged researchers, off and on, since Peterson (1986). The discussion
is about the size of the dictionary and its effects on the performance
of spelling checkers. We have here mixed three languages, all three of
which have huge numbers of cognate words, through historical circum-
stances. This offers even more opportunity than in the monolingual sit-
uation for a misspelling to result into an existing word, be it a word from
another language. We hardly observe an effect on the performance of
T1SC. We conclude that given our approach the issue is settled in favour
of Damerau and Mays (1989), who challenged Peterson’s conclusions
that spelling correction dictionaries should be kept small. Given the
improvement in precision we have shown is possible by having a larger
dictionary, even for ISPELL, we think dictionaries should be made far
more comprehensive. Context-sensitivity takes care of the rest.

6.3 Summary

In this chapter we have established that multilingual spelling correction
without prior language detection is feasible. We have shown that all it
takes for TISC to be turned into a well performing multilingual spelling
error detection and correction system, is to equip it with a multilingual
lexicon. Performance levels remain stable, whether the lexicon is bi- or
trilingual, showing that context-sensitivity alone is sufficient to keep
the languages separate. We have also established that an isolated-word
corrector such as ISPELL can benefit enormously by being equipped
with a much larger dictionary than it is normally equipped with. The
gain is in precision, which we have shown throughout Chapters 4 to
6 to be a highly important aspect of any spelling error detection and
correction system’s performance.
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Conclusion

To conclude this dissertation we give an overview of what each chapter
has allowed us to summarize.

7.1 Summation

In Chapter 1 we have provided an introduction into the field of spelling
error detection and correction. We have provided the necessary termi-
nology, after which we have discussed what distinguishes an erroneous
word variant from a conventionally accepted form. We have shown that
the work by George Kingsley Zipf provides insight into what constitutes
a language’s vocabulary and into the distribution of words within the
vocabulary. We have from these insights derived implications for the
design of a spelling error detection and correction system. Next we
have given an overview of approximate string matching techniques and
how they relate to spelling error detection and correction. We have
briefly positioned our own core correction mechanism based on a non-
phonetic similarity key within this field. We have then surveyed some
of the history of spelling error detection and correction research and
concluded that whereas research into real-word error detection on the
basis of context has drawn a lot of attention, research into non-word
spelling correction has largely stuck on the isolated-word level. We have
then discussed the noisy channel modelling approach to spelling error
correction and pointed out that this is necessarily a language-specific
technique. We have discussed the relationship between ranking the cor-
rection candidates and taking account of the typo’s context. We have
then introduced the name for the system we propose: Text-Induced
Spelling Correction. We have finally outlined the main contributions of
the present work and provided an overview of its chapters.

In Chapter 2 we first introduced the corpora we used throughout this
work. We then described how we collected and studied a large sample

165



166 TEXT-INDUCED SPELLING CORRECTION

of typos in English which should be representative of what one may
encounter in a contemporary corpus. We have concluded that our find-
ings do not bear out Kukich’s qualification that given the availability
of spelling checkers fewer non-word errors occur today than there used
to before the advent of spelling checkers. Put quite simply: the non-
word error problem has not gone away and does not even show signs of
being on the retreat. The extent to which a contemporary corpus has
been shown to contain non-word errors is to all intents and purposes
the same as reported by Kukich (1992). Our findings are also in line
with Pollock and Zamora (1983) (p. 53), who report an overall inci-
dence of 0.20% of misspellings in the databases they studied and state
that this is ‘probably what one should expect in raw keyboarding by
experienced operators’. We found an incidence of 1 in 400 tokens in the
Reuters RCV1 corpus, or 0.25%. We have take this figure to constitute
the natural distribution of typos in keyboarded text throughout the
rest of this work.

We have not tried to quantify the size of the real-word problem: real
words cannot be detected by studying a frequency list. Neither have we
tried to quantify the proportion of cognitive errors versus typographi-
cal errors. It is simply too hard to see what caused the error from the
output. What we did quantify is that only very few typos have a Lev-
enshtein distance or LD larger than three. We observed only one single
case where the LD was 5 in 12,072 typos. This was *seeked for sought,
which is a grammatical error, though nevertheless a non-word.

