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Abstract This chapter presents a discussion on how conceptual spacescan evolve
from a set of quality dimensions, and how these spaces can become shared among a
population of cognitive agents. An agent-based simulationof Steels’ Talking Heads
experiment is presented in which virtual agents construct novel concepts, as well as
a shared, simplified language from scratch. Simulations demonstrate that the struc-
ture of a conceptual space (i.e. from what quality dimensions it is composed) can
evolve in a population of communicating agents. It is arguedthat the underlying
mechanisms involve the following factors: the environmentof the agents, their em-
bodiment and cognitive capacities, self-organisation, and cultural transmission.

1 Introduction

Conceptual spaces are constructed from quality dimensions(Gärdenfors, 2000), but
how are quality dimensions selected to constitute a particular conceptual space? Is
it the result of biological evolution? Or do the conceptual spaces emerge through
ontogenetic development? And, if the latter, are they culturally determined and/or
constrained through cognition, embodiment, or the ecological niche? I will argue
that it is probably a combination of all these factors.

To answer these questions, let me start by briefly recapturing what quality di-
mensions are and how they constitute conceptual spaces. According to G̈ardenfors
(2000, p. 6) “the primary function of the quality dimensionsis to represent various
‘qualities’ of objects ... [and] correspond to the different ways stimuli are judged to
be similar or different”. In visual perception, for instance, these qualities could be
feature detectors such as hue, saturation and brightness torepresent the conceptual
space of colour, edge detectors that may combine to represent a shape, spatial de-
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tectors combine to represent spatial locations, etc. It is beyond doubt that many (if
not all) of these quality feature detectors are innate and have evolved biologically.
It is also arguable that evolution has selected for particular configurations of feature
detectors (or quality dimensions) that together form a particular conceptual space,
such as the colour space. However, this does not necessarilyhold for all possible
conceptual spaces.

Take, for example, the space of spatial concepts. Languageshave different ways
of communicating spatial relations, based on three different frames of reference:
relative to the target object (e.g. the box on the left of the tree), intrinsic to the target
(e.g. I am in front of the box) or absolute (the box to the north). Often languages
have a combination of two or three of these frames of reference, while other lan-
guages have only one of these (Majid, Bowerman, Kita, Haun, &Levinson, 2004).
There is abundant evidence that the way people categorise and the way they com-
municate about spatial relations are tightly linked, so thepeople who speak using
a particular frame of reference, also categorise the world that way (Majid et al.,
2004; Haun, Rapold, Janzen, & Levinson, 2011). Such a Whorfianaccount (Whorf,
1956) not only holds for spatial concepts, but also for many other types of concepts
(Bowerman & Levinson, 2001). Since the speakers of different languages categorise
spatial relations so radically different, it is conceivable that their concepts are repre-
sented in conceptual spaces made up of different quality dimensions.

The spatial concepts that people use in their language community is clearly
learnt, flexible, and depends to some extent on the physical environment (Haun et
al., 2011). Tzeltal speakers, for instance, live in a hilly environment and communi-
cate spatial relations in terms of being uphill or downhill.Now, imagine a Tzeltal
speaker moving to the Netherlands where there are no hills. At first, he will have dif-
ficulty categorising the world in terms of spatial concepts.Nevertheless, he will be
able to distinguish that objects are in different spatial locations. If he learns Dutch,
he will learn that spatial relations are communicated in a relative frame of reference
using left, right, front, etc. Its concepts would be represented in a different concep-
tual space constructed from a different set of quality dimensions. If he gets a child
in the Netherlands and, as long as they will not leave the Netherlands, this child will
learn to categorise the world the way Dutch people do in termsof left, right, etc., as
well as the concepts of North, East, etc., but although the child may learn to speak
Tzeltal, he will not be able to form the concepts of uphill anddownhill. (Imagine
Dutch speakers talking about things being uphill or downhill, while there are vir-
tually no hills in the Netherlands.) To really being able to form such concepts, the
child will need exposure to a hilly environment.

In this chapter, I will demonstrate how a group of virtual (i.e., simulated) robots
can acquire various conceptual spaces from a given set of quality dimensions by
developing a set of linguistic conventions from scratch through cultural evolution (I
will take the biological evolution of conceptual spaces forgranted). Before doing
that, I will set the theoretical framework of these simulations in which I argue that
the following factors are the driving force behind such a development: the environ-
ment (or ecological niche), embodiment (i.e. the physical properties of the agent),
cognition (e.g., the way concepts are learnt and represented), self-organisation and
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cultural transmission. The robotic agents are necessarilyabstracted away from hu-
man agents, so that the results are not directly generalisable to human cognition. The
purpose of this chapter is therefore not to present a biologically plausible model of
the formation of conceptual spaces from the basic primitives of quality dimensions,
but to illustrate a number of likely mechanisms and properties that could explain
how such a development could work.

2 The evolution of conceptual spaces

The theoretical framework is developed from an evolutionary linguistics point of
view, because of the tight link between linguistic and conceptual structures (Majid
et al., 2004; Bowerman & Levinson, 2001). In particular, theframework will be
based on a hypothesised evolutionary transition from holistic protolanguages to
more modern compositional languages (Wray, 1998). In order to do that, it is in-
strumental to define such languages:

Holistic languages are languages in which parts of expressions have no func-
tional relation to any parts of their meanings. For instance, there is no part of the
expression “bought the farm” that relates to any part of its meaning “died”.

