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Abstract

This paper investigates how robots may emerge a lexicon to communi-
cate complex meanings about actions such as ‘I am going to the red target’
using simple (one-word) utterances. The main issue of the paper concerns
the way these complex meanings represent the actions that are performed. It
is argued that the meaning of these utterances may be represented without
the need for categorising a complex flow of sensorimotor data. To illustrate
the point, a simulation is presented in which robots develop such a commu-
nication system. The paper concludes by confirming that it is well possible
to construct such a lexicon once robots have a number of basic sensorimotor
skills available.

1 Introduction

In recent years an increasing number of studies have been done that investigate how
a population of robots can develop a symbolic communication system. Although in
most studies the communication system was given, e.g. [14], a few investigated how
a communication system can emerge from scratch [10, 12, 13]. Each of these studies
have had to tackle the anchoring problem [5] and the related symbol grounding
problem [6]. Both problems relate to the question how symbols relate to the
real world. The anchoring problem mainly relates to the technical issue of how
to construct and maintain a relation (or anchor) between a symbol (or word)
and the raw sensory data a robot senses concerning the word’s reference. The
symbol grounding problem is more related with fundamental and philosophical
issues concerning the meaning of symbols.

A common approach for using symbols concerning actions is to anchor these on
the flow of sensory data [5, 8, 12]. When using such techniques, many complications
may occur because, for instance, the world changes continuously and sensors may
be subject to much noise. This may cause many different interpretations of a
particular scene or object when sensed at different occasions. A lot of diversity
emerges in the categorisation that has to be disambiguated at the word-meaning
level. The used models, such as the guessing game model, are capable to deal
with disambiguating such diversity [13]. However, the diversity of interpretations
may be reduced when symbols relate to the activation level of control mechanisms
rather than to a flow of sensorimotor data.



In this paper, a model is presented for anchoring words to sensorimotor control,
rather than to sensorimotor data. Especially when it comes to words that describe
actions. This, then, provides another argument for the minimal representation of
knowledge as advocated by the paradigm of behaviour-based robotics.

Taking up such an approach assumes the availability of such sensorimotor con-
trol modules (or schemas [1]). But when considering human language as an in-
stance of symbolic communication, by the time human language evolved humans
already had evolved many sensorimotor skills. This is what Brooks has meant
when he noted that the development of functions such as using language would be
“rather simple once the essence of being and reacting are available” [4].

2 The model

To test whether a symbolic communication system can emerge based on a minimal
representation of the robots’ actions, a simulation of a task-oriented experiment
has been developed. The task the robots had to solve was to visit certain landmarks
in their environment simultaneously. The robots had no notion of this task, but
they would visit a landmark at certain moments in time and when they developed
bits of a language, they tended to use the language to select their target. The
robots developed a lexicon from scratch using the guessing game model, which is
based on Steels’ language game model and which has been implemented on real
robots before [10, 12, 13].

The ideas were implemented in a mobile robot simulator in which an envi-
ronment was designed containing four distinctively coloured landmarks. These
landmarks functioned as charging stations where the robots could refill their en-
ergy supplies by jointly visiting the vicinity of a station.

The robots were equipped with an array of eight equally distanced active in-
frared sensors surrounding the entire robot. These sensors measured distances
between the robot and the nearest object that is in a sensor’s visual range. Look-
ing towards the front each robot had a linear colour camera with a resolution of
20x 1 pixels, which were distributed horizontally over an angle of 120°. The colours
of the camera were represented by a 2 dimensional vector encoding a normalised
representation of a colour’s RGB value.! The robots’ movements were controlled
by two independently driven motors. All sensors and actuators were subject to
noise, although the colour measured by the cameras were precise.

The control architecture of the robots was based on the schema-based archi-
tecture for multi-agent systems as introduced in [2]. It consisted of a finite state
automaton (Figure 1) in which each state indicated which schemas were activated
(see Table 1). The schemas implemented basic sensorimotor couplings for produc-
ing simple behaviours, such as obstacle avoidance and phototaxis (or tracking).
In addition, they also implemented higher cognitive functions that were used to
produce and interpret linguistic utterances. The combination of these reactive and

1By normalising each component of an RGB value to the sum of these three components (Red,
Green and Blue), two of these have sufficient information to encode any colour except black. The
colour black is treated specially by using negative values.



Figure 1: The finite state automaton that guides the sequential behaviour per-
formed by the robots. There is one branch of the automaton regulating the script
for the speaker (S) of a language game and another branch regulates the script for
the hearer (H).

cognitive schemas justifies to call this a behaviour-based cognitive architecture. In
the simulation, the finite state automaton (FSA) implemented a script for playing
a guessing game (see Figure 1).

