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Abstract. This paper introduces a new model that has been developed
for simulating language evolution in the New Ties project. This project
aims at evolving a cultural society by integrating evolutionary, individ-
ual and social learning in large scale simulations. The model presented
here introduces a more natural implementation of language games with
various novel features. Some preliminary results are presented and dis-
cussed. As the project is still in its developmental stage no staggering
results were obtained yet but we conclude that the current model is very
promising for future research into the evolution of language and social
behaviour.

1 Introduction

Human language is thought to have evolved from an interaction between three
adaptive systems: biological evolution, individual learning and cultural evolution
[1]. This evolution is thought to be constrained and driven by the embodiment
of humans and their situatedness in the ecology of our world. The New Ties
project® aims at merging these aspects in a large scale simulation to evolve a
cultural society of simulated agents who are situated in a complex environment.
One important aspect of this simulation is to evolve language that allows the
social learning of skills.

Although a lot has been achieved with computational modelling of language
origins and evolution (see, e.g., [2—4] for overviews), such models necessarily have
to simplify a great deal with respect to the real world, even if processed in the real
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world using real robots [4]. Of course, simplification is very useful to gain insights
from simulations that only look at one particular aspect of language evolution.
Such aspects vary from the evolution of sound systems [5], syntax [6], grounded
lexicons [7-9] to grounded grammars [10, 11]. The problem of simplifications are
that results achieved may not hold in more complex simulations. For instance,
Vogt [11] has shown that grammatical structures can emerge under completely
different conditions than those reported by Kirby et al. [6] if the meanings are
perceptually grounded and acquired from scratch, and if the language is acquired
using a slightly more complex learning mechanism.

The New Ties project aims to combine various aspects of language evolution
models in a world that contains many agents who need to survive in a com-
plex environment that has quite some aspects similar to our own world. Agents
are to acquire behaviours that allow them to survive by combining evolutionary
learning (i.e., genetic evolution), individual (reinforcement) learning and social
learning. One aspect of social learning involves language learning to allow cul-
tural evolution of language. In turn, this evolved language will be used to transfer
acquired skills culturally, which thus is the second aspect of social learning in-
volved. From the evolution of language point of view, the New Ties project will
allow us to investigate many questions concerning language evolution in a realis-
tic scenario. The sorts of questions we may ask include, for example: Under what
environmental constraints will language evolve? What type of learning and inter-
action mechanisms are required for a language to evolve? Will dialects emerge?
And if so, what are the dynamics underlying its emergence? How can learning
mechanisms evolve biologically?

In the next section we will briefly present the New Ties project. In Section
3 a more detailed description of model that allows the population to evolve
language is provided. This model implements language games [12], modified in
various ways to become more natural. Some preliminary results are presented in
Section 4. Section 5 concludes the paper.

2 New Ties

As mentioned, the objective of the New Ties project is to set up a simulation
in which a large population of agents (i.e., 1,000+) are to evolve a cultural
society using evolutionary, individual and social learning. Sub-objectives include
investigating the interaction between these three adaptive systems and evolving
a communication system that aids social learning. The software will be made
publicly available to allow other researchers to use the platform and test their
own agents.

The New Ties world is a grid world in which each point is a location. The
world is set up with places of varying roughness, tokens, edible plants, building
bricks, and agents (see [13] for a full description). Agents are provided with sen-
sors and actuators that allow them to see and act. The sensors are configured
such that an agent sees a number of perceptual features about the various ob-
jects, events and other aspects in their world. The actuators allow the agents to
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Fig. 1. A simplified example of a DQT. The diamond boxes are test nodes in which a
category (or conjunction of categories) is tested. The rectangular boxes are bias nodes
from which one branch is selected with a probability function relating to an innate
bias and a learnt bias (the learnt bias is adapted using reinforcement learning). Each
leave of the tree ends with an action node, which further expands as a bias node and
all possible actions consistent with the test nodes (see box). Note that in practise, the
DQT will be far more complex than this one.

move forward, turn left or right, pick up and put down objects, give and take
objects to/from other agents, hit other agents (possibly to death), eat, build
roads and barriers, mate, shout and talk. (Shout is directed to all agents within
vicinity, while talk is only directed to one selected agent within the visual field.)
Each action costs energy, the amount of which depends, for instance on the
weight carried by the agents or the roughness of the terrain. When the energy
reaches a level less or equal to zero, the agents die (they can also die of old age).
Eating plants increases the agent’s energy level, the amount of which depends
on the ‘ripeness’ of the plant.