We showed that discarding the hapax legomena and dis legomena
from a corpus only allows for removing about 66% of the variation, at
a cost of losing about 33% of the real-word types. We detailed what
the impact of this is on the frequency mass measured for one particular
word, government. Arguably, for this particular word which most likely
has a very even distribution over the corpus, the loss in frequency mass
due to variations is negligible and will not unduly affect probability
estimates. We counter-argued that the situation is likely to be more
dramatic for words more bursty in nature. Given an automatic spelling
correction system that achieves not only good recall, i.e. is capable
of correcting the typos it finds, but also high precision in doing so,
i.e. does not report real words to be non-words and replaces them by
other real-words, up to 77,6% of the variants present in a corpus might
be removed by correcting only those typos that are within LD 1. By
correcting only the typos that are within LD 1 4+ 2, which given the
computational resources available to date should be well within reach,
up to 98.7% of the variation within a corpus might be removed. We
think pursuing this goal has far better chances of alleviating the data
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sparseness problem and of improving statistical language models than
the common practice of hapaxing has.

In Chapter 3, we outlined our spelling detection and correction mech-
anisms. We introduced the notion of anagram-key based hashing, which
allows for quick retrieval of correction candidates within the limits spec-
ified by both the alphabet and the LD limit imposed. We demonstrated
how having word unigrams as well as word bigrams in the lexicon al-
lows for the correction process to be applied not only to isolated words
but also to words within their context. We showed how this facilitates
best-first ranking. We illustrated how we handle compounds and when
spelling correction on the tier of the compounding parts is effected.
The resources used by TISC are derived from corpora in a completely
unsupervised manner. This necessitates more informed typo detection
strategies than simple dictionary look-up as performed by most spelling
error detection systems. So we introduced the notion of Zipf Filters,
thresholds set manually or derived from the corpus-derived lexicon and
we described how these help us to distinguish between correct and er-
roneous word forms. We extensively used examples to illustrate how
the various modules act and interact. We finally showed how the core
correction mechanism can be applied to the TISC lexicons themselves
to filter highly recurrent typos from them. The errors acquired in this
way have further formed the basis for context-sensitive absolute spelling
correction.

On the basis of extensive evaluations in Chapter 4 we have estab-
lished that:

+ the correction mechanism we propose can resolve virtually any type
of error encountered in a real-world corpus. The few types of errors it
cannot resolve typically involve higher L.Ds and multiple errors which
are very rare in keyboard-input text.

+ using a smaller alphabet, i.e. an alphabet not including character
trigram values, results only in a minimal loss of performance.

+ performing correction not only on the isolated word tier, but also
looking at the immediate context has only a slight effect on overall
recall but improves the best-first ranking of the CCs.

« the corpus derived lexicons can to a certain extent be cleaned in an
unsupervised way.

« for the full task of detecting and correcting typos within running
text we have seen that precision keeps rising the more information
is provided to the system, i.e. the lower the frequency cut-offs used.

+ with manually set Zipf Filter thresholds this results in loss of recall
through crowding by incorrect variants included in the lexicon. This
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calls for more rigorous corpus normalisation during pre-processing
and for applying absolute correction.

+ using corpus-derived thresholds we can manipulate the levels of pre-
cision and recall and can force the system to focus on the one. This
is to the detriment of the other, but a good balance can be achieved.

+ given a realistic amount of context, i.e. typos within their full news-
paper article, we reach a level where for every error removed, only
one correct word would be replaced, if the system were run in a fully
unsupervised, automatic fashion. This we have shown to be the case
for Dutch, which we have also shown to pose greater challenges to
spelling error detection and correction systems than English.

« for both languages English and Dutch, we have shown that TISC
outperforms the state-of-the-art systems available today. For English
we have shown that this is the case for ASPELL, ISPELL and MPT. For
Dutch: 1SPELL and MPT.

On the basis of these findings we conclude that Text-Induced Spelling
Correction is a viable alternative to the approaches to spelling error
detection and correction as embedded in the state-of-the-art systems
available today.

