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Abstract

Cross-situational learning has recently gained attention as a plausible candidate for the mechanism

that underlies the learning of word-meaning mappings. In a recent study, Blythe and colleagues have

studied how many trials are theoretically required to learn a human-sized lexicon using cross-situa-

tional learning. They show that the level of referential uncertainty exposed to learners could be rela-

tively large. However, one of the assumptions they made in designing their mathematical model is

questionable. Although they rightfully assumed that words are distributed according to Zipf’s law,

they applied a uniform distribution of meanings. In this article, Zipf’s law is also applied to the distri-

bution of meanings, and it is shown that under this condition, cross-situational learning can only be

plausible when referential uncertainty is sufficiently small. It is concluded that cross-situational

learning is a plausible learning mechanism but needs to be guided by heuristics that aid word learners

with reducing referential uncertainty.

Keywords: Word learning; Cross-situational learning; Lexicon learning time; Referential uncertainty;

Zipf’s law

1. Introduction

The ability to acquire a relatively large set of arbitrary, although conventionalized,

mappings between word-forms and references is a key aspect of cognition that has been con-

sidered uniquely human. Despite many studies, no consensus has been reached on what is

the exact nature of human word learning (see, e.g., Bloom, 2000; Clark, 2003; Hall &

Waxman, 2004, for overviews). Cross-situational learning (e.g., Pinker, 1984; Siskind,

1996) has been hypothesized as a potential candidate to explain this ability.
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Cross-situational learning is a straightforward mechanism that theoretically does not

require any heuristics for learning. It works based on multiple exposures of a word in vary-

ing situations, where a word’s reference is taken as the one that occurs in most of these situ-

ations. There is growing evidence that children (and adults) can and do use cross-situational

learning (Akhtar & Montague, 1999; Houston-Price, Plunkett, & Harris, 2005; Smith & Yu,

2008). One problem with cross-situational learning is that it fails to explain the fast-mapping
phenomenon (i.e., the observation that many words are acquired after only one exposure,

Carey & Bartlett, 1978). However, the referents of many—if not most—words are acquired

through slow mapping (Carey, 1978; Smith & Yu, 2008). Another problem with cross-

situational learning is that it has often been considered to be too slow of a mechanism to

explain the ability to acquire a human-sized lexicon before adulthood.

Estimates show that humans acquire roughly 60,000 words within the first 18 years (Ang-

lin, 1993; Bloom, 2000). Blythe et al. (2010) have recently explored mathematically the

time required to learn such large vocabularies based on cross-situational learning. They have

found that, even under high levels of referential uncertainty, learning times are such that

humans could easily acquire 60,000 words within the first 18 years of life. The model they

derived, however, is based on a large number of simplifying assumptions, of a through

which the results of Blythe et al. can be more optimistic than they actually are.

One of the assumptions made by Blythe et al. (henceforth BSS) is that the meaning

(or referent) space is distributed uniformly, whereas they assume words are distributed fol-

lowing Zipf’s law (Zipf, 1949). Consequently, the situations in which a word is heard can

contain distracting referents of both high-frequency words and low-frequency words, all

with equal probability. So under this assumption the word ‘‘papa,’’ for instance, could be

heard in situations of equal likelihood that contain—in addition to the actual father—an-

other man or a male lion as a distractor meaning. Clearly, the latter situation would in reality

occur far less frequently than the former. BSS agree that this is an unrealistic assumption,

but they mention that they do not know what the actual distribution is, and expect the speed

of cross-situational learning to slow down. In this report, it is assumed (and argued) that a

Zipf distribution of referents is more likely, and what happens to the learning times of

(large) vocabularies under various levels of referential uncertainty is shown.

The purpose of this report is not to present a highly realistic model of cross-situational learn-

ing; such models already exist (e.g., Siskind, 1996; Yu, Ballard, & Aslin, 2005; Frank, Good-

man, & Tenenbaum, 2008; Fazly, Alishahi, & Stevenson, 2010). Also, no exhaustive review is

provided on the evidence from psychology on cross-situational learning (for such a review con-

sult, for instance, Smith & Yu, 2008). Instead, the objective is to illustrate some theoretical limi-

tations of pure cross-situational learning (cf. BSS) using straightforward computer simulations.

Before presenting the computer model and the results, the BSS study is briefly reviewed.