In a guessing game two robots participated: one speaker and one hearer. The
aim of a guessing game was for the speaker to name a meaning (the representation
of an action) that the hearer tried to guess based on the uttered name. After per-
forming the action, the robots received feedback concerning the appropriateness
of the action. When the proper action was used, the robots reinforced the asso-
ciation between the name and the meaning. And when the action was improper,
the association was inhibited. These adaptations are similar to the ones employed
by reinforcement learning. When the speaker or the hearer had no name for the
action in their lexicons, they would add a new element to their lexicons either by
inventing a new name (in case of the speaker) or by adopting the uttered name
(in case of the hearer).

At default, both robots explored the environment in an arbitrary fashion us-
ing the schemas Forward (movement), 0A (implementing obstacle avoidance) and
Explore. At particular moments in time a robot could decide to become a speaker
and entered state S1 of the FSA.

This state implements the schema Produce in which the speaker produces an
utterance to indicate the target towards it would go in order to refill its energy
supply. This target was selected by determining the most dominant colour in
its visual field.? The feature vector representation of the target (the 2 dimen-
sional colour vector) was categorised with a prototype that is sufficiently close
as modeled in the identification game [12]. The identification game is a variant
of instance-based learning in which the feature vector is categorised using the 1-
nearest neighbourhood algorithm with the constriction that the distance between

2A colour is most dominant if it occupies the largest subspace in the visual field and if it is
not white or black — which are the colours of the walls and robots.



State D S1 S2 S3 S4

Schema | Forward Produce Forward Wait Adapt
OA OA
Explore Track

Final S1: Time | S2: Expr. | S3: Target | S4: Feedback | D: Finish
cond. H1: Expr. | D: Failure | D: Time S4: Time

State H1 H2 H3 H4
Schema, Interpret | Forward Wait Adapt
OA
Track
Final H2: Goal | H3: Target | H4: Feedback | D: Finish
cond. D: Time H4: Time

Table 1: This table shows the implemented FSA (see Figure 1). Each state acti-
vates a number of schemas and has one or two final conditions. The final conditions
indicate when the agent transits into another state. The following abbreviations
are used: D = default state, Sz = speaker’s state x, Hr = hearer’s state , OA =
obstacle avoidance and Expr. = receiving or uttering an expression.

feature vector and prototype (the category) should not exceed a given threshold.
When no such category exists, a new prototype is added to the ontology with the
feature vector as an instance. When a category was found, the speaker tried to
produce an utterance by selecting that word-meaning association from its lexicon
of which the category matched the meaning and the association score was high-
est.> When no such association was found, the speaker invented a new word*,
associated it with the meaning and stored it in its lexicon. The selected word was
uttered through the simulated radio communication and the speaker entered the
next state S2. The meaning of the utterance was represented by the category of
the colour coupled with the activation of the schema Track in state S2. When no
utterance could be produced, the speaker transferred into the default state D.

At receiving an uttered word, the other robot transferred from the default state
into the first hearer state H1. In this state it tried to Interpret the uttered word
by searching its lexicon for matching elements of which the one with the highest
association score was selected. The associated meaning encoded the colour of
the target that the hearer guessed the speaker would go to. As is common in
reinforcement learning (the technique on which the guessing game is based), a
balance has to be sought between exploration and exploitation. This was done
using the e-greedy technique, see e.g. [11]. When the hearer did not know the
word or when it decided to explore an alternative, it selected the most dominant
colour in its visual field as a target. When the hearer thus selected a target, it
transferred into state H2 of the FSA.

The states S2 and H2 were similar in that they activated the same schemas

3The lexicon consists of elements containing a word, a meaning and an association score. The
association scores (or Q-values) indicate the effectiveness of an element based on past interactions.
4A word is constructed by combining a number of arbitrary letters taken from the alphabet.



and finished under the same final conditions. The three active schemas (Forward,
0A and Track) together implemented the behaviour of phototaxis towards a target
(specified by the selected target colour) while avoiding obstacles. When a robot
was close to its target it entered state S3 or H3. When a robot failed to find the
target within a pre-specified time (Time), it returned to the default state D. In
that case the guessing game failed. but, in contrast to previous implementations,
the lexicon was not adapted because it was unsure whether the communication
would have been successful or not.

In states S3 and H3, the robot that arrived first at the target waited until the
other robot reached a target as well. If this was the same target, the energy supplies
of both robots were refilled, thus providing positive feedback on the guessing game.
If it was a different one, a negative reward was received. In either case the robots
entered states S4 and H4. If one robot did not reach a target, the waiting was
‘timed out’ and the waiting robot returned to the default state.

In states S4 and H4, the robots adapted their lexicons according to the feed-
back they received. If the robots received positive feedback, they reinforced the
association score of the used word-meaning association. In addition, both robots
laterally inhibited scores of competing associations.® If the hearer did not select
a target based on the utterance, i.e. the hearer either did not know the word or
it decided to explore, then the hearer adopted the word in association with the
meaning of the target. (Note that the hearer only adopted a new association when
it received a positive response.) When the robots received a negative response,
they lowered the association score of the used lexical element (if any was used).
When they finished the adaptation, the guessing game finished and the robots
returned to the default state.