In Chapter 5 we first discussed the state-of-the-art as proposed in
the literature and on the basis of our evaluation of the data used in
those studies, have had to conclude that the approach by Brill and
Moore (2000) differs from ours to such an extent that comparison is
futile. While their system is geared to correcting the output of possibly
very poor spellers, ours aims at reducing the residual noise after text
has been edited and published. We then discussed what would consti-
tute a representative and reliable test set for evaluating spelling error
detection and correction systems. We have criticized a recent proposal
for fully automatic evaluation of spelling checkers both on the basis of
its underlying assumptions, of the kinds and distribution of the errors
automatically introduced, as well as the metrics adopted for evaluation.
We have shown that confusion was created in the field of evaluation by
unfortunate use of terminology. Next we examined what the F-score
can tell us about whether a spelling error detection and correction sys-
tem would be usable for fully automatic use. We have shown that van
Rijsbergen precision shows exactly when a system is fit for fully auto-
matic correction, i.e. when precision is higher than 0.5 more errors are
corrected than correct words erroneously replaced. We have had to con-
clude that for Dutch, the work presented here presently only reaches
break-even point. We have explained that were we to really attempt
fully automatic spelling detection and correction, we would marshall
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all the resources at our disposal. We would use absolute correction,
we would most certainly employ Corpus-Induced Corpus Clean-up or
CICCL, we would normalize the corpora used more thoroughly during
preprocessing. We would not only use a disjoint out-of-domain corpus
but at least incorporate what ‘came before’: we would most certainly
train our system on the specific newspaper’s output till now, to correct
tomorrow’s edition.

We have pointed out that there is quite a large element of artificiality
in evaluating a spelling error detection and correction system. We have
identified thousands of typos in a list, thereby obtaining in effect two
lists: one of which contains typos and the other validated words. Yet,
all we used both lists for was evaluation purposes: to show that the
system we built performs adequately and demonstrably better than its
predecessors. In real life, what we would use these lists for would in fact
be to enhance our corpus-derived system: we would give TISC the list
of typos to perform absolute correction where possible. We would also
give TISC the list of validated words, to perform absolute detection of
valid words and avoid perhaps the majority of wrong decisions it makes
due to data-sparseness.

What we also set out to do was build a system that would enable
one to take a text that manually requires perhaps days to proofread,
run it through and in the time of a short break returns a manageably
short list containing on the one hand words for which it did not have
sufficient information about to validate and on the other hand words
forms that truly do not belong in a properly spelled text: typos. This
we actually did for a copyleft English book, which represents highly
edited text. Of the 400 words returned by Tisc, 22 proved to be actual
typos which had been missed in editing steps. Compared to what was
available before, this represents a major step forward.

In Chapter 6 we established that multilingual spelling correction
without prior language detection is feasible. We have shown that all it
takes for TISC to be turned into a well-performing multilingual spelling
error detection and correction system, is to equip it with a multilingual
lexicon. Performance levels remain stable, whether the lexicon is bi- or
trilingual, showing that context-sensitivity alone is sufficient to keep the
languages separate. We also established that an isolated-word corrector
such as ISPELL can benefit enormously from being equipped with a
much larger dictionary than it is normally equipped with. The gain is
in precision, which we have shown throughout Chapters 4 to 6 to be a
highly important aspect of any spelling error detection and correction
system’s performance.
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7.2 Final note: roll your own TISc!