2. Learning times for cross-situational learning

Cross-situational learning can, in brief, be explained by the following example: Con-

sider learning a novel word, say ‘‘wakabu,’’ from a new language in a situation with
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two objects as displayed in trial 1 (top row) of Fig. 1. Suppose you know that this

word only relates to a shape. The referential uncertainty in this case is five, that is,

‘‘wakabu’’ refers to one of the following five different referents: square, circle, triangle,

star, and diamond. Now suppose you hear the same word in the situation as depicted in

trial 2 of Fig. 1 where there is neither the square nor the triangle. Here three possible

referents remain: circle, star, and diamond. When in a third trial the circle and diamond

no longer feature, you can infer that the word refers to the only remaining candidate

star.

Suppose there would have been more objects with distinct features in each situation. The

referential uncertainty and consequently the learning time as well would have increased.

BSS have derived an analytical approximation to estimate the learning times for cross-situa-

tional learning under different levels of referential uncertainty. They have assumed that in

each trial, a learner would be exposed to a word in conjunction to a target meaning (or refer-

ent) and C different incidental meanings. The C incidental meanings are randomly selected,

with a uniform distribution, from a set of M different ‘‘incidental meanings that might be

inferred alongside the true target meaning’’ (Blythe et al., 2010). Hence, C is a measure of

referential uncertainty.

BSS have estimated learning times for three different strategies of using cross-situa-

tional learning: a minimal cross-situational strategy (Minimal XSL), an approximate

cross-situational strategy (Approximate XSL), and a pure cross-situational strategy (Pure

XSL, or XSL for short). In all strategies, the learner forms a hypothesis on the first expo-

sure and sticks to that until it is proved to be incorrect, at which point he/she selects a

new hypothesis. For Minimal XSL, this is a meaning randomly selected from the situa-

tion at that moment. In Pure XSL, a new hypothesis is selected based on the complete

history of previous situations. Approximate XSL is somewhere in between using any

Fig. 1. An example of cross-situational learning in three trials. When a novel word, say ‘‘wakabu,’’ is expressed

in the first situation (top row), where there is a square, a circle, a triangle, a star, and a diamond, and also suppose

the learner considers shapes as a possible meaning, then there are five possible meanings of ‘‘wakabu’’: square,

circle, triangle, star, and diamond. In the second situation there is a circle, a star, a diamond, a pentagon, and a

rectangular triangle; the set of hypothetical meanings is reduced to contain only circle, triangle, and diamond. In

the final situation, only the meaning star remains.
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other selection strategy for selecting the new hypothesis from the current situation. BSS

have shown that the time (tappr) to learn a lexicon using the latter strategy is between the

time it takes to learn a lexicon using Pure XSL (txsl) and that of Minimal XSL (tmin), that
is,

txsl � tappr � tmin ð1Þ

As Pure XSL is the most efficient strategy they have proposed, the remainder of this article

will focus on this strategy.

Assuming that words are presented to the learner with a uniform distribution, BSS have

estimated the time taken to learn a lexicon of size W with a probability PW(t) sufficiently

close to unity, that is, PW(t) ‡ 1)� with � a small parameter. Using findings from a previous

study (Smith, Smith, Blythe, & Vogt, 2006), BSS have shown that, provided t\ttxsl is suffi-

ciently large and � sufficiently small,

txsl �W
1

1� C
M

ln
MW

2�

� �
ð2Þ

This function behaves such that the learning time initially rises slowly for an increasing

C/M ratio, and only when this ratio becomes relatively large, the learning time explodes.

Note that as C/M fi 1, t fi ¥.

BSS derived their model such that they could easily use different distributions with which

words are presented to the learner. As words tend to be distributed according to Zipf’s law

(Zipf, 1949), which states that the frequency of the kth most common word is proportional

to 1/k, BSS changed the uniform with a Zipfian distribution, yielding the following estimate:

txsl �
Wl

1� C
M

W0 �
MW

2 lnð1� �Þ

� �
; ð3Þ

where W0ðxÞ is the principal branch of Lambert’s W function (Corless, Gonnet, Hare, Jef-

frey, & Knuth, 1996). As this function largely behaves as a logarithm, Eq. (3) only differs

from Eq. (2) by the factor l, provided � is small. BSS found that l ¼ 11.579…, so that the

learning time for a Zipf distribution is not exorbitantly higher than for a uniform distribu-

tion.