Compositional languages are languages in which parts of expressions do have
a functional relation to parts of their meanings and the way they are combined.
For instance, the part “John” in “John loves Mary” refers to aguy named John,
likewise “loves” and “Mary” have their own distinctive meanings. In addition,
this sentence has a different meaning in English when the word-order changes,
as in “Mary loves John”.

Based on these definitions, it is possible to conceive that ifa particular meaning
is associated with a holistic utterance, then this meaning could be represented in
someN-dimensional conceptual space. However, when the same meaning would
be associated with a compositional utterance, then parts ofthe utterance would be
associated with individual conceptsci , each represented within anni-dimensional
conceptual space withni ≤ N.

Alison Wray (1998) has argued that protolanguages were essentially holistic in
nature and that from these initial stages language has gradually evolved into compo-
sitional languages. Although it has been argued that protolanguages were not holis-
tic, but synthetic and instead consisted of multi-word utterances without a particular
syntactic structure (Bickerton, 1984; Jackendoff, 2002),let us assume that Wray
is correct. (Without justification, I believe that many of the underlying principles
presented in this chapter would hold either way.) Then one could ask the question:
what evolutionary mechanism(s) caused this transition? The nativist account would
be that the population of language users have adapted biologically to learn and pro-
duce compositional languages (Pinker & Bloom, 1990). If this occurred through
natural selection, this would require that individuals with a particular genetic mu-
tation started using compositional language (at least to some extent), which made
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them evolutionary more advantageous, thus improving theirchances of passing on
this mutation, thus increasing the population of individuals using compositional
language, etcetera. Although not impossible, biological evolution is a rather slow
process that would take quite a number of generations beforea mutation is spread
among the entire population.

An alternative explanation takes the view that cultural evolution was the driving
force behind the transition from holistic protolanguage tocompositional language.
In this viewpoint, put forward by Wray herself and soon adopted by Simon Kirby
and colleagues (Brighton & Kirby, 2001; Kirby, 2001; Kirby,Smith, & Brighton,
2004; Kirby & Hurford, 2002; Kirby, Cornish, & Smith, 2008),the population of
language users does not adapt to learn and use compositionallanguages, but the
language adapts itself such that it can be learnt and produced by its users. This is
an appealing explanation, not only because language changespreads faster across
a population through cultural evolution, but also because when a genetic mutation
yields a change in the language that other language users cannot deal with, the mu-
tant language user does not conform to the other users, thus hampering effective
communication.

The potential of this cultural evolutionary explanation for this transition has been
demonstrated over and over again in computer simulations (Brighton & Kirby, 2001;
Kirby, 2001; Kirby et al., 2004; Kirby & Hurford, 2002; Vogt,2005a) and in psy-
cholinguistic experiments (Garrod, Fay, Rogers, Walker, &Swoboda, 2010; Kalish,
Griffiths, & Lewandowsky, 2007; Kirby et al., 2008). The typical approach in these
simulations and experiments is based on iterated learning in which the language of
one individual is passed on to a learner from a next generation, who in turn passes
on the language to the next generation, and so forth. This thus creates a chain of
generations of language users who each acquire the languagefrom the previous
generation.

The learners in this model are endowed with a learning mechanism that enables
them to discover regular patterns in the input (both in speech and semantics) and
when a regularity is discovered, a compositional representation can be constructed
and used. This is especially useful when a language user wants to communicate
a previously unseen meaning that is composed of several concepts for which the
user knows words or utterances to express parts of the meaning, but not the whole
meaning holistically. Kirby and colleagues have demonstrated that a transition from
holistic languages to compositional language occurs when the language is transmit-
ted through a bottleneck where the next generation needs to communicate about
previously unseen meanings. The primary reason for this is that a bottleneck makes
the transmission of holistic languages unstable, but not for compositional languages,
as illustrated in Figure 1.

The abstractions and assumptions made in the iterated learning model, especially
in the computational implementations, however, make it hard to generalise the re-
sults. For instance, it is typically assumed that each generation has only one indi-
vidual and that only the individual from the older generation passes on language
to the next generation, thus it rests entirely on vertical transmission. Consequently,
the researcher has to impose the transmission bottleneck explicitly. In addition, in



Self-organisation of conceptual spaces from quality dimensions 5

Type G(n) Utterance G(n+1)

Holistic

toma-[redsquare] toma-[redsquare] toma-[redsquare]
tula-[greentriangle] tula-[greentriangle] tula-[greentriangle]
bulo-[greensquare] bulo-[greensquare] bulo-[greensquare]
rino-[redtriangle] ??-[redtriangle]

Compositional

toma-[redsquare] toma-[redsquare] toma-[redsquare]
bulo-[greentriangle] bulo-[g

¯
reentriangle] bulo-[greentriangle]

buma-[greensquare]buma-[greensquare] buma-[greensquare]
tolo-[redtriangle] tolo-[redtriangle]

Fig. 1 This figure illustrates why holistic languages (upper part) are unstable when a population
of generationG(n+1) only observes three of the four utterances from generationG(n)’s language
(i.e. word-meaning mappings). In this case, if generationG(n+1) wishes to communicate about
meaning [redtriangle], then this generation will have to create a new word. If the language were
compositionally structured as in the bottom part of this figure,observing the aligning patterns from
only three out of four utterances would allow the next generation to reconstruct the entire previous
language. Hence transmitting a compositional language througha bottleneck is evolutionary more
stable than transmitting holistic languages.

most computer simulations the semantics are predefined by the researchers, who
thus ensure that there are clear decomposable semantic structures.