The world can be configured to set challenges for the agents (i.e. pressures
to evolve particular types of behaviour that allow the agents to survive in this
world). For instance, the world can be configured such that food only grows in
distinct places at different times, as regulated by seasons. This would require
the agents to either evolve a sort of trading system to share food or to become
nomadic [13].

Agents develop their own control system mainly using individual learning.
This control system is a decision Q-tree (DQT), see Fig. 1, which is a decision
tree that can change using reinforcement learning [14]. The agents are ‘born’
with an innate tree, whose structure is specified by the agent’s genome. Using
this DQT, an agent reacts on the input (i.e. categories representing the current
visible situation). The resulting action is then evaluated yielding some reward,
which changes the Q-values attached to each node in the decision tree. Through
exploration, the agents can insert or delete nodes. Insertion of new nodes may
be guided by social learning (i.e. by inserting nodes to align parts of the tree
communicated by other agents).

The genome carries, apart from the initial DQT, a number of biases influenc-
ing the behaviours of agents regarding certain aspects [14], such as the tendency



to be aggressive or social. The social bias regulates, for instance, the frequency
with which agents communicate or help each other with learning language (see
Section 3). The genome is subject to mutation and cross-over as in standard GAs,
but the reproduction cycle is asynchronous. When agents achieve the adulthood
life stage, a male can ask a female to mate. If the female accepts, the agents mate
and produce offspring. The child is then initialised with a DQT and biases spec-
ified by the genome. During their childhood, agents have the innate tendency to
follow the first agent they see (usually the mother), which allows the agent to
learn from interacting with their mother.

Interaction is achieved by the predefined production and interpretation mech-
anisms, which resemble the language game model [12], though modified to be
more natural and stochastic as described in the next section. Communication
will be about parts of the path traversed through the DQT to decide on an action
that time step. This action may be a talk or shout action, but also something
else. The information communicated allows the receiver to reconstruct a part of
the speaker’s DQT, which may then be used to guide the insertion of new nodes.
As this aspect of social learning is still under development, it will not be further
addressed in this paper.

In order to facilitate the processing of these complex simulations, a peer-
to-peer network consisting of 50 PCs or more is constructed, where each PC
processes a dynamically changing part of the world in parallel [15]. It is clear
that such simulations will generate huge amounts of data, for which data mining
techniques are being developed to analyse these and detect emergent patterns
of cultural behaviour. The current state of the project is that each adaptive
system (biological evolution, individual learning and social learning) has been
developed to a large extent independently. These systems are now being tested
before they will be integrated. The remainder of this paper reports on some
initial tests relating to the language evolution mechanisms as part of the social
learning system.

3 Language evolution in New Ties

Figure 2 shows the basic architecture of the New Ties agents. The architecture
consists of four modules, which are processed in sequential order from top to
bottom. In addition, each agent has a short term memory (STM) and long term
memory (LTM). The input to an agent includes perceptual input regarding all
objects an agent can see in its visual field and all messages that were sent within
its audible range. The perceptually observed objects constitutes the agent’s con-
text. The output are actions and messages sent by the agent.

The perceptual input is first send to the categorisation module, where each
feature of each object is categorised with its nearest category. Categories are
represented as 1-dimensional prototypes (each dimension relating to a feature
dimension), some of which are innately specified, while some can be acquired
during development by playing discrimination games similar to the one described
in [11]. All categories are stored in the LTM. For the experiment described
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Fig. 2. The basic agent architecture of New Ties; see text for details.
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Fig. 3. A simplified illustration of the lexicon. The lexicon consists of two matrices
associating meanings m; with words w;. The left matrix stores association scores o;;
and the right matrix stores co-occurrence probabilities P;;. See the text for details.

in this paper, all categories are predefined. The categorisation yields for each
object a set of categories that describes the object. If the object is an agent,
the categorisation includes the action performed by that agent. All resulting
category sets are stored in the STM for further processing by other modules.

3.1 Interpretation

All messages an agent receives are processed by the language interpretation
module (LIM). A message can consist of multiple words. For each word an agent
receives, the LIM will do the following: The agent will start by searching its
lexicon (stored in the LTM) for entries that match the word. As described in [16]
the lexicon is represented by two association matrices (Fig. 3), one that maintains
association scores o;; and one that maintains a posteriori probabilities P;; =
P(wj|m;) of finding word wj, given meaning m;. The association scores contain
information about the association’s effectiveness as evaluated through feedback.