It is important to note that, although the words are now selected following a Zipfian dis-

tribution, the C incidental meanings are still sampled uniformly. As already argued in the

introduction, this seems to be an unrealistic assumption. However, what is a realistic distri-

bution of meanings or referents? Assuming the frequency of meaning is usage-based, a logi-

cal candidate is the Zipfian distribution. (A more elaborated argument follows in the

discussion.)

The remainder of this article explores what happens if the incidental meanings occurring

in the different episodes are selected following Zipf’s law. Rather than deriving a mathemat-

ical formula to estimate learning times, Monte Carlo simulations are used. The main reason

for using Monte Carlo simulations is because attempts at solving this problem analytically
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have been unsuccessful so far: In calculating the probability that a whole lexicon is learned

at some time t, one has to average the probabilities of all possible sequences of situations

leading up to time t. For uniform distributions as in Blythe et al. (2010) and Smith et al.

(2006), the probabilities of these sequences are all the same, so it suffices to calculate the

number of possible sequences and multiply this number with the probability of a sequence.

However, assuming a Zipfian distribution of referents, every possible sequence yields a

different probability, and so, one cannot simply multiply, and when t becomes large, the

number of possible sequences becomes immensely large.

3. Model and methods

The computer model used in this study is basically the same as the model used by

BSS. In this model, a learner has to learn a lexicon of W different word-meaning

mappings. In each learning episode, one target meaning mT and C distinct incidental

meanings are selected to construct the situation or context C. Each of these meanings is

sampled without replacement from a set of M £ W meanings following the Zipfian distri-

bution f / 1
k, where k is the rank of the meaning, and meanings are ranked from most

frequent to least frequent (Zipf, 1949). For convenience, these meanings are ranked from

k ¼ 1 to k ¼ M, rather than sampling the meanings from W different meanings. After

the context is thus constructed, the learner is presented with the target’s word and the

context.

For each word wT, the learner maintains a list HT of hypothetical meanings, which on the

first exposure of that word equals the context C of that episode. Then, in each following

exposure of word wT, HT is updated by removing all meanings mj 2 HT that are not in the

situation, that is, all mj 62 C. The mapping for word wT is learned when the size of HT equals

1. When all word-meaning mappings are thus learned, the simulation stops and the number

of episodes is stored.

This model is tested for various values of W, M, and C, and for each condition, a Monte

Carlo simulation is carried out by repeating the simulation 2,000 times with different ran-

dom seeds. The number of episodes t* required to learn the lexicon is measured and the time

t within which 99% of all repetitions have terminated is reported. Hence, there is a 99% con-

fidence that a lexicon under the specified conditions can be learned within t episodes (this is

equal to setting the parameter � ¼ 0.01 as BSS did). Fig. 2 summarizes the basic algorithm

of the Monte Carlo simulations.

The model is to a large extent the same as that of BSS. So it also adopts among others

these five simplifying assumptions: (a) a word is always exposed in a situation where its

meaning is present, (b) each word and situation are perceived without errors, (c) all situa-

tions have the same number of distinct incidental meanings, (d) all meanings are given, so

there is no need for categorization, and (e) the lexicon is unambiguous. The model only dif-

fers from that of BSS in that the learner does not guess-and-test in case there are still other

candidate meanings. Although the guess-and-test method is slightly faster than the current

model, the difference can be ignored for large t.
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4. Results

Fig. 3 shows how the learning time t¢ relates to the ratio C/M for different values of M for

learning a vocabulary of size W ¼ 100. The learning time t¢ is the ratio between actually

measured learning time t and the time t0 required to learn the lexicon, would there be no

incidental meaning (C ¼ 0), that is, the learning time for a fast-mapper (Blythe et al.,

2010):

t0 ¼ t

t0
: ð4Þ

For each M ¼ {10,25,50}, the context size C was varied such that C/M ¼
{0,0.2,0.4,0.5,0.8}. For the condition where M = 50, no results are reported, because the

simulation was abandoned due to the extremely long run-time this simulation required. The

Fig. 2. The basic procedure of the Monte Carlo simulation.
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learning time for the fast learner t0 was taken from the simulations for the case where C ¼
0, which, for all conditions was t0 ¼ 3,903 episodes. The ratio t¢ for all conditions with C/

M ¼ 0 was thus 1. The bottom line in the figure displays the results following the BSS

model (Eq. 3) for W ¼ 100 and M ¼ 50.