A more realistic model would assume a population containingmany individuals
from different generations, who can each pass on parts of thelanguage to other in-
dividuals more akin to oblique and cultural transmission. This is important, because
the dynamics of cultural evolution in vertical transmission – as in the iterated learn-
ing model – is quite different from the dynamics that can be observed in systems
pertaining to oblique and horizontal transmission, which are more reminiscent of
human cultural evolution (Cavalli-Sforza & Feldman, 1981). These systems allow
for cultural traits, such as linguistic entities or memes, to evolve based on neo-
Darwinian evolution in which variation, competition and self-organisation of traits
play a crucial role (Boyd & Richerson, 2005; Croft, 2002; Mufwene, 2001). One
advantage of a transmission system where the offspring can (try to) transmit knowl-
edge to peers or to older generations while they are still learning, is that they will
encounter new situations in which they may need to communicate about previously
unseen items (cf. Fig. 1). In the iterated learning model such situations only occur
after learning has stopped. The system of horizontal and oblique transmission thus
provides learners with a natural implicit transmission bottleneck that triggers the
emergence of compositionality (Vogt, 2005c).

A downside of predefining the agents’ semantics – as is the case in most it-
erated learning models – is that this removes 1) the role thatontogenetic devel-
opment of concepts can play in bootstrapping the emergence of compositionality
(Vogt, 2006b), and 2) the individual variation in conceptualisation which is a cru-
cial component of neo-Darwinian evolution. Moreover, enabling agents to develop
categories/concepts from interacting (i.e. perceiving and acting in) the world, it be-
comes important to consider by what means the world is perceived and acted in.
For example, a researcher should consider what sensors a robot may have. Are these
cameras, touch sensors, a compass or a combination of these?And what type of
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information is filtered from these sensors? All these factors essentially define the
agents’ embodiment, which in turn defines what qualities theagent can perceive
in the world, thus constricting the possible conceptual spaces that can be formed.
Although agents with different physiological capacities can learn to communicate
effectively – think of blind people, but also robots can do this (de Greeff & Bel-
paeme, 2011) – the question is to what extent they converge oninternal conceptual
representations. This question is even relevant for agentshaving the same bodies,
but different experiences in the world.

It should be clear that agents form concepts that reflect the world they engage in –
it is impossible for agents who only encounter a flat world to acquire concepts such
as uphill or downhill. People who only live in a remote area ofthe Amazon and who
have never visited or seen skyscrapers, will not be able to fully grasp the concept of
a skyscraper. This does not only apply to basic concepts, butalso to compositions
of concepts and the structures thereof. For instance, consider the concept of a cup.
A cup can hold many substances (coffee, tea, water, sugar, ...), have various colours
(white, blue, orange, ...), shapes, textures, sizes, etc. When there is only one cup
present in a particular context, such features are not so important, but when there
are multiple cups around these features may become important. The way humans
conceptualise the cup in these different situations is hardto tell, but looking at the
ways humans refer to a particular cup in different situations suggest we structure
our conceptual representation (Brennan & Clark, 1996; Koolen, Gatt, Goudbeek, &
Krahmer, 2011). The way concepts are structured depends strongly on the objects’
properties and the way we perceive them, which in turn tends to be reflected in the
language. I would argue that this goes so far that much of the structure of our en-
gagement in the world (and more particularly in our ecological niche) is reflected
in the grammars of our language. Humans tend to manipulate some target in one
way or another. This is how we universally behave in the world, and that is what is
reflected in most languages spoken across the globe: Most (but not all) languages
have linguistic structures in which sentences contain a subject, a verb and an object
(Baker, 2003; Evans & Levinson, 2009). Hence, the way we interact with our envi-
ronment (i.e. our situatedness) and consequently the structure of our environment,
as well as our embodiment, influence the way we conceptualisethe world. Culture
and language are part of our environment and are thus not onlymanifestations of
our conceptualisations, but also shape them.

In the remainder of this chapter, I discuss a model that triesto incorporate the
fore-mentioned principles in a simulation in which a population of agents evolve a
simple compositional language from scratch in two steps: first a holistic language is
formed, second a transition towards a compositional language occurs (Vogt, 2005a,
2005c, 2007). This model combines some components of Kirby’s iterated learn-
ing model (Kirby, 2001) – language learning and transmission over generations –
with Luc Steels’ language game model (Steels, 1997, 2003, 2012). This way, gram-
matical structures and – as part of this – conceptual spaces co-evolve through self-
organisation driven by social interactions between agentsand the cognitive learning
mechanisms of these agents. As the agents are situated in a virtual environment
where they are forced to communicate about the objects in theenvironment, the
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structure of the environment, as well as the agents’ perceptual apparatus, constrain
the conceptual structures of the emerging languages. The general principles of this
system – especially with regards to the complex adaptive dynamics – are the same as
in most of Steels’ studies. However, where the formation of grammar in Steels’ mod-
els relies on a complicated formalisation of cognitive grammars (Steels & Beule,
2006; Steels, 2012), the model presented here relies on a straightforward realisa-
tion of alignment-based learning (Zaanen, 2000) in combination with data-oriented
parsing (Bod, Sima’an, & Scha, 2003).

3 Language games

The model simulates the Talking Heads experiment (Steels, Kaplan, McIntyre, &
Van Looveren, 2002) in which a population of agents play a large number of guess-
ing games –a variant of the language game– to develop a language that allows the
population to communicate about their world. This world contains 120 coloured
geometrical shapes (12 colours x 10 shapes) and the agents can only perceive the
RGB values of the colour and one feature representing the shape. A guessing game
is played by two agents: a speaker and a hearer. The aim of the game is for the hearer
to guess what the speaker verbally refers to, and – where possible – each individual
agent adapts its conceptual and linguistic representations such that the communi-
cation becomes more effective. The game consists roughly ofthe following steps:
perception, conceptualisation, production, interpretation and adaptation.

