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Abstract. This paper presents computer simulations which investigate
the effect that different group sizes have on the emergence of composi-
tional structures in languages. The simulations are based on a model that
integrates the language game model with the iterated learning model.
The simulations show that compositional structures tend to emerge more
extensively for larger groups, which has a positive effect on the time in
which the languages develop and on communicative success, which may
even have an optimal group size. A mathematical analysis of the time
of convergence is presented that provides an approximate explanation
of the results. The paper concludes that increasing group sizes among
humans could not only have triggered the origins of language, but also
facilitated the evolution of more complex languages.

1 Introduction

One popular hypothesis explaining the origins of language is that the group sizes
in which our human ancestors lived have grown beyond a critical threshold [1].
Dunbar argues that physical grooming, which is believed to be crucial for main-
taining social bonds within a group, would take up too much time required for
survival oriented behaviours, such as foraging. Language, Dunbar argues, could
have taken over the role of physical grooming. This paper examines the effect
that group size has on the evolution of compositional structures in languages,
i.e. structures in which parts of utterances refer to parts of their meanings and
the way these parts are combined.

That group size has an effect on language development has been found in
a number of studies on both human and animal communication. For instance,
non-human primates have larger vocal repertoires [2] and Carolina chickadees
have greater vocal complexity in information structure [3] when they live in
larger groups. Humans can learn to categorise phonetic categories better when
they receive input from multiple speakers than when they only learn from one,
because this allows the learner to generalise better on new tokens [4]. Ragir
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[5] has shown that spontaneously evolved sign languages have become more
structured in their grammars when used in larger communities. For instance,
the sign language in Martha’s Vineyard, which had a population of more than
150 signers, was well formed, as is the Nicaraguan Sign Language (100 signers
in 1979 up to 500 in 1995). The sign languages of Noyha (12 signers), Grand
Cayman (18 signers in 1978, earlier more) and Providence (20 signers, earlier
more), however, never evolved grammar [5].

It has been shown computationally [6] and mathematically [7] that when
holistic languages are transmitted iteratively from one generation to the next,
they can transform into compositional ones. This is provided that 1) language
learners have the ability to discover and exploit regular patterns in the utterance-
meaning pairs to form compositional structures and 2) learners only observe a
small part of the entire language from the previous generation. The latter trans-
mission bottleneck [6, 7] is crucial, because it places a pressure on compositional
structures to evolve. The reason for this pressure is that evolutionary processes
tend toward stable systems [8], but holistic languages (i.e. languages that have
no structural correspondences between parts of utterances and parts of their
meanings) are not stable when transmitted through a bottleneck, whereas com-
positional languages are. To illustrate this, suppose that an individual wants to
communicate about, say, a red triangle, which it has never communicated about
before. If the language is holistic, this individual cannot use any previously learnt
part of the language to produce an utterance and would have to invent a new ut-
terance. If the language is compositional and the individual has learnt a word for
red and a word for triangle from hearing utterances referring to a red square or a
blue triangle, this individual can combine these words to convey the meaning of a
red triangle and no new words have to be invented. Consequently, compositional
languages can be transmitted more stably than holistic ones.

One limitation of the iterated learning model is that it assumes a completely
vertical transmission of languages from one generation to the next, i.e. indi-
viduals of one generation only direct their speech to individuals of the next
generation. As a consequence, this model does not allow for simulating the evo-
lution of languages in large populations, since it would be infeasible, or would
simply take too long, for the languages to converge on the entire population.
This problem can be solved if the iterated learning model is combined with a
model of horizontal transmission [9].

In horizontal transmission models [10], only one generation of individuals ex-
ists who all communicate with each other. Combining the vertical transmission
model with the horizontal transmission model, yields an isotropic transmission
model [11] that contains two generations and in which the language is transmit-
ted in all directions (adult—-child, adult—adult, child—child and child—adult).
In such models, but not in vertical models, compositional languages can evolve
without imposing a transmission bottleneck. Instead, individuals face a bottle-
neck that is an implicit and natural consequence of their development when they
need to speak about meanings they have not encountered before [9]. In verti-



cal (adult—-child) models, the experimenter needs to control this transmission
bottleneck to prevent children from hearing the entire language.

This paper investigates the effect of group size on the emergence of com-
positionality using a model based on earlier models presented in [12,9,11], but
in which the meanings are predefined to reduce computational complexity. This
model is presented in the next section. Section 3 presents the results of this
study, which are discussed in Section 4. Finally, Section 5 concludes the paper.

2 The model

This isotropic transmission model implements a multi-agent system that contains
N/2 adult agents and N/2 child agents, where N is the total group size. The
whole group plays T rounds of language games [10], after which all adults are
removed, all children become adults and new children are introduced (cf. the
iterated learning model [6]). The world of the agents contains M = 81 compound
meanings, which are constructed in 2 dimensions (e.g., colour and shape) of
m = 9 values each (so a meaning could be something like a ‘red square’).