It is clear from Fig. 3 that in all cases, the learning time t¢ quickly diverges from the

results of BSS and shows a super-exponential growth. So learning times rapidly run out of

hand, and for M ¼ 50 and C/M ¼ 0.6, for instance, the actual learning time t was measured

to be t�4.2 · 109 episodes.

BSS have evaluated their results using a study by Hart and Risley (2003), who have esti-

mated that parents speak between 600 and 2,100 per hour to their children. Assuming that a

learner requires 18 years to learn the 100 words with M ¼ 50 and C/M ¼ 0.6, he or she

would need to hear �746,000 words per day. This is between 362 and 1,267 times more

than Hart and Risley’s estimation.

Extrapolating from Hart and Risley (2003), BSS have shown that in their model, a large

lexicon of 60,000 words can be learned within the estimated number of words humans are

exposed to in their first 18–19 years, even when the situations are as uncertain to allow the

context size be C ¼ 90 , that is, C/M ¼ 0.9.

Fig. 4 shows the actual learning times t of applying the current model to learning W ¼
60,000 words and M ¼ 100 incidental meanings for various values of C/M. Here, the Monte

Carlo simulations have not consisted of 2,000 repetitions of each simulation, but only up to

600 replications (for C/M ¼ {0.01,0.05,0.10,0.15}) and 100 replications (for C/M ¼ 0.20).

Larger context sizes have not been processed for limitations of computational processor

time. Again, the lower line displays results of the BSS model.1

The figure shows that when C/M ¼ 0.1, the learning time t�108, which in 18 years

would amount to 15,221 words per day. When C/M ¼ 0.2, however, the learning time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0  0.2  0.4  0.6  0.8  1

t’

C/M

M=10
M=25
M=50
BSS

Fig. 3. Learning times for cross-situational learning as a function of C/M for learning a lexicon of size W ¼ 100,

and different numbers of incidental meanings M ¼ {10,25,50}. The bottom line shows the results from BSS

with W ¼ 100 and M ¼ 50 (cf. Eq. 3).
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t�2.9 · 109, which comes to about 441,400 words per day in 18 years. Assuming the upper

bound of the number of words that parents are estimated to speak to their children (Hart &

Risley, 2003), when hearing 2,100 words for 7.2 h per day, learning 60,000 words in

18 years is feasible with XSL, if C/M ¼ 0.1. However, children would require 210 h of

input per day if C/M ¼ 0.2. Clearly, the former situation is plausible, and the latter is not.

5. Discussion

The results clearly show that when the occurrence of meanings follow a Zipfian distribu-

tion, cross-situational learning of large vocabularies is only possible within a reasonable

amount of time when there is little referential uncertainty. It has been estimated that humans

acquire approximately 60,000 words in their first 18 years (Anglin, 1993; Bloom, 2000).

Moreover, estimations are that parents speak about 600–2,100 words per hour (Hart &

Risley, 2003). Extrapolating from the above figures, BSS have estimated the upper bound of

words heard in 18 years to be slightly more than 108. Although the learner from the BSS

model could have a referential uncertainty of around C ¼ 90 for M ¼ 100, the current

results show that this is only possible when the uncertainty is not much higher than C ¼ 10.

Even when XSL mainly applies to early word learning, as suggested by one reviewer, under

these conditions, it cannot deal with high amounts of referential uncertainty as the results

from Fig. 3 show.

To understand why the learning times found here are so large, it is instructive to look at a

situation that can serve as a lower bound of the learning problem. To learn the entire lexi-

con, the lowest ranked word-meaning mapping also needs to be learned and this tends to

take longest for two reasons: First, this mapping is not exposed frequently; second, this map-

ping requires more exposures than higher ranked mappings before the competing incidental

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0  0.05  0.1  0.15  0.2  0.25

t

C/M

MC
BSS

Fig. 4. Learning times for cross-situational learning as a function of C/M for learning a lexicon of size W ¼
60,000 and M ¼ 100 incidental meanings.
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meanings no longer occur in the context. When the context size is small, this is not a major

problem. However, when it is large, it is very likely that the most frequent mapping almost

always occurs in the context. In fact, the probability Pðmi 2 CÞ that a meaning mi occurs in

a context C of size C equals

Pðmi 2 CÞ > 1� ð1� piÞC; ð5Þ

where pi is the probability with which the meaning mi occurs. So the probability Pðmi 2 CÞ
approaches 1 for large context sizes C and does so faster for higher ranked meanings.