These steps are explained in some detail in the remainder of this section, with a
special focus on the emergence of conceptual spaces. It is beyond the scope of this
chapter to present all details of the model, and the interested reader is referred to
Vogt (2005a, 2005c).

3.1 Perception and conceptualisation

In each guessing game, a number of objects are randomly drawnfrom the world
with a uniform distribution and are ‘shown’ to the agents as the context of the game.
Suppose an agent sees the three objects on the top left of Figure 2: red square, yel-
low hexagon and purple circle. Using its perceptual apparatus, each object is trans-
formed into a 4-dimensional vector representing the r, g andb values of the RGB
colour space and a feature value representing the object’s shape s. The red square
is thus represented by vector(1,0,0,1), the yellow hexagon by(1,1,0,0.5) and the
purple circle by(1,0,1,0.57). These feature vectors represent the raw percepts of
the objects.

Each feature of each percept is then categorised with a category from the rele-
vant r, g, b and s quality dimensions. The categories divide each dimension in one
or more segments and are represented by a prototypical value, as indicated by a
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Fig. 2 This figure illustrates the conceptualisation and adaptationwithing the discrimination game
(see the text for details).

dot in Figure 2. The square would be thus categorised by the set {A,E,F,G}, the
hexagon by{A,D,F,G} and the circle by{A,E,F,G}. Such sets represent the ob-
jects’ concepts as cubes in the 4-dimensional conceptual space. This is, probably,
not a realistic representation of conceptual spaces, but itis a consequence of treating
each quality dimension independently to facilitate their selection to be part of dif-
ferent conceptual spaces. More realistic implementationsof conceptual spaces that
would be applicable have been put forward in, e.g., Steels and Belpaeme (2005);
Wellens, Loetzsch, and Steels (2008) and Vogt (2004).

In order to communicate effectively, the agents individually process discrimina-
tion games (Steels, 1996). The object of a discrimination game is to obtain a concept
that represents an object such that it distinguishes this object from the other objects
in the context. If the agent is to conceptualise the hexagon in contrast to the two
other objects of Figure 2, the agent is successful as the concept{A,D,F,G} is dis-
tinctive. If, however, the agent is to discriminate the square or the circle from the
other two objects in this context, the agent fails as both objects have the same con-
cept. If this occurs, the agent adapts its categories by adding the feature values of
distinguishable dimensions as a prototypical exemplar to the appropriate quality di-
mensions. For instance, if the agent was trying to distinguish the circle from the
other two objects, it would add the categoriesI andJ to the original representation,
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1 S→ greensquare/(0,1,0,1) 0.2
2 S→ A/rgb B/s 0.8
3 A → red/(1,0,0,?) 0.6
4 B→ triangle/(?,?,?,0) 0.7

Fig. 3 This example grammar contains rules that rewrite a non-terminalinto an expression-
meaning pair (1, 3 and 4) or into a compositional rule that combines different non-terminals (2).
Rule (2) is thus a rule that combines linguistic categories/conceptual spaces A/rgb and B/s (i.e.,
A relates to the RGB colour space and B to the shape space). For practical reasons concepts are
presented as 4-dimensional vectors, where the first 3 dimensions relate to the RGB colour space
(rgb) and the 4th relate to the shape feature (s); the question marks are wild-cards and indicate
which quality dimension(s) is (are) not part of this conceptualspace. Each rule has a rule score
that indicates its effectiveness in past guessing games. Only sentences of one or two constituents
are allowed in this grammar.

yielding the set of quality dimensions with categories as depicted in the dashed box
of Figure 2.

Conceptual spaces in this model can be formed by taking one tofour of these
quality dimensions together, so there can be four 1-dimensional spaces, six 2-
dimensional spaces, three 3-dimensional spaces and one 4-dimensional space. The
concepts within each space can be used to represent the basicmeanings in the
agents’ language. This way, conceptual spaces are constructed that could be inter-
preted as linguistic categories. Initially, the agents will only conceptualise percepts
in the 4-dimensional space and associate such concepts withword-forms in a holis-
tic manner. The purpose of this study is to demonstrate how agents can develop
conceptual spaces of lower dimensions and use these coherently in language. To
understand how this may be achieved it is important to understand how the agents
represent, use and learn their language.

3.2 Production and interpretation

Once the agents have categorised the objects in the context,the speaker selects one
object at random with a uniform distribution as the topic of the communication. This
agent then searches its grammar for ways to produce an expression that conveys the
topic’s concept. The grammar (Figure 3) is an individual’s competence and consists
of simple rewrite rules that associate forms with concepts either holistically (e.g.,
rule 1) or compositionally (e.g., rule 2 combined with rules3 and 4). The grammar
may be redundant in that there may be rules that compete to produce or interpret an
expression (cf. Batali, 2002; De Beule & Bergen, 2006; Steels, 2012). The speaker
searches for those (compositions of) rules that match the topic’s concept and if more
than one are found, he selects the rule that has the highest rule score. If the speaker
fails to produce an expression this way, a new form is invented as an arbitrary string
and is associated with the topic’s concept or – if a part of theconcept matches some
non-terminal rule – with the complement of this concept. Forinstance, if the speaker
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would want to produce an utterance expressing a red square(1,0,0,1) and it knows
a word for the colour red(1,0,0,?) but not for square, then it invents a new word
(e.g., ‘wateva’) to express square(?,?,?,1) and adds this to its grammar.