As a final note, we want to draw due attention to the fact that we have
developed a competitive spelling checking and correction system using
nothing besides our novel algorithm and electronically available collec-
tions of text. For languages such as Dutch and English, of course, a great
deal of natural language processing resources are available. We have de-
liberately ignored these as we wanted to demonstrate the feasibility of
achieving what we have achieved without having recourse to these re-
sources. There are a great many languages in this world for which little
or no such resources have as yet been developed. The inexpensive and
language-independent approach outlined here, we hope, may help to
remedy the lack of spelling aids for underresourced languages. It will
be clear from the above that in order to develop a competitive spelling
error detection and correction system for another language than the
ones we have been working with, no higher mathematics is required. A
corpus, a working knowledge of the language and some programming
skills are all that is required. We have made it appear that the cor-
pus needs to be enormous. That is not the case. In actual fact, the
smaller the corpus, the more feasible it is to apply Corpus-Induced
Corpus Clean-up or CICCL, which is after all not much more than the
core correction mechanism, and to verify its output manually. While
we have worked without a trusted dictionary, this is no prerequisite,
either. Given a trusted dictionary TISC may just as well be made into a
normative spelling error detection and correction system. We have tried
to do as much as possible without language-specific rules. That, too, is
not at all a strict requirement. One may very well chose to model the
specifics of one’s language. The results will probably be only the better
for it. All we have shown, is that this is not strictly necessary. And
modelling specifics largely precludes multilingual spelling correction.
We still find all this amazing. And great fun, too ... Enjoy!
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Obtaining statistics from error lists

A.1 Obtaining the error type statistics

In Chapter 2 we presented statistics on the correction/typos pairs in
the list culled from the RCV1. We here explicitly detail how the counts
were obtained.

Given a correct word/typo pair we describe from the point of view
of the correct word what changes occurred within the correct word to
produce the typo.

Not to get into too fine detail about the actual identity of the char-
acters involved, we limit this to specifying that characters either match,
were deleted, inserted, substituted, transposed or combinations thereof.
This is done by replacing all matching characters by M, marking a dele-
tion with S, an insertion by I and a substitution by S. Transpositions
of two adjacent characters were marked with a single T. The pair ac-
tress/*acress is then represented by the string: MMDMMMM.

The GNU open scource provides a Perl package called Text::Brew
which is an implementation of what is there called the Brew edit dis-
tance . As this package is available to all?, we use it as the basis for
adding a wrapper program to it, which effects some desirable rewritings
and collects the actual error type statistics.

Necessary output rewriting Output of the module when given the
correct word/typo pair actress/*acress (naturally without the aster-
isk) is: ‘The Brew distance for (actress,acress) is 1, obtained with the
edits: INITIAL, MATCH, MATCH, DELETION, MATCH, MATCH,
MATCH, MATCH’. The distance one is in effect the Levenshtein Dis-
tance (LD).

This output string we capture and reduce to a more basic format:

1 This is defined in http://ling.ohio-state.edu/~cbrew/795M //string-
distance.html
2http://search.cpan.org/~kcivey/Text-Brew-0.02/lib/Text/Brew.pm
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actress#acress#1A#MMDMMMM. This means we discard the text and
the INITIAL string, abbreviate the descriptions and only retain the
essentials separated by a unique marker, here ‘#’. Now the package
only returns MATCH, DELETION, INSERTION or SUBSTITUTION.
Transpositions it is unaware of, as are many LD-implementations. How-
ever, we can easily capture transpositions: given the input strings and
employing our anagram hashing algorithm, it is straightforward to find
out which pairs only involve character transpositions. We calculate the
anagram values for both strings and subtract the one from the other.
Given the result is zero, we know the only transformation between both
strings are displaced characters. For a transposition of adjacent char-
acters, the rewritten string will contain two adjacent S symbols. This
we now rewrite as a single T. We do not reduce the editing cost of 2 to
1, but this might be done, if all editing operations are to be assigned
the same cost. Transposition of non-adjacent characters we leave as is.
These will then be interpreted as multi-point multiple errors.

Initial character transformations are also differently parsed by the
module than might be expected. These too we post-edit into what we
think is a more intuitively correct interpretation. Given the pair ez-
pected/*pected the rewritten pattern reads SDDMMMMM, with an
edit cost of 3. So the transformation is interpreted as a single substi-
tion, followed by two deletions. Actually, all that happened was that
the first two characters were deleted. So we rewrite the initial SDD as
DD and change the editing cost to 2. Single first character deletions
are likewise rewritten from initial SD to D and the cost lowered to 1. It
is likewise for first character insertions: initial SII to IT and cost from
3 to 2, initial ST to I and cost from 2 to 1. First character substitu-
tions are interpreted correctly and require no rewriting. First character
transpositions were dealt with by the prior S5 to T rewriting.