Although we cannot analytically estimate the learning time of a whole lexicon assuming

the Zipfian distribution of meanings, we can estimate the time it takes before an incidental

meaning mi is disambiguated from a target meaning mT (see the Appendix). Fig. 5 shows

the estimation of the number of episodes required to disambiguate the least frequent target

meaning from the most frequent incidental meaning. It is clear that the number of trials

required explodes rapidly and exceeds the BSS learning times substantially. The difference

with the results from the Monte Carlo simulation is that in the simulation all meanings need

to be learned and each needs to be disambiguated from each incidental meaning.

BSS have further shown that the learning times under a Zipfian distribution of words (not

incidental meanings) differs from the learning times under a uniform distribution by a factor

l ¼
PW

i¼1 1=i that depends on the lexicon size W (provided the confidence factor 1)� is suf-

ficiently close to 1). So, in their analysis, the difference between the two distributions is

independent of C and M. When not only the lexicon follows Zipf’s law but also the occur-

rence of incidental meanings in the contexts, the difference in learning times depends

clearly on, at least, M, but possibly also on C, given the differences in the super-exponential

learning curves shown in Fig. 3.

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 0  0.2  0.4  0.6  0.8  1

t
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Fig. 5. The dotted line shows the number of trials required to disambiguate the lowest frequency target meaning

from the highest frequency incidental meaning. The upper line shows the results from the Monte Carlo simula-

tions and the bottom line those from BSS. All results assumed lexicon size W ¼ 60,000 and number of inciden-

tal meanings M ¼ 100.
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The results from this model are in line with the experimental results presented in Kacher-

gis, Yu and Shiffrin (2009), who have shown that high-frequency words are easier learned

than low-frequency words under XSL. Moreover, they have shown that contextual diversity

(i.e., referential uncertainty) is an important factor, similar to the current study. In a compu-

tational study that replicated Kachergis et al.’s experiment, Fazly, Ahmadi-Fakhr, Alishahi,

and Stevenson (2010) have shown that some of their results can be explained based on a

combination of XSL and the principle of contrast (Clark, 1993). Their results indicate that

context familiarity (i.e., already having seen a meaning in a previous context) and age of

exposure (due to which learners tend to have already learned more frequency words) are

important factors in learning. So humans seem to use additional heuristics, such as the prin-

ciple of contrast. The current study provides a theoretical explanation why such heuristics

are necessary to explain word learning by XSL.

The findings make clear that the time required to learn a large lexicon using Pure XSL

when the meanings occur in situations following a Zipfian distribution is much larger than

the analysis of BSS reveals. The question remains as to whether a Zipfian distribution of

meanings is realistic or not. This question is hard to answer, mostly because it remains

unclear as to what exactly constitutes a meaning, and we cannot measure meaning occur-

rence in the brain. However, various studies indicate that a Zipfian distribution is a likely

candidate. When meanings correspond one-to-one with the words used in language, that is,

they are usage-based, Zipf’s law applies consequently (Zipf, 1949). When meanings corre-

spond to the categories or concepts we form in our brains, and assuming that the meaning

space is organized following a hierarchical taxonomy as proposed by Rosch (1978), then

there is formal suggestive evidence that the meanings occur following Zipf’s law (Manin,

2008). This even holds when meanings are categorized in a hierarchical taxonomy from a

uniform distribution of referents using the principle of least effort (Vogt, 2004). Last, but

not least, Zipf’s law is the most universal distribution of natural phenomena, and it appears

to be an inevitable consequence of a general class of stochastic systems (Corominas-Murtra

& Solé, 2010). Further research is required as to the exact nature of meanings and their

occurrence distribution. A promising way for doing this would be to investigate whether the

occurrence of meanings (or referents or concepts) apply to the class of stochastic systems

used by Corominas-Murtra and Solé (2010).