In turn, the hearer tries to interpret the expression by searching its own grammar
for (compositions of) rules that match both the expression and a concept relating to
an object in the current context. If there is more than one such rule, the hearer selects
the one with the highest score, thus guessing the object intended by the speaker. The
hearer then ‘points’ to this object, and if this is the objectintended by the speaker, the
speaker acknowledges success; otherwise, the speaker points to the topic allowing
the hearer to acquire the correct concept referring to the expression.

3.3 Adaptation

If the guessing game was successful, both the speaker and hearer increase the scores
of the rules they used and lower the scores of those rules thatcompete with the
used rules. If the game has failed, the scores of used rules are lowered and the
hearer acquires the proper association between the heard expression and the topic’s
concept. To this end, the hearer tries the following three steps until one step has
succeeded:

1. If a part of the expression can be interpreted with a part ofthe topic’s concept,
the rest of the expression is associated with the complementof the concept. For
instance, if the hearer of the grammar shown in Figure 6 hearsthe expression
“redcircle” referring to the concept (1,0,0,.5), the part “red”-(1,0,0,?) can be in-
terpreted, so the hearer adds rule B→circle/(?,?,?,.5) to its grammar.

2. If the above failed, the hearer searches its memory, whereit stores all heard or
produced expression-concept pairs, to see if there are instances that are partly
similar to the expression-concept pair just heard. If some similarity can be found,
the hearer will break-up the expression-concept pairs containing these similar-
ities following certain heuristics, thus forming new compositional rules. Sup-
pose, for instance, the hearer had previously heard the expression-concept pair
“greensquare”-(0,1,0,1) and now hears “yellowsquare”-(1,1,0,1). The hearer can
then break up these pairs based on the similarity “square”-(?,1,0,1), thus form-
ing rules S→C/r D/gbs, C→green/(0,?,?,?), C→yellow/(1,?,?,?) and D→square-
(?,1,0,1). Note that this is not the ideal break up, since it breaks apart the red
component of the RGB colour space from the blue and green components and
the shape feature (3). The next section shows that over time such mistakes di-
minish as a result of competition and selection.

3. If the above adaptations both fail, the heard expression-concept pair is incorpo-
rated holistically, leading to a new rule such as S→yellowcircle/(1,1,0,.5).

At the end of these steps, the hearer performs a few post-processes to remove any
multiple occurrences of rules and to update the grammar suchthat other parts of the
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internal language relates more consistently to the new knowledge. Full details of the
model are found in (Vogt, 2005a; 2005b).

The three learning steps are the core cognitive mechanisms responsible for the
co-evolution of linguistic structures and conceptual spaces. Basically, if there is no
compositional structure yet in the rules of an agent, but there are regular patterns
(i.e. similarities) in both forms and concepts, they are both split up. Yet, this does
not necessarily mean these new rules will survive in the language. The way an agent
breaks apart holistic expression-concept pairs depends onwhat the agent has ac-
quired before, so it may make errors. However, later on in life the agent can recover
from these errors when it hears new and different usages of parts of an expression.
When that occurs, the agent adds new variants to its ‘pool’ of transmissible infor-
mation units, which then compete for being used. Elements from these pools are
selected based on their effectiveness in communication. Ifan element is used in-
effectively, it is dampened and when it is used effectively it is reinforced, while
competing ones are laterally inhibited. This competition yields a self-organising ef-
fect on the languages of the individual agents, but also brings about effectiveness at
a global level, such that a globally shared language can evolve.

In the model, agents have four quality dimensions at their disposal and initially
recruit them to form the conceptual space holistically. During development when
the holistic expression-concept pairs are broken apart, the agents form new linguis-
tic categories, each semantically relating to a conceptualspace of lower dimension-
ality. The cognitive mechanism for breaking apart expression-concept pairs does
not only require an alignment in expressions, but also in conceptual representations.
This way a co-evolution of language and concept emerges thaton the linguistic
side is driven by cultural transmissions and on the conceptual side is facilitated and
constrained by the environment (i.e. the objects in the world) and embodiment (i.e.
the categorisation into quality dimensions). These processes are all mediated (i.e.,
facilitated and constrained) by the cognitive capacities of the agents.

4 Simulating the evolution of conceptual spaces

In order to illustrate the framework described in the first part of this chapter and to
illustrate the conditions in which a compositional structure of conceptual spaces can
emerge, two simulations were carried out. The first simulation, previously reported
in Vogt (2006a), illustrates how the model evolves to a sub-optimal solution when
there is no generational turnover, so where there is only horizontal transmission. The
second simulation demonstrates that more optimal solutions emerge when there is a
population flow such that the population contains multiple generations.

Before presenting the results, two measures need to be defined:

Communicative success measures the number of successful guessing games
over a time window of 50 games.

Similarity measures the number of games in which both agents used the same
syntactic structure over a time window of 50 games. A syntactic structure is
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considered similar if the words and the linguistic categories used are the same
and in the same order. (A linguistic category is characterised by the dimensions
that make up the conceptual space of a non-terminal node.)

Both measures are normalised to a value between 0 and 1. Communicative suc-
cess informs us how successful the population becomes in communicating the refer-
ents. This measure, however, does not inform us how similar the internal languages
are – the agents may well use different representations and nevertheless be success-
ful in communication. Similarity informs us about the extent in which agents use the
same grammatical constructions, thus to what extent they use the same conceptual
spaces.