Collecting the statistics We can now start collecting the statistics.
This we want to do per LD involved. We obtained the distance from
the Brew edit distance module and tally for each category per LD how
many cases we observed by iterating over the list of rewritten patterns.
We start off with first character substitutions, which are recognizable as
they have one or more initial S, only followed by one or more Ms. If we
want to distinguish between first character substitutions that do or do
not involve capitalization, we check whether for those cases where a first
character substitution was observed, the completely lowercased input
strings give an exact match or not. If they do, all that was substituted
was a lower cased character for its uppercase version and we tally this
category. Else we tally the category first character substitutions not
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involving capitalization.

We next strip off initial and final Ms, reducing e.g. MMMIMMDM-
MMM to IMMD and MMMMMDDDMMMMM to DDD. If the result-
ing pattern still has matching M(s), we tally the count for multi-point
multiple typos, without further analysis of the actual multiple edits.
Those that no longer have any matching M(s), are all the single-point
errors, whether or not they are multiple. We will distinguish between
sequences of Ds only, Is only, Ss only, Ts only or combinations of two
or more of these single error types. For the single error types, we again,
per LD, tally the counts. The combinations are tallied together, per LD,
as single-point multiple errors.

All that is further required is the necessary accounting and tabulat-
ing of percentages over the rows and the columns, making sure not to
double count the first character statistics.






Summary

Text-Induced Spelling Correction

The main contribution of this dissertation is a novel approximate string
matching algorithm for indexed text search. The algorithm is based on
a hashing function which uniquely identifies strings composed of the
same subsets of characters, i.e. anagrams, by means of a numeric value.
The numeric value allows for searching for character strings differing
from a particular string by a predefined number of characters. As such
it forms an ideal basis for a novel spelling error detection and correc-
tion algorithm, which we call Text-Induced Spelling Correction. Our
system uses nothing but lexical and word cooccurrence information
derived from a corpus, a very large collection of texts in a particular
language, to perform context-sensitive spelling error correction of non-
words. Non-words are word strings produced unintentionally by a typist
that deviate from a convention about how words are to be spelled in
order to be considered real-words within the language.

The spelling error detection and correction mechanism we propose
uses not only isolated word information, but also context information. It
performs context-sensitive error correction by deriving useful knowledge
from the text to be spelling checked. In Dutch, for instance, productive
compounding precludes that a spelling checker’s dictionary can ever be
complete. However, often a wrongly spelled compound is either present
in its correct form within the text, or its component parts are present
within the text. By means of this knowledge our system is capable
of correcting typos for which it does not have the correct word in its
dictionary. Apart from this, some typos are ambiguous in that they
may resolve into two or more different words. We investigate in depth
the relationship between a typo and its context and propose a new
algorithm for ranking correction candidates that specifically makes use
of the typo’s context to propose first this candidate rather than that
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candidate. In the laboratory sentence: ‘Her vehement *onjections to
these painful *onjections were based on solid medical evidence, as well
as a hearty dislike of needles.’ the first occurrence of the typo should be
resolved into objections the second into injections. Our system uses a
context window and the corpus-derived word bigrams in its dictionary
to perform that resolution.

Overview of the dissertation

In Chapter 1, we state our goals, briefly survey the history of spelling er-
ror detection and correction work and the state-of-the-art. We position
our own approach in light of these and describe our contribution: We
show that it is possible to use nothing besides a large corpus
of raw text in a particular language and nothing but unsuper-
vised techniques based on the similarity key based correction
algorithm we propose to derive a competive context-sensitive
non-word spelling error detection and correction system for
that particular language from the corpus.

In Chapter 2, we discuss the corpora we used for this study and
perform an in-depth analysis of the Reuters RCV1, a large corpus of
contemporary English news stories. We found that over 20% of the
non-capitalized word types in the corpus are erroneous word forms.
This means that 1 in every 400 word tokens in the text is a non-word.
On the basis of this we conclude that the non-word error problem has
not yet been solved.

In Chapter 3 we provide a full description of the spelling detection
and correction system we developed and which we have called ‘Text-
Induced Spelling Correction’ or TISC.