Summarising, the above framework provided a simulation in which robots tried
to coordinate their activities using the guessing game as a communicative guideline.
The robots used this guideline to select a target charging station. If either robot
failed to use the communication to select a target, this robot selected an arbitrary
target. According to the effect of the communication, the robots were able to adapt
their lexicons in the same way as in previous implementations of the guessing game,
e.g. [10, 13]. Because the thus emerging lexicon was used to improve their ability
to refill their energy supplies, this lexicon was used in a functional manner. The
representation of a word’s meaning was based on the representation of the target
(i-e. its colour) and the activation of the proper behaviour (i.e. the schema Track),
rather than on the representations of the behaviours’ sensorimotor data.

3 Results

In this section the results of two simulations are presented. In one condition, no
communication was used, but when a guessing game started, both robots selected
the target colour that was most dominat in their visual fields. This condition was
tested to see what level of success the robots could reach without using language.

5 An association is competing when either its word matches the used word, but not its meaning,
or when its meaning matches the used meaning, but not its word.
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Figure 2: The results of the experiments. The figures show the communicative suc-
cess as a function of the number of guessing games played (left) and as a function
of finished guessing games (right). Each figure shows the results of experiments
‘with’ and ‘without’ communication.

The other condition was exactly as described in the previous section. Both con-
ditions were simulated 10 times under different random seeds and the measured
results were averaged over these 10 runs.

Figure 2 (left) shows the communicative success of both simulations as a func-
tion of the number of guessing games that the robots played.® It is clear from this
graph that the simulations with communication outperformed the simulations in
which no communication is used. Without communication the success fluctuated
around 15%. The communicative success when communication was used stabilised
around an average of 40 % from approximately 1000 games. When inspecting the
communicative success as a function of the number of games in which the guessing
game finished”, the level of communicative success increased to a value around
70 % with communication (Figure 2 (right)). This is again much higher than the
success reached without using communication, which was approximately 20 %.

4 Discussion

The relative simplicity of the simulation’s setup may induce the suggestion that the
research is trivial, but it appears not so. Given that simulations with the guessing
game under, apparently, similar ideal circumstances yielded perfect results [7],
also similar high results were expected in the current simulation. However, the
results did not exceed a level of 70 % in communication accuracy, which is not
higher than results obtained in experiments using real robots [3, 13]. A possible
candidate for the imperfect communication is that the robots decide they are near
the target while they are near another landmark. The robots decide that they are
near the target charging station when the front infrared sensor senses it is near an

6The communicative success measures the number of games in which both robots refilled their
energy supplies, averaged over the past 50 games.
7A guessing game finishes when both robots reached a target.



object and when the centre of the visual field detects the searched target colour.
However, because the resolution of the infrared sensor is much smaller than the
camera’s resolution, a robot may decide it is near the target when it is actually
near something else while ‘seeing’ the target. If this actually happens has to be
checked in future work.

The main purpose of this paper is to illustrate how the meaning of single word
utterances can be represented rather easily on top of already existing reactive
behaviours. Many roboticists, including myself, have anchored the words (or sym-
bols) to the sensorimotor data representing actions [5, 8, 12]. But the simulations
show that rather complex meanings can be represented by coupling a target colour
to the control module (or schema) for moving somewhere. The representation of
the utterances’ meaning recruit already existing schemas, thus constructing the
language on top of these evolutionary older structures.

To illustrate the complexity of the meanings let us analyse a typical guessing
game. Suppose that the speaker selects the red target as the station it will home in
on. The utterance it produces, for instance “wabako”, then means something like
il will go to the red target;. For the hearer, when it interprets the utterance and
takes the appropriate response, the utterance may mean something like ;I think
the speaker goes to the red target, and so will I;. This is perhaps a bit overdone
as the hearer has no notion what the speaker is doing, nor does it have a notion
what it is doing. But implicitly such a meaning may arise and can certainly be
addressed from an observer’s point of view. And when the communication is used
in relation to a ‘life-task’ that the robots must perform in order to ‘stay viable
over extended periods of time’, the utterance might really become meaningful to
a robot [15].

In the current simulation the words are only associated with prototypes repre-
senting a colour, coupled with the activation of the schema Target that implements
the reactive sensorimotor control for navigating towards a target colour. An in-
teresting extension would be when the robots have the ability to select between
various schemas that implement different behaviours. This would allow robots to
construct a much richer repertoire of meanings describing actions.

With such an extension it is also possible to investigate whether the robots can
also learn the proper behaviour from another robot. An interesting experiment
would be one in which the robots have to select whether they couple a target colour
with a behaviour that attracts them towards or that repels them from a target.
Such an experiment can even be used to enable robots to develop a proper set
of coordinated behaviours in order to “survive” over extended periods of time as
shown without communication in, e.g., [9]. This way the robots construct symbolic
communication with respect to their “life-task”, which might well be necessary to
form symbols that are really meaningful to the robots themselves [15].
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