However, since we assume feedback is not always provided, nor is it always
accurate, the agents also maintain the co-occurrence probabilities allowing for
cross-situational statistical learning [17]. This latter method assumes that across
different situations a word always co-occurs with its meaning, thus allowing an
agent to learn the proper meaning without the need for feedback. The problem
with this is approach, however, is that cross-situational learning is a slow learner,
it requires consistent input and it is difficult to scale up in terms of population
size [18]; all conditions most likely not met.

If an agent searches its lexicon, it selects the association matching the heard
word and of which the association strength strL;; is highest. This association
strength is a coupling between the two scores o;; and P;:

strLi; = 045 + (1 — 045) Py (1)

This coupling assures that the association strength relies more on the asso-
ciation score o;; if it is high (i.e., it has been effective in previous interactions);
otherwise strL;; relies more on the co-occurrence probability P;;.

The speaker may have pointed to an object that closely relates to the mes-
sage’s meaning. (This object may be the entire meaning, but it also may be that
only a few features of this object constitutes the meaning or even that a few
features constitute only a part of the meaning.) If an object is pointed to, the
LIM verifies if this is consistent with (a part of) the interpreted meaning. If this
is the case, the interaction (aka the language game) is considered a success. If the
object does not relate to the interpretation, there are two possibilities: First, the
association score o;; exceeds a threshold @, in which case it is assumed that the
interpretation is correct, but the speaker got it wrong. In that case, the hearer
may send a hard-wired ‘error’ message as a form of feedback. This message is
send with a probability 8 based on the social bias (see above) and the social
bond the agent has with the speaker. This social bond is a score based on the
number of interactions the agent has had with the speaker and is maintained in
the LTM. Second, if 0;; < @, the interpretation is assumed to be wrong, so the
association score o;; is lowered and the word is associated with all categories
relating to the pointed object.

If no object is pointed to and ¢;; > @, then the game is considered a suc-
cess. Otherwise, the agent either sends a ‘did not understand message’ (dum)
or nevertheless assumes success. This decision is also made with a probability
proportional to 5. The higher 3, the higher the chance a ‘dum’ message is send.
The rationale behind this is that the more social an agent is, the more inclined
it is to put more effort in correctly understanding the speaker.

If the language game was considered a success for all words in a message,
the interpretation of the message is added to the context in the STM for further
processing by the DQT. With a probability proportional to 3, the hearer will
send the speaker an ‘understood message’ (um) as part of the feedback. Also the
interpretation’s association scores o;; are increased using the following equation:

oy =n-05+1—n (2)



where 7 = 0.9 is a learning parameter. In addition, the hearer lowers all com-
peting association scores oy (k =14 or [ = j, but not both) following:

Orl =100k (3)

In the cases where a ‘dum’ message was sent (i.e., the game is considered to
have failed), the association scores of the interpretation are also lowered using
this formula. In addition to these updates, in all cases the co-occurrence prob-
ability of this word with all meanings (i.e., categories) in the current context
is increased. (Note, by the way, that the agent may not have seen the object
relating to the word’s meaning, so interpretations and/or adaptations may be
wrong.)

If the agent did not find an interpretation in the current context, the agent
will check if the speaker pointed at an object. If so, the agent associates the
word with all categories relating to that object. Otherwise, the agent associates
the word with all categories relating to all objects in the current context. In
this latter case, the initial association scores are inversely proportional to the
maximum association score a meaning already has with other words. This way,
there is a bias that the word’s meaning is one that has not yet an association
with another word. This could be seen as a loose implementation of the principle
of contrast [19] observed in children’s acquisition of word-meanings.

3.2 Production

When the LIM has finished processing, the control module will process the DQT
using all categories resulting from the categorisation and language interpreta-
tion modules as input. By traversing the tree following the results of the test
nodes (each test node checks for the truth value of a category) and following the
decisions made at the bias nodes (Fig. 1), the controller reaches a leave node,
which is some action to be performed. Irrespective of whether or not the action
is to talk or shout, the language production module (LPM) is started, because
even if the action is not to talk or shout, the LPM may nevertheless decide to
communicate about something.

First, however, the LPM checks if the agent has produced an utterance in the
previous time step. If so, the LPM will evaluate the success of that interaction.
To this aim, it will see if either an understood message (um) or an error message
was received. If an ‘um’ was received, the game of the previous time step is
considered successful and the used association score is increased following Eq.
(2) and competing ones are inhibited following Eq. (3). If an error message was
received, the game is considered to have failed and the used association score is
lowered using Eq. (3).