In Chapter 4 we conduct in-depth evaluations of TISC for both En-
glish and Dutch and present the results on a variety of tasks. We com-
pare the results with those obtained by three state-of-the-art systems
available today. This allows us to conclude that TISC is as capable of
correcting typos as the three other systems, but far more precise in
doing so: it raises only one-tenth the false alarms these systems do.

In Chapter 5 we evaluate the evaluations and conduct a survey of the
various metrics one may use for evaluating a spelling detection and/or
correction system. We discuss why the F-measure is better suited for
evaluating spelling error detection and correction systems than the
Area-Under-the-Curve of AUC because it measures more adequately
the effect of the ratio of non-words versus real-words on the precision
of the system. We compare with state-of-the-art-systems proposed in
the literature and show how the approaches differ. While other systems
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typically try to cater for the orthographically challenged, i.e. very bad
spellers, our system is aimed at removing residual errors overlooked
in the editing process of longer texts. We illustrate this by presenting
nearly 20 typos detected by TISC in an online available published book
of about 120,000 word tokens. We propose a system for the description
of evaluation sets which should allow for better comparison of systems
when the evaluation data are not publicly available.

Chapter 6 is devoted to multilingual spelling error detection and cor-
rection and the issues involved: we examine whether explicit language
detection is a necessary prerequisite. We present results obtained on
the spelling correction of English-Dutch mixed language text using a
trilingual, English-Dutch-French, dictionary and show that this can ad-
equately be done without explicit prior language detection.

In Chapter 7 we present our conclusions and discuss future work.






Samenvatting

TISC: Tekstgeinduceerde Spellingscorrectie

De belangrijkste bijdrage van dit proefschrift is een nieuw algoritme
voor benaderende stringmatching voor geindexeerd zoeken in tekst.
Bij exacte stringmatching wordt gezocht naar karakterreeksen die
precies overeenstemmen met een bepaalde string. Bij benaderende
stringmatching naar karakterreeksen die goed gelijken op, maar in
bepaalde opzichten verschillen van, een bepaalde string. Het algoritme
is gebaseerd op een hashing functie die het mogelijk maakt door middel
van een numerieke waarde die strings te identificeren die bestaan uit
precies dezelfde set karakters, met andere woorden: anagrammen. De
numerieke waarde is een soort index die toegekend wordt aan strings
bestaande uit dezelfde set karakters, ongeacht de volgorde van de karak-
ters in de string. Deze index maakt het verder mogelijk die strings op te
zoeken die met een vooraf vastgelegd aantal karakters verschillen van
een gegeven string. Bijgevolg vormt deze hashing functie een ideale ba-
sis voor een nieuw spellingsfoutdetectie en -correctie algoritme, dat we
Text-Induced Spelling Correction of Tekstgeinduceerde Spellingscorrec-
tie noemen. Het systeem gebruikt niets anders dan lexicale informatie
en frequentie-informatie over het samen voorkomen van woorden in een
groot corpus, een grote verzameling van teksten in elektronische vorm
in een bepaalde taal, om contextgevoelige spellingcorrectie van niet-
woorden te verrichten. Niet-woorden zijn woordstrings die onopzettelijk
geproduceerd worden door een typist en die afwijken van de norm die
bepaalt hoe woorden gespeld moeten worden om als aanvaardbare
woorden binnen die taal beschouwd te kunnen worden.

Het door ons voorgestelde spellingsfoutdetectie en -correctiesysteem
gebruikt niet enkel informatie over de losse woorden, maar ook con-
textinformatie. Het verricht contextgevoelige correctie door bruikbare
kennis af te leiden uit de tekst waarvan de spelling gecontroleerd moet