To show the evolution of conceptual spaces in more detail, I also present the rel-
ative frequencies of rule types used during successive periods of 10,000 guessing
games. As the agents can break up the 4-dimensional conceptual space into two
conceptual spaces of lower dimensions without having priorknowledge which di-
mensions should be separated, 15 different rule types (including the holistic type)
can emerge. Only 5 rule types are inspected in this chapter (all other had very low
frequencies):

I: S→rgbs holistic rule
II: S→A/r B/gbs red v. green, blue & shape
III: S→B/gbs A/r green, blue & shape v. red
IV: S→C/rgb D/s colour v. shape
V: S→D/s C/rgb shape v. colour

Rule type I concerns holistic rules in which word forms are associated with the
4-dimensional conceptual space. Rule types II and III are rules that combines the
1-dimensional conceptual space of the quality dimension that represents the red
component of the RGB space with the 3-dimensional conceptual space containing
the quality dimensions representing the green and blue RGB components, and the
shape dimension. The difference between the two rule types is word-order. Rule
types IV and V combines the 3-dimensional conceptual space that represents colour
in the RGB space with the 1-dimensional shape space.

X Y P
r gbs 0.297
g rbs 0.200
b rgs 0.256
rg bs 0.117
rb gs 0.144
gb rs 0.117
rgb s 0.075

Table 1 The probabilityP of finding in two different games a co-occurring structure in conceptual
spaceX and not inY in which case the 4-dimensional space may be segmented into these two
spaces. These probabilities are based on the distribution of feature values that represent the different
objects in the world. (This table is reproduced from Vogt, 2005b.)
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One of the reasons for inspecting rule types II and III is thatin this world, the
probability of finding a regularity in the red component of the RGB space is sub-
stantially higher than finding any other regularity, such asthose required to establish
rules IV and V (Table 1). The probability of finding a regular pattern in the RGB
space versus the shape space (cf. rule types IV and V) betweentwo randomly se-
lected objects is the chance that the two objects have the same colour (1/12) times
the chance that the two objects have different shapes (9/10), which thus becomes
1/12·9/10= 0.075. The probability of finding a regular pattern in the red compo-
nent is much higher, because the 12 colours used in the simulation are highly regular
in this dimension: 4 colours have value 0, 5 have value 1 and the others have unique
values. Without showing the exact calculation, the averageprobability of finding a
regularity in the red component of two randomly selected objects, while the values
of the other dimensions differ, is 0.297. The probability offinding regularities in
combinations of other dimensions (e.g. g-rbs, b-rgs, rg-bs, etc.) is somewhere in be-
tween (cf. Table 1). Although the rules for these combinations would occur more
frequently by chance than rules of types IV and V, these are seldomly used by the
agents, so their occurrences are not presented.

Despite the probability of finding a regularity in the red component is highest,
rule types II and III which exploit this component are not efficient in terms of gram-
mar size. This is because the complements of the red component in the RGB space
are not very regular. In fact, the 12 colours have 9 differentcomplements composed
by the green and blue RGB components (three of which occur twice, both with red
component values of 0 and 1). When combined with the 10 different shapes, the
grammar to describe all 120 coloured shapes, would contain at least 96 rules: 5 to
cover the red component, 90 to cover the gbs-space and one to describe word-order.
In contrast, rules of type IV and V (i.e. those that combine colour with shape) only
require a grammar of 23 rules: 12 to cover the rgb-space, 10 tocover the s-space and
one to describe word-order. Thus, the two rule-types combining colour with shape
are most optimal in terms of compressibility.

4.1 Horizontal transmission

The first simulation is the same as the one reported earlier inVogt (2006a), but now
discussed in the light of the framework set out earlier. Thissimulation involves a
population of 50 agents from the same generation and is run for 1 million guessing
games. In each game two agents are selected at random, one agent is arbitrarily
assigned the role of speaker, and the other the role of hearer. The context size in
each game was set to eight objects, randomly drawn from the world of 120 objects
without replacement. Previous research has shown that there is little variation in the
results when the simulations are replicated 10 times with different random seeds
(Vogt, 2005a, 2005c). For the purpose of this chapter it is instructive to look at the
results from one simulation run.
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Fig. 4 The results of the first simulation. The graphs show communicative success (top), similarity
(middle) and the competition diagram showing the evolution of rule types (bottom). These figures
are reprinted with permission from Vogt (2006a).

Figure 4 shows the results of a typical simulation. The top graph shows that
communicative success rapidly increases to a value near 0.5, after which it slowly
increases to a value slightly above 0.8 and after around 500,000 guessing games, the
system stabilised and more than 80% of the games are successful. Similarity (middle
graph), however, increases to a value around 0.5, after which it stops increasing. So,
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Fig. 5 The total number of agents that have entered the system over time.

in nearly half of the games, the agents use different internal grammar rules, even if
they use the same utterances to refer to an object successfully. For example, some
agents may use a holistic rule (type I), while others use may rule type II, III, IV or
V.

The competition diagram (Fig. 4, bottom) shows the relativefrequencies of the
five rule types during this simulation. In the first 200,000 games, all rules types
compete to be used. At the very early stages, the holistic rule (type I) occurs most
frequently, but soon drops to a value near 0.2 after which it stabilises. So, in about
10% of the interactions, the agents use the 4-dimensional conceptual space to com-
municate objects. The other 90% are divided among all other rule types (including
those not shown). After a bit more than 200,000 games, the frequency of rule type
III drops to a value near 0, while rule types II and IV appear tocompete for some
more time until the system more or less stabilised after 500,000 games. From this
time onward, the most frequently used rule type is number IV,followed by rule types
V, II and I respectively.