Next, the speaker will decide whether to produce a message or not. If the
control module has decided the agent should talk or shout, the LPM will produce
a message. Otherwise, the agent may decide — with a probability proportional
to B — to produce a message if the agent received a ‘dum’ message or if the
agent produces a different action than in the previous time step (i.e. in the case



of a novel action). In the case a ‘dum’ message was received, the agent will
produce a (possibly different) message about the same meaning as before, but
now will include pointing. (Note that this message may be different if the agent
has meanwhile changed its lexicon.) Otherwise, a meaning is selected as follows.

First a task complexity Cy is chosen. The task complexity is a value that
indicates how many words the message will contain. For now C} is a value be-
tween 1 and 5, and it is determined by generating a random number following
a Gaussian distribution with a mean equal to the average age of other agents
in the context in tens of years and a standard deviation of 0.75. If the number
is larger than 5, task complexity is set to 5. This way, the agent will tend to
speak short sentences to younger agents and longer sentences to older agents.
The rationale behind this formula is that short sentences are easier to interpret
by less skilled language users than longer sentences. In addition, this may form
an interesting basis for bootstrapping compositionality [20].

Once C} is set, the LPM decides on the actual meaning to be communicated.
This meaning is selected from the trace of the DQT. The trace is the list of test
nodes (i.e. categories) that have been traversed through the DQT in order to
reach the final action node. This action node is also included. The agent selects
a position (Pos) within this list and then selects the categories using one of the
following three options at random:

1. the first C; categories starting at Pos,
2. the first C; — 1 categories starting at Pos plus an action node, or
3. the action node.

Note that an action node may be a 1-, 2-, or 3-place predicate, such as
move-forward, pick_up(o) or give(a,0), where o is an object and a is an agent.
The position Pos is also determined generating a random number following a
Gaussian distribution with a mean equal to the average age of an agent and
some standard deviation. This number is then scaled to the size of the trace.

So, the younger the communication partner the higher the position of the
meaning in the tree. The reason for this mechanism is that children in the model
are born with an innate DQT constructed from the genomes of its parents.
Hence, the likelihood that the child will have the communicated structure in its
own DQT is fair, which increases the chance of the child being able to learn the
language well.

The meaning thus selected consists of at most 5 categories. For each category,
the LPM searches its lexicon for associations of which the meaning matches the
category and for which the association strength strL;; (Eq. 1) is highest. The
associated word is then appended to the message. If a category has no entry in
the lexicon yet, a new word is created as a random string and the new association
is added to the lexicon. It is important to realise that agents are ‘born’ with an
empty lexicon.

Once a message is thus constructed, the LPM decides whether the agent will
point to an object that directly relates to the message’s meaning. This decision
is, again, made with a probability proportional to the socialness bias 8. So,
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Fig. 4. These graphs show the evolution of accuracy and compositionality (left) and
population size and number of games per 30 time steps (right) of one simulation run.

the more social the agent is, the more likely it is to provide its communication
partner with hints as to what it is referring to.

4 Preliminary results

In this section we present some preliminary results obtained with a somewhat
simplified version of the model presented above. The reasons for these simplifica-
tions is that we are still in a developmental stage and we first want to test some
mechanisms using a stripped model. The simplifications involve the following:
1) Instead of taking the meanings from the DQT trace, speakers communicate
about a number of features of one object in their visual field. The number of
features is determined by the task complexity C;. 2) Pointing is implemented
by transferring only the perceptual features of the object the speaker is com-
munication about. Ideally, it will transfer all perceptual features of an object
relating to the meaning being conveyed, allowing the hearer to search for the
object that most closely resembles these features. The current simplification is
in effect explicit meaning transfer, which will be avoided in future studies. 3)
There is no evolution on the genome and there is no individual learning. As a
result, all agents have the same DQT and the socialness gene is not subject to
evolution, but generated randomly. In the simulation reported here, agents only
move around, eat, reproduce without changing their genomes and communicate
with each other.