179



180 TEXT-INDUCED SPELLING CORRECTION

worden. In het Nederlands, bijvoorbeeld, voorkomt de productiviteit
van het samenstellen en aan elkaar schrijven van samengestelde wo-
orden dat het woordenboek waarover een spellingscorrector beschikt
ooit volledig kan zijn. Daar staat tegenover dat een verkeerd gespelde
samenstelling vaak ofwel ook in zijn correcte vorm aanwezig is in de
tekst ofwel dat de samenstellende delen los voorkomen in de aanvaarde
spellingsvariant. Door gebruik te maken van deze informatie is ons sys-
teem in staat fouten te corrigeren in woorden waarvoor de correcte vorm
niet in het woordenboek voorkomt. Daarnaast is het zo dat bepaalde in-
correcte woordvormen ambigu zijn in de zin dat ze gemakkelijk kunnen
omgevormd worden tot meerdere aanvaarde woorden. We onderzoeken
grondig de relatie tussen een incorrecte woordvorm en zijn context en
stellen een nieuw algoritme voor voor het rangschikken van de correc-
tiecandidaten. Dit gebruikt de context van de spelfout, met name de
woorden die het fout gespelde woord omringen, om eerder deze can-
didaat dan die candidaat te suggereren. In de gefingeerde zin: ‘Haar
*onjectie tegen die pijnlijke *onjectie steunt op grondige medische re-
denen, maar ook op een gezonde afkeer van naalden’ moet het eerste
voorkomen van de spelfout verbeterd worden in objectie, de tweede in
injectie. Ons systeem gebruikt een contextvenster en de uit het corpus
geéxtraheerde woordbigrammen, die in het woordenboek opgenomen
zijn, om dat op te lossen.

Overzicht van dit proefschrift

In Hoofdstuk 1 beschrijven we onze doelstellingen, geven we een
kort overzicht van het voorafgaande onderzoek op het gebied van
spellingsfoutdetectie- en correctie en stellen we vast wat de stand van
zaken heden ten dage is. We bepalen hoe ons systeem zich hiertegen-
over geplaatst ziet en omschrijven onze bijdrage: We tonen aan dat
het mogelijk is een competitief context-gevoelig niet-woord
spellingsfoutdetectie en -correctiesysteem voor een bepaalde
taal af te leiden uit niets anders dan een grote verzamel-
ing niet-geannoteerde, ruwe tekst in die bepaalde taal door
gebruik te maken van niet-gesuperviseerde technieken die
gebaseerd zijn op het door ons voorgestelde en op een geli-
jkheidssleutel gebaseerde correctie-algoritme.

In Hoofdstuk 2 bespreken we de corpora die we in deze studie
gebruiken en voeren we een grondige analyse uit van het Reuters
RCV1 corpus, een hedendaagse, grote verzameling van in het Engels
geschreven nieuwsberichten. We vonden dat meer dan 20% van de wo-
ordtypes die niet begonnen met een hoofdletter, in feite fout gespelde
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woorden zijn. Dit betekent dat per vierhonderd woorden in de lopende
tekst er 1 niet-woord voorkomt. Op basis hiervan concluderen we dat
het niet-woord probleem nog niet opgelost is.

In Hoofdstuk 3 beschrijven we het door ons ontworpen spelfoutde-
tectie en -correctiesysteem dat de Engelse naam ‘TextInduced Spelling
Correction’ of kort: TISC meekreeg.

In Hoofdstuk 4 evalueren we TISC grondig voor het Engels en het
Nederlands en presenteren we de resultaten die het systeem behaalt
op een reeks verschillende taken. We vergelijken de behaalde resultaten
met de resultaten behaald door drie state-of-the-art systemen die mo-
menteel beschikbaar zijn. Dit laat ons toe te besluiten dat TISC op zijn
minst zo goed in staat is als de andere systemen om spelfouten te cor-
rigeren, maar daarbij veel preciezer te werk gaat: bij TISC komt ‘vals
alarm’ tien maal minder voor dan bij de andere systemen.