So, although communicative success is high, similarity in the representation of
the individual grammars (and consequently conceptual spaces) as used by the dif-
ferent agents has evolved into a sub-optimal system. About 70% of the rules used
by the agents depend on conceptual spaces rgb and s (rule types IV and V), about
15% by conceptual spaces r and gbs (rule type II), and 10% by the 4-dimensional
conceptual space (rule type I). This is sub-optimal, because the most efficient way
of representing the grammars is by using rule types IV and/orV, since these require
the least number of rules to capture the entire world.

4.2 Isotropic transmission

In the second simulation, the same model was used with the same parameter settings,
but, instead of having one generation to simulate horizontal transmission, this sim-
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Fig. 6 The results of the second simulation. The graphs show communicativesuccess (top left),
similarity (bottom left) and the competition diagram showing the evolution of rule types.

ulation implements a more naturalistic population flow (cf.de Boer & Vogt, 1999;
Steels & Kaplan, 1998). By allowing all agents speak to all other agents, this system
implementsisotropic transmission(Vogt, 2005c) that combines oblique, horizontal
and upward forms of transmission. To implement a populationflow, each agent was
given an age measured in terms of the number of guessing gamesthey played indi-
vidually with a maximum set to 12,500 games. As before, the simulation starts with
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50 agents, each initialised with an arbitrary age between 0 and 12,500 games. Each
time an agent has played a game, this agent could die with a Gaussian probability
distribution with the mean set to the maximum age and a standard deviation of 250.
When one agent thus dies, a new agent is added to the populationto keep the popu-
lation size fixed at 50. New agents start with neither concepts nor grammar. Figure
5 shows the total number of agents that have entered the simulation over time.

Figure 6 shows the results of this simulation. The first thingthat should be noted
is that, in addition to the spikes, there are more fluctuations in the trends of the dif-
ferent graphs. These fluctuations coincide with increased influx of agents as shown
in Figure 5. Apart from these fluctuations, it is apparent that communicative success
rises to a similar level as in the previous simulation, but similarity rises to a substan-
tially higher level and settles to fluctuate around 0.75. So,agents increasingly agree
on using the same rule types. In particular, from about 300,000 games onward rule
type V is most frequent (about 70%), followed by rule type IV (about 20%). The
holistic rule type I continues to decrease from around 10% at300,000 games to less
than 5% at the end. The other rule types are only sparsely used.

These results demonstrate that when there is a generationalturn-over, the lan-
guage and conceptual spaces continue to evolve towards an optimal system where
the grammar represents rules that combine colour with shapein slightly more than
90% of all cases, rather than stabilising in a sub-optimal system as in the previous
simulation. So, the new agents rapidly learn the established language by acquiring
and using the optimal rule types more effectively than the other rules.

5 Discussion

The simulations presented in the preceding section demonstrated how different con-
ceptual spaces can emerge through cultural evolution. As argued in Section 2, the
following factors are involved in this evolution: the environment, embodiment, cog-
nition, self-organisation and cultural transmission. Theremainder of this chapter
will discuss how these factors contribute to the observed evolution in the simula-
tions, starting with the first three factors, because they are highly interrelated.

The environment of the agents consists of objects that combined a given set of
primary colours with a given set of basic shapes. As such, themost obvious way of
expressing (and hence conceptualising) these objects is bycolour and shape. The
agents were embodied with feature detectors that representthe three dimensions of
the RGB colour space and one detector that gives a value for each object, however,
the agents had no way of telling which of these feature detectors belong to colour
or shape and were treated independently. The quality dimensions these agents were
endowed with constrained the way they could categorise the perceived objects and
how these could be combined to form different conceptual spaces. The cognitive
mechanisms were designed such that the agents could only acquire and use gram-
matical rules that either treated the semantics to be represented holistically or as a
combination of two conceptual spaces with the restriction that all quality dimen-
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sions are used exactly once. As a result, the agents could construct a total of 15
different conceptual spaces to be used in 8 different combinations irrespective of
word-order.

The way the colours and shapes were constructed to form the environment and
the way agents could perceive these determined the distribution of focal values
in each quality dimension. Since the way agents induce compositional rules from
the observed input is based on discovering regular aligned patterns in two or more
utterance-concept pairs (as outlined in Section 3.3), the probabilities of finding a
regular pattern would drive the formation of grammatical rules as shown in Table 1.
To some extent, this is observed in the simulations where rule types II and III occur
frequently (at least in the beginning), but all other compositional rule types, except
types IV and V, were hardly used. The explanation for this relates to an interaction
between the environment, the cognitive learning mechanismand self-organisation.

The environment was constructed such that despite the probabilities of finding
regular patterns in all combinations, except colour and shape, were higher, the com-
bination of colour and shape would yield the most compact grammar to express
the world. The utilisation of this property would not have happened without the
feedback loop – the reinforcement of rule scores and the resulting self-organisation.
When agents receive positive feedback, they increase the scores of rules that were
used. In cases where agents have different ways of expressing an object by using
different combinations of rules, they will select those rules that have the highest
combined scores. Since the rules combining colour and shapecould apply for all
objects, these rule types are more likely to be reinforced and thus more likely to
be re-applied. When these rules are more frequently re-applied by the speaker, this
increases the chance that the hearer would discover a regular pattern in colour and
shape. This positive feedback loop is a driving factor of self-organisation, similar
to the way ant paths are formed (Prigogine & Strengers, 1984), and is considered
one of the strongest factors for convergence in the languagegame paradigm (Steels,
1997). Although in the first simulation language evolved into system that incorpo-
rated rules combining colour and shape most frequently, a substantial amount of
rules of types I and II remained. The constructions formed with these rules were
so entrenched in the language that they were viable, also because the language had
evolved into a stable system with no variation.