1 S — toma/[green,square] 0.2
2 S — A/colour B/shape 0.8
3 A — ba/[red] 0.6
4 B — ke/[triangle] 0.7

Fig.1. This example grammar contains rules that rewrite a non-terminal into an
utterance-meaning pair (1, 3 and 4) or into a compositional rule that combines dif-
ferent non-terminals (2). Whole meanings are formed by 2 features (here colour and
shape). Each rule has a rule score that indicates its effectiveness in past guessing games.
Only sentences of 2 constituents are allowed in this grammar.

Initially, agents’ grammars are empty; the grammars are constructed by the
agents playing language games (or guessing games). The grammar, such as illus-
trated in Figure 1, consists of two types of rules: holistic rules (rule 1) that map
whole compound meanings to randomly created utterances and compositional
rules (rule 2) that rewrite into two non-terminal rules (rules 3 and 4), each map-
ping meanings of one dimension to some word-form. (Note that there are two
types of compositional rules in this grammar differing only in word-order.)

The grammar may contain redundant rules in that there may be different
ways to encode or decode an utterance. To deal with the competition between
these redundancies, each rule j is associated with a rule score p; that indicates
the effectiveness of the rule during past language games. When agents need to
choose between a (possibly holistic) composition of redundant rules, they always
select the composition ¢ that has the highest weight w;:

Pj if holistic
w; = . - (1)
Pe - pr1 - pre  if compositional.



Here p. is the score of a general rule, and p;; and pss are the scores of the
terminal rules.

In each game, two agents are arbitrarily selected from the population. One
is randomly assigned the role of speaker and the other becomes the hearer. The
agents are provided a shared context that contains ¢ = 8 distinct meanings
randomly selected from the M compound meanings. The speaker selects one
meaning as the target and searches its private grammar to encode an utterance.
If there are more ways to encode an utterance, the speaker selects the one that
has been used most successfully in the past based on the weight of the rules. If
there is no way to encode an utterance, a short random word-form is created
from a finite alphabet. This new form is associated either holistically with the
entire compound meaning, or with a part of the meaning if the other part is
already associated with a word.

The hearer tries to decode the utterance by searching its grammar for com-
positions that parse the utterance such that the resulting meaning is in the
context. If there are more ways to decode the utterance, the one with the high-
est weight is selected, yielding the meaning that the hearer guesses was intended
by the speaker. If this is the correct meaning, the game is successful. Otherwise,
the game fails either because the hearer guesses a wrong meaning or the hearer
is unable to decode the utterances. (Note that the game’s outcome is verified
through explicit meaning transfer. Though this is not realistic, it is done to speed
up convergence.)

Depending on the outcome of the game, the rule scores p; are adapted by
both agents. If the game at time ¢ is a success, the score(s) of used rule(s) are
increased by

pi(t) =mn-pi(t —1)+ (1 —=n)-p;(t—1), (2)

while the scores of competing rules (i.e., rules that could also encode or decode
an utterance) are laterally inhibited using

pi(t) =n-pi(t—1). 3)

The same equation is used to inhibit the rule scores when the guessing game
fails. In these equations, 7 = 0.9 is a learning parameter and p;(0) = 0.01 is the
initial score. These updates implement a positive feedback loop.

If the game fails, the speaker informs the hearer which compound meaning
was intended, allowing the hearer to acquire the correct mapping. While adopting
the utterance, the hearer tries to induce a compositional structure in three steps:>

1. The hearer searches its grammar to see if it contains a rule that can decode
a part of the utterance with the correct meaning. If this is the case, the
remaining part of the utterance is associated with the remaining part of the
meaning. If there are more such cases, the one with highest weight is used.

3 More details of these steps are described in [12,9].
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Fig. 2. Results of this study. The top graphs show communicative success C'S against
time in iterations (left) and against group size N (right). The bottom graphs show
time of convergence T¢ (left) and compositionality C' (right) (both against N).

2. If this fails, the hearer searches for a reqular pattern in the heard utterance-
meaning pair compared to the most recent 1,000 instances of utterance-
meaning pairs that it heard in previously played games and which are stored
in a separate instance base. A regular pattern is found in two distinct
utterance-meaning pairs if two utterances either start or end with the same
substring and if both pairs have a similar meaning part. If such a regular pat-
tern is discovered, the hearer breaks up the utterance and meaning following
certain heuristics to form a compositional structure (see [12], pp. 221-223).
The same break up is applied to all existing rules that have a similar pattern.
Note that previously obtained rules are retained.