In Hoofdstuk 5 evalueren we de evaluaties. We overschouwen de ver-
schillende metrieken die gebruikt kunnen worden om spelfoutdetectie en
-correctiesystemen te evalueren. We bespreken waarom we de F-maat
metriek hiertoe beter geschikt vinden dan de Area-Under-the-Curve
(het oppervlak onder de curve) of AUC-metriek. De F-maat meet beter
het effect van de verhouding niet-woorden tot aanvaarde woorden op
de precisie van een systeem. We vergelijken onze aanpak met state-of-
the-art systemen die in de literatuur voorgesteld zijn en tonen op welke
wijze de aanpak verschilt. Andere systemen richten zich specifiek op
de problemen van orthografisch geprovoceerde mensen, met name heel
slechte spellers. Ons systeem is er eerder op gericht de enkele aan het
editoriaal proces van langere teksten ontsnapte spelfouten aan het licht
te brengen en te corrigeren. Dit illustreren we door te tonen dat TISC er
in slaagt een twintigtal spelfouten te detecteren in een op het internet
beschikbaar gepubliceerd Engelstalig boek van ongeveer 120.000 woor-
den. We stellen ook een systeem voor om evaluatiesets zo te beschrijven
dat een betere vergelijking tussen systemen mogelijk wordt in het geval
de evaluatiesets zelf niet publiek beschikbaar zijn.

In Hoofdstuk 6 behandelen we multilinguale spellingsfoutdetectie en
-correctie en wat daarbij komt kijken: we bekijken of expliciete vooraf-
gaande taaldetectie daarbij een noodzakelijke vereiste is. We presen-
teren onder meer de resultaten die TISC behaalt bij de spellingcor-
rectie van een gemengde Engels-Nederlandse tekst met een drietalig,
Engels-Nederlands-Frans, lexicon. We tonen aan dat deze taak ade-
quaat vervuld kan worden zonder expliciete voorafgaande taaldetectie.

In Hoofdstuk 7 besluiten we met de conclusies die bereikt werden in
dit werk en bespreken we het werk dat ons wacht in de toekomst.






List of abbreviations

10x2K

12K

AAV
AUC
AV
BI
BNC
CC
CICCL
CcOOC

FN
FPR
FP
FR

FR1
FRQ
IAV
IDF
ILK

LD
LNRE
LPB

Ten sets of 2,000 typos randomly chosen,
with overlap, from 12K.

The list of 12,038 typos randomly chosen
from the 33,488 typos culled from RCV1 and
provided manually with the correction dictated
by the corpus context.

Anagram key Values in the Alphabet
Area-Under-the-Curve metric

Anagram key Value

Bigram

British National Corpus

Correction Candidate

Corpus-Induced Corpus Clean-Up
Cooccurrence Count

F-score

False Negatives

False Positive Rate

False Positives

Frequency of Retrieval (of a particular cc,
by TISC.)

F-score on best-first ranking (rank 1)
Frequency

Input word Anagram Value

Inverse Document Frequency

Induction of Linguistic Knowledge
(Research Group at Tilburg University)
Levenshtein Distance

Large Numbers of Rare Events

Left Part of a Bigram

183



184 TEXT-INDUCED SPELLING CORRECTION

LPC Left Part of a Compound
MPT Microsoft Proofing Tools
NYT The New York Times
OCR Optical Character Reading
OR Overall Recall
POS Part-Of-Speech
P Precision
PR1 Precision on best-first ranking (rank 1)
R Recall
RCV1 Reuters Corpus Volume I
ROC Receiver Operating Characteristic curve
ROUL Roularta Magazines Corpus
RPB Right Part of a Bigram
RPC Right Part of a Compound
RR1 Recall on best-first ranking
(measuring recall only for rank 1)
RRD Recall on five-first ranking
(measuring recall on ranks 1 to 5)
suc Stockholm-Umea corpus
TAV input type or Typo derived Anagram key Values
TISC Text-Induced Spelling Correction
TISC-AUC  TISC version obtaining the highest AUC-score
TISC-F TISC version obtaining the highest F-score
TISC-P TISC optimized on precision
TISC-R TISC optimized on recall
TN True Negatives
TP True Positives
TPR True Positive Rate
TR True Recall
TRI Trilingual
TWC Twente Corpus
TWC2 Year 2002 Upgrade to the Twente Corpus
UBR Upper Bound Recall
UK United Kingdom
UR Upgraded Ranking
URF Upgraded Retrieval Frequencies
URL Universal Resource Locator
Us United States
WWW World-Wide Web

XML Extensible Markup Language
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