Variation, which is one of the crucial ingredients of (neo) Darwinian evolution
(Boyd & Richerson, 2005; Darwin, 1968; Dawkins, 1976) and which is thought to
be a driving factor of language change (Croft, 2000; Mufwene, 2001), occurs in the
system through the speakers’ invention of new words and through the acquisition
of new constructs by hearers. In the first simulation, all variant constructions are
created and spread among the population in the first, say 100,000 games or so, and
after that the competition between the variants take over, which after approximately
500,000 games yield a stable system. The initial variation,subsequent competition
and evolution to a stable system is characteristic of the language game model as
is most clearly demonstrated in the naming game studied by Baronchelli, Felici,
Caglioti, Loreto, and Steels (2006). When, as in the second simulation, newborn
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agents continue to enter the population and learn the language from scratch, the
system no longer gets stuck in such a sub-optimal stable system.

The reason for a continued evolution is that these young agents create new vari-
ations in the pool of utterances. Often these new variationsare errors or over-
extentions (Vogt, 2006b) that tend to be unlearnt during development, but sometimes
these are new variations introduced by applying a compositional rule to previously
unseen objects (a result of the implicit bottleneck, see Section 2 and Vogt, 2005c).
Since the rules combining colour and shape tend to occur mostfrequently in the lan-
guage (see competition diagrams of Figs. 4 and 6), it is most likely that these new
variants reflect that structure. As a result, even more utterances that comply to these
rules enter the language, increasing the chance for other agents to discover and use
those regularities. This cultural transmission over generations thus strengthens the
positive feedback loop that drives the self-organisation.Both language and concepts
thus co-evolve to be learnt easier, as there are less rules toacquire (cf. Kirby &
Hurford, 2002).

It is important to note that due to the –necessary– abstractions made in this model,
it is hard to generalise the results from study to the way humans form conceptual
spaces. The simulations are situated in a toy world, with homogeneous agents who
can perceive the objects identically and without noise. In addition, the way concepts
are constructed from independent quality dimensions is probably unrealistic. More-
over, the model assumes that during the course of human language evolution, pro-
tolanguages were essentially holistic and gradually evolved into compositional lan-
guages. This assumption is still very much under debate (Arbib & Bickerton, 2010).
In spite of these abstractions, the model also contains a number of more realistic
assumptions, such as a gradual generational turnover in thepopulation, mechanisms
that facilitate self-organisation, and general mechanisms for detecting regularities
in the input. As a result, the present study illustrates plausible theoretical principles
that may explain how conceptual spaces are shaped. Future modelling work should
investigate the scalability of this model using a more realistic world (perhaps even
the real world) and agents with more human-like like embodiment and cognition.

6 Conclusions

This chapter has investigated how conceptual spaces can emerge from quality di-
mensions based on the cultural evolution of compositional languages. The same
principles have been demonstrated before in a series of studies where the population
flow was implemented based on the iterated learning model in which the population
always contained two generations (adults and children) andafter a predetermined
number of games, all adults die, children become adults and new children enter the
population (see Vogt, 2007, for an overview). The differences between the present
study and those previous studies concern the more gradual population flow and the
focus on conceptual spaces.
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The simulations have demonstrated that the evolution of conceptual spaces is
driven by five crucial factors: environment, embodiment, cognition, self-organisation
and cultural transmission. The emerging conceptual spacesreflect the structure of
the environment. Its development within the agents is facilitated by the embodiment
through its perceptual apparatus and the cognitive mechanisms. However, embod-
iment and cognition (and arguably the environment as well) are at the same time
limiting factors. Would the agents have been able to perceive other qualities or to
manipulate objects, then more complex languages could haveevolved, provided the
cognitive learning mechanisms would allow them to break apart the holistic utter-
ances in more than two constituents.

The self-organisation results from the variation and competition in conceptual
and linguistic structures, as well as the positive feedbackloop driven by the learn-
ing mechanism. Cultural transmission across generations allows for additional vari-
ations to prevent the system entering a sub-optimal stable system and keep the evo-
lution going. Gradually, the emerging language becomes easier to learn, which can
catalyse cumulative cultural evolution (Boyd & Richerson,2005; Vogt, 2006a). Due
to the limitations that the model imposed on environment, embodiment and cogni-
tion, the linguistic structures and consequently the conceptual spaces evolved into
a relatively stable state. However, if there was room for further development, more
complex structures could have emerged.

Crucial to the design of this is the assumption that languageand concepts co-
evolve. This is in line with the renewed appreciation of Whorf’s linkage between
language and thought (Bowerman & Levinson, 2001), and whichmay account for
the cross-cultural differences in the ways languages express and conceptualise var-
ious aspects of the world, such as spatial relations (Haun etal., 2011; Majid et al.,
2004). Although the present study did not focus on cultural differences in concep-
tualisation, the framework has the potential to explain these. To achieve this, future
studies should incorporate more realistic scenarios basedon data from different cul-
tures, as for instance collected by Vogt and Mastin (2013).
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