3. If the second step also fails, the utterance-meaning pair is incorporated in
the grammar holistically.

Note that these induction steps are similar to those used in [6] and are inspired
from usage-based approaches to human language acquisition [13].

3 Results

Figure 2 shows the results of simulating the model with various group sizes for 5
iterations of T' guessing games each, where T is proportional to the group size N



approximately following T" oc N log N, which was found to be the time it takes
for a lexicon to converge in the population [14]. After each iteration, all adults
are removed, children become adults and new children are introduced. In this
study, N was varied from 10 to 300 with incremental steps of 10 between N = 10
and N = 100 and steps of 50 onwards. Each condition was repeated 10 times
with different random seeds for statistical purposes.

The top graphs of Figure 2 shows communicative success C'S, which is the
fraction of successfully played guessing games during a time window of 100
games. The left graph shows CS over time (measured in iterations to scale
all simulations) for a few simulations. In each iteration C'S increases until its
end is reached and the population is changed, through which C'S drops drasti-
cally, after which it rapidly increases again to the level reached in the previous
iteration and beyond, except when N = 10. Throughout the simulations, none
of the simulations reached a value of 1, but those with larger groups show a
further increase in C'S. In this study, the simulations were not run longer for
computational reasons?®, but it is safe to assume that after 10 or more iterations,
C'S would yield values near 1, as this happened in previous studies (e.g., [11]).

When setting out the average C'S from the final X games against group size
N (Fig. 2, top right), we see that C'S first drops, then increases when N > 50
and finally drops again when N > 200. (X is roughly 10% of the number of
games per iteration, 7. This is done because C'S can vary strongly and this
average gives us more reliable values.) So, there appears to be an optimal group
size around N = 200. Yet, although the differences between the simulations of
small N and of those with larger differences (e.g., for N = 50, N = 100 and
N = 200) are significant (p < 0.01 according to the Wilcoxon rank test), those
that closely vary around N = 200 (i.e. N = {150,250, 300}) are not (p > 0.05).

It is possible to estimate the time it takes for the curve of CS to stabilise,
using a non-linear regression of its curve. This time of convergence T, shows
linear dependencies with N on a log-log scale, i.e. T, o N°, when N < 50 with
slope 8 = 1.58 and when N < 150 with slope 8 = 1.18 (Fig. 2, bottom left). In
between these values, the slope is 8 = 0.36. (All slopes are obtained with linear
regression.) Interestingly, this result is quite different from those obtained for the
evolution of lexicons, where a continuous linear dependency on the log-log scale
was found. The result in the first part (N < 50) is similar to that of Baronchelli
et al., who obtained T, o N'-5 [14,15]. The remaining parts have slopes lower
than those obtained by Kaplan, who obtained a dependency of N log N [14].

Figure 2 (bottom right) shows the evolution of compositionality C, which
measures the proportion of two-word utterances encoded, decoded and discov-
ered with induction step 2 (see previous section) by the population measured
during the final X guessing games against group size N. It is clear that the level
of compositionality increases with group size until a maximum level is reached
near C' = 0.86 for N > 150. The remainder of this paper discusses how and why
group size, compositionality and time of convergence relate to each other.

4 Processing these simulations took over 1 month using a cluster of 10 PCs



4 Discussion

The simulations reported in this paper show the surprising results that

1. compositionality tends to evolve more extensively with larger group sizes,

2. time of convergence shows different regions of dependencies with group size,
and

3. there appears to be an optimum in group size concerning communicative
success (though this is not a significant result).

These results are surprising, because intuitively one would think that evolving
structured languages would be harder for larger populations, just as is the case
for evolving (holistic) lexicons [14,15]. However, that turns out not to be the
case for all group sizes.

To explain the first two results, it is important to note that in larger groups
more randomly created words occur than in smaller groups. In fact, there is a
power law relation between the maximum number of randomly created words
Whax and group size N, i.e.

Wnax o< N¥. (4)

The exact relation was not monitored in this experiment, but was previously
observed (Vogt, unpublished) and occurs for emerging lexicons in the naming
game simulations of Barronchelli et al. [15], who found that w & 1.5. Interest-
ingly, they also found that time of convergence and group size had the same
dependency, i.e. T, x N“ and argued that this was a sound correspondence.
Kaplan [14], who found for a more closely related language game model that
T. «x Nlog N, further found that the time of convergence is linearly propor-
tional to the number of meanings M in the language, so let us assume that

T. x MNlogN. (5)

Now let us assume that the number of meanings M to be acquired by the
population is — on average — proportional to the level of compositionality C' in
the language according to

M = CM, + (1 — C)Mj, (6)

where M, is the number of word-meaning pairs an entirely compositional lan-
guage would have and Mj is the number of word-meaning pairs an entirely
holistic language would have.