Figure 4 shows the results of one single simulation that was run for slightly
more than 6,000 time steps, which comes to about 18 years in New Ties time.*
The left graph shows communicative accuracy, which is the average number
of successful interactions (i.e. the hearer interpreted the speaker’s message cor-
rectly) during an interval of 30 time steps, and compositionality, which measures

4 We intended to show a longer simulation, but failed to complete that before the
deadline of SAB. This simulation took about 4 days to run on a single PC. We
expect include state-of-the-art results in the final camera-ready version.



the proportion of interactions that used more than one word averaged over an
interval of 30 time steps. Accuracy rapidly rises to a level around 75% during the
first 1,000 time steps, but starts to decrease from around 4,000 time steps. This
occurs at the same moment compositionality increases from around 50% to 55%.
This sudden change is marked by the fact that the first agents start to reach
an age higher than 10, which is a turning point that triggers task complexity to
increase. Before that stage the mean fed into the Gaussian used to calculate the
task complexity cannot be larger than 1 as the mean is the age in tens of years
(so 1 corresponds to an age of 0-10, 2 to 11-20, etc.).

Note that since the population is still increasing, not all agents have reached
the age of 10 yet. The rightmost graph of Fig. 4 shows the average population
size and the average number of interactions, both during time periods of 30 time
steps. This graph shows that the population size is increasing steadily from 100
agents to approximately 275 agents. This increase is due to the reproduction of
agents, while only few agents died from lack of food as there was plenty of food
around in this set up, and no agents had died yet of old age, since no agent has
reached old age.

The average number of interactions shows that many agents produce a mes-
sage each time step. Over the entire period of 6,000 time steps, the average
was around 100 interactions, so in total around 600,000 interactions were per-
formed. Of these interactions, feedback was provided in only 12%, while pointing
was carried out in only 28%. So in 60% of all interactions there was no explicit
meaning transfer. Nevertheless, the population was quite successful in communi-
cation. These results show that the current coupling of cross-situational learning
with cases where feedback is evaluated works well, as was previously shown in a
simulation of the Talking Heads experiment [21].

5 Conclusions

This paper presents the model concerning language evolution in the New Ties
project. This project aims at setting up large scale simulations to study the
evolution of cultural societies by combining evolutionary, individual and social
learning techniques. Language evolution is modelled through agents’ interactions
(or language games), whose mechanisms are predefined, but work stochastically.
Interactions are initiated by novel actions and some mechanisms are only carried
out stochastically following a socialness bias. The learning mechanisms allow
each individual agent to invent new words and acquire words from other agents.

The preliminary results show that the main principles work well, though some
mechanisms were simplified, so these still need to prove their value. For instance,
pointing is currently simplified by exchanging the exact meaning, allowing the
hearer’s to verify or acquire the intended meaning. If instead the speaker points
to an object that only relates to a part of the meaning as is intended in future
simulations, the hearer will have more difficulties identifying the exact meaning
conveyed by the speaker. In the easy case, where the speaker communicates one
word referring to one feature of an object it points to, there are on average 10



different features of the object this word may refer to. As there is no way an agent
can point at individual features, the hearer can only depend on cross-situational
learning of this word. The context size in this case is 10, which is relatively
large, given the finding that learning speed in cross-situational learning under
ideal conditions increases almost log-exponentially with the context size [22]. The
ideal condition, however, that the input to the hearer is consistent is not met
because different agents will use different words for expressing the same meaning,
which makes cross-situational learning hard for larger populations [18]. Possible
solutions could include the use of mutual exclusivity [23], which relates to the
principle of contrast used here.

In the current simulation, all agents talk about aspects of objects, whose
meanings are transmitted explicitly. It is interesting to investigate how the lan-
guage will evolve when the agents will communicate about parts of their own
controller which may differ from one agent to another as the result of genetic evo-
lution or reinforcement learning. In that case, the meaning conveyed may relate
to more objects (e.g. eat(food)), so one cannot point to both food and the action
eat. This will thus increase the complexity of learning the words’ meanings. It is
hoped that by varying the task complexity (in addition to the cross-situational
learning) agents will be able to learn the meaning of single words that will allow
learning the more complex expression in a similar way as shown in [20,11]. For
instance, if the hearer knows the word for food, but not the word for eat, she may
learn the right association if she hears “eat food” and sees the action eat(food).

Once the project has further developed and all different techniques, such as
evolutionary, individual and social learning, have been integrated with this lan-
guage evolution model, the resulting platform could be used to investigate many
interesting aspects of (human) evolution. These aspects include the dynamics of
cultural evolution, the interaction between evolutionary, individual and social
learning, social interaction mechanisms and cognitive capacities required for so-
cial behaviour and language to evolve, and the effect environmental constraints
have on the evolution of a cultural society. Since the New Ties project has very
ambitious aims, we will invite other researchers to use our platform to investigate
their own ideas.
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