6. Conclusion

In this article, the theoretical limitations of pure cross-situational learning are studied

under the assumption that both words and meanings occur following Zipf’s law. The results

show that large vocabularies can only be learned in reasonable time when referential uncer-

tainty is very low, that is, with small context sizes. This finding is in conflict with the find-

ings presented by Blythe et al. (2010), who have shown that pure cross-situational learning

is highly robust for increasing referential uncertainty. The reason is that Blythe et al. have

assumed Zipf’s law only to apply to the occurrence of words, but they have assumed a

uniform distribution of the meaning space.
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The results do not disqualify cross-situational learning as a plausible mechanism for

learning word-meaning mappings. Instead, the results indicate the requirement of additional

heuristics to reduce referential uncertainty, such as, for example, joint attention (Tomasselo

& Todd, 1983), the whole object bias (Macna- mara, 1982), mutual exclusivity (Markman

& Wachtel, 1988), the principle of contrast (Clark, 1993), or syntactic cues (Gillette, Gleit-

man, Gleitman, & Lederer, 1999). Blythe et al. (2010) also acknowledge that additional

heuristics are required, but the results presented here suggest that these need to be far stron-

ger than those proposed by them. Various computational models of cross-situational learn-

ing have already implemented some of these heuristics (e.g., Smith, 2005; Yu & Ballard,

2007; Frank et al., 2008; Alishahi & Fazly, 2010; Fazly, Ahmadi-Fakhr, et al., 2010), and

they tend to benefit learning greatly. The present study provides a theoretical explanation

why these heuristics have to be present: If the meaning space is distributed following Zipf’s

law, pure cross-situational learning cannot explain human lexicon acquisition within reason-

able time.

To conclude, cross-situational learning can be the fundamental learning mechanism, pro-

vided it is guided by various additional heuristics to downsize referential uncertainty sub-

stantially. The lack of these heuristics in other species could be the reason why only humans

have the ability to acquire large vocabularies. The evolution of such heuristics among

humans, then, could have been one of the major adaptations in the evolution of language.
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1. The curve from BSS for low values of C/M exceeds the values from the simulations.

This is because the formula from BSS does not hold for low values of C/M (Blythe,

Smith, & Smith, 2010).
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Appendix

Fig. 5 shows the time required to disambiguate the least frequent target meaning from the

most frequent incidental meaning. Here, the estimation of this time is derived analytically.

Assume all meanings are ranked based on the occurrence frequency with the meaning of rank

1 being most frequent. Following Zipf’s law, each meaning mk occurs with a probability of

pk ¼
1

kl
; ð6Þ

where l ¼
PN

i¼1 1=i is the normalization factor. As in the computer model, for the target

meanings N ¼ W, and for the incidental meanings N ¼ M. We assume that words have a

one-to-one correspondence to their target meanings.

To disambiguate target meaning mT from incidental meaning mi, the latter should not

occur in the situation C. This happens with probability Pðmi 62 CÞ. For simplicity, it is

assumed, contrary to the computer model, that the meanings are sampled with replacement.

Then,

Pðmi 62 CÞ ¼ ð1� piÞC; ð7Þ

where, C is the context size. This gives us the relation that

Pðmi 2 CÞ ¼ 1� ð1� piÞC: ð8Þ

So the probability that the highest ranking incidental meaning is in the context approaches 1

when referential uncertainty is high, that is, Pðmi 2 CÞ ! 1 for large C.

It is now possible to estimate the time tT it takes to disambiguate target meaning mT from

incidental meaning mi with a probability larger than 1)�. The first step is to calculate the

probability Pðmi 62 C; tiÞ that after ti trials of selecting a context of incidental meanings, the

meaning mi does not occur in the context at least once:

Pðmi 62 C; tiÞ ¼ 1� Pðmi 2 CÞð Þti� 1� �: ð9Þ

After some rearrangement and substitutions, the number of trials ti at which meaning mi did

not occur in the context alongside the target at least once with a probability larger than or

equal to 1)� is
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ti �
ln �

lnPðmi 2 CÞ ¼
ln �

lnð1� ð1� piÞCÞ
: ð10Þ

So the target meaning mT has to occur at least ti times to be confident with a probability

equal to 1)� that meaning mi did not occur as an incidental meaning at least once, thus dis-

ambiguating mT from mi.

Now how many trials tT are required to know with a probability larger than 1)� that the

target mT was drawn at least ti times? The probability that after tT ‡ ti trials, meaning mT

was drawn at least ti times is

PTðtT; tiÞ ¼
XtT
n¼ti

tT
ti

� �
ptiTð1� pTÞtT�ti ¼ IpTðti; tT � ti � 1Þ; ð11Þ

where Ix(a,b) is the regularized beta function. This function is hard to solve analytically for

b, but knowing pT and ti, it is possible to find the smallest tT for which PT(tT,ti)‡1)� numeri-

cally. This was done to generate Fig. 5 for target mW(W ¼ 60,000) and the highest ranked

incidental meaning m1 (M ¼ 100).
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