In this model, compositionality C' depends on the chance of finding a regular
pattern in both one dimension of the compound meanings and in the signals,
because that is what agents find and use [12]. Since the number of meanings
per dimension remains constant in all simulations, the probability of finding a
regular pattern in the signals depends on the size of the alphabet A and the



number of distinct words (or utterances) W in the language.® The number of
words in the language follows a power law depending on group size. Hence the
chance of finding and using compositional structures depends on group size.

Suppose — for simplicity — that the language in question only contains ran-
domly constructed words that are strings containing only two letters AB, where
A, B € A. Let us further assume that the level of compositionality C' is pro-
portional to the probability P(R|W) that, given the number of different words
W that exist in a language, all possible regular patterns in word-meanings have
been observed at least twice, so that for all possible compound meanings a com-
positional rule can be constructed.

Suppose the population has created W = Wy,.x — 1 different words. Now,
when we find a new word starting with some arbitrary letter A, then the prob-
ability that we can find an existing word with the same letter (i.e. we can find
a regular pattern R in the expression) is

PRIW) =1 - P(=A)Y =1 — (1— ﬁ)w, (7)

where P(—A) is the probability that a randomly created word does not start
with the letter A. In effect, this equation says that the probability of finding a
pattern is equal to one minus the probability that after creating W words none
of these words start with A.

Since we assume that C' o< P(R|W), we have, following Eq. (6)

M =P(R|W)-M.+ (1 - P(R|W)) - M. (8)
Substituting this equation in Eq. (5) gives

T, « (P(R|W) - M. + (1 — P(R|W)) - My) - Nlog N. (9)

5 In the remainder of the paper, I use the term words for both holistic words and
compositional two-word utterances, which are transmitted without a word boundary.
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Fig. 3. P(p|W) (left) and T¢ (right) as a function of group size N. These figures were
produced with |A| = 4.7, w = 0.48, M. = 18 and M, = 81.



Plotting Eqs. (7) and (9), using values for |A| = 4.7 and w = 0.48 obtained
through linear regression of Fig. 2 (bottom right), produces Figure 3. This figure
shows qualitatively similar dependencies for compositionality C' and time of con-
vergence T, as observed in Figure 2. What it shows is that when the group size
increases, compositionality (expressed here as P(R|W)) increases until it con-
verges. While compositionality increases, the number of meanings M decrease,
thus affecting time of convergence T, by bending its curve slightly to the right
and going up again, but with a lower slope on the log-log scale than previously.

The bend in the curve of T, is less expressed than in the curve obtained
with the simulation. Moreover, both |A| and w are smaller than expected, as
the alphabet in the simulations contains 15 characters and — if Baronchelli et
al. are right — the exponent of Eq. (4) was expected to be closer to 1, or even
exceeding 1. Unfortunately, in these particular simulations, the evolution of the
maximum number of words in the language was not monitored, so we have no
data to measure w based on Eq. (4).

A probable reason that the values are lower than expected is that the results
on C and T, were presented concerning the fifth iteration, before which the
language had already been developed to some extent. This would increase the
likelihood of finding a regular pattern, thus lowering |A|. As a consequence, this
also decreases the need for creating new random words, thus lowering w.

Currently, the simulations are being repeated with a faster implementation
of the model than used to generate the data presented here, thus allowing to
do more runs of the simulations for better statistics, to run them for a longer
time and to go beyond the 300 agents. In addition, these new runs do monitor
the evolution of words, so we can have a better estimate of parameters for the
mathematical model. Moreover, the additional simulations aim to investigate
the effect that group size has on the level of communicative success, which re-
vealed an apparent optimum. However, this optimum was not significant. Better
statistical results and larger group sizes should shed more light on this issue.

5 Conclusions

The simulations in this paper show that for larger groups compositional lan-
guages evolve more extensively due to the increased number of words, which
increases the likelihood of finding regular patterns in utterance and meaning. As
a result, individuals tend to use the compositional language bits more frequently,
so there are less meanings to be distributed among the population, which affects
time of convergence.

The relation between time of convergence and group size has three phases.
First, time of convergence is increasing relatively fast with increasing group sizes,
then it increases much slower, after which it starts to increase faster again, but
with a slower rate than for the smaller group sizes. As shown mathematically,
the first decrease in the slope coincides with a strong decrease in the number
of meanings to be distributed, due to the increased compositionality. The later
increase in the slope coincides with compositionality reaching a stable maximum.



So, Dunbar’s hypothesis that language has originated to facilitate a different
mode of grooming when the groups in which hominids started to live exceeded
a certain threshold [1], whether right or wrong, seems to have an interesting
consequence. Our ancestral evolution to live in larger groups did not only put
a pressure on language to originate, but actually facilitated the emergence of
compositional languages.
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