
Rough guide to use THSim v4.0

Paul Vogt
Language Evolution and Computation Research Unit, University of Edinburgh

40 George Square, Edinburgh EH8 9LL, UK.
Induction of Linguistic Knowledge / Computational Linguistics, Tilburg University

P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
paulv@ling.ed.ac.uk, http://www.ling.ed.ac.uk/~paulv/

August 13, 2004

1 Introduction

THSim v4.0 is a simulation toolkit for studying aspects of language evolution. The main functionality of
the toolkit is described in [2] and the user is referred to this paper for a functional description of THSim.
If you intend to use the toolkit for research, please acknowledge the author of the toolkit by citing that
paper in any publication that comes out of your research.

This manual is served to help the THSim user to install the package and to start investigating
the system. The manual is written such, that the reader is assumed to be familiar with the general
functionality of the system, so it is advisable to read [2] first. New additions of version v4.0 with respect
to versions v3.2 and v3.2.1 include two different types of agents. These agents are described in [3, 1]. If
you use either of these agents in published research, please cite the relevant paper too.

The remainder of this manual discusses the installation of THSim and how to get started. Then it
briefly summarises the different agent types (Section 4) and game types (Section 5). Various parameters
are discussed in Section 6. Section 7 describes the various output modes and presents some hints and tips
how to analyse the data. Finally, Section 8 presents some additional notes on command line processing.

2 Installation

To install THSim, you first have to download the package thsim.tar.gz from
http://www.ling.ed.ac.uk/~paulv/thsim.html. Once you have dowloaded thsim.tar.gz, you un-
pack the package in any directory you like, e.g. ~/thsim/ (Linux) or c:\thsim in windows.

Be sure to set Java’s classpath to the current directory. In Linux this can be done by adding the line

export CLASSPATH=.

to your .bashrc file. In windows you can either adjust the autoexec.bat or provide the argument
-classpath=... when running java. In some cases, you might need to recompile the package (especially
if you have a different version of java, or if java is installed at a different location than with which it was
compiled). This can be done using make or by javac THSim.java. The version of java that should work
is Sun’s Java 2 Platform, Standard Edition v 1.4.1 or higher (http://java.sun.com).

There is a limited documentation of the source code, which can be found in the docs directory of the
package, or the online version at http://www.ling.ed.ac.uk/~paulv/thsim/docs/index.html.

THSim should work well under Windows and Mac, but it has only been tested recently under the
Linux operating system. Some of the features, especially with respect to some data-output, are specifically
designed for use under Linux. Regarding these aspects, you are on your own I’m afraid...

1

Figure 1: A screen shot of THSim.

3 Getting started

There are basically two ways to start running THSim: with or without the user-interface. In this section,
THSim is explained in case you start it with the interface. To start up the interface, you simply type
from the dos or linux/unix prompt java THSim.

If all goes well, THSim is started displaying the screen shown in Fig. 1. In the window, there are four
subpanels. The GEOM world, Language games, Statistics and Control panels. This first three panels are
only output panels and display various information to the screen (see Section 7); the Control panel allows
you to start the game and change various parameter settings. To start a simulation with the default
setting, simple push the Run or Step button.

When the Run button is pressed, THSim will – in the default setting – simulate 1000 guessing
games played by a population of 2 compositional agents under a number of conditions set in the control
panel. Using the Step button, the system will run for the number of games indicated with the parameter
stepSize, which at default is set to 1. For both buttons, the simulation will only proceed to play language
games if the current language game number is lower than nIter×nGames.

When you want to start a new game, press the New button. This reinitialises the simulation. It
is often necessary to press this button when you want to run the simulation after you have changed a
parameter, because I do not guarantee that all settings will be changed properly when the New button
is not pressed and sometimes the simulator may even crash in these circumstances.

When you want to stop the simulation when running, you can press Stop. When it has stopped
(either because you have pressed Stop or because the simulation has ended), you can press the Show
button to show you the lexicon or grammar (depending on the type of agent). In order to proceed running
the simulation, the lexicon window needs to be closed before you press Run, Step or New again.

Table 2 presents an overview of the parameters that can be set in the control panel, together with
their default setting. These will be discussed in Section 6. Two tips on running the simulation: 1) If
you simulate a large population, you might need to increase the heap size of the java interpreter, e.g.,

by specifying the maximum heap size using the argument -Xmx256MB. 2) Java is faster when you let the
interpreter compile the simulation first as a server by specifying the argument -server. However, this
will take longer for the simulator to start running, so it only useful for longer simulations. Using these
options, you will have to start the program using:

java -Xmx256MB -server THSim

4 Three agents

In THSim, three different classes of agents have been implemented: 2 holistic agents (HA & HA2) and 1
compositional agent (CA). The holistic agents only develop lexicons (or holistic communication systems)
and the compositional agent can develop a language with compositional structures. The two holistic
agents differ in the way their semantics are constructed.

HA The agent defined in HolisticAgent.java has one conceptual space into which meanings are con-
structed as prototypes, see [2] for details. HA is in the UI referred to as ‘Holistic - flat‘.

HA2 The agent defined in HolisticAgent2.java has a hierarchically layered organisation of conceptual
spaces. Each layer allows a different number of meanings (represented as prototypes), thus having
different taxonomies on categories. The layer with the least number of meanings (ie. lowest density)
contains general categories and the most dense layer contains specialised categories. The details of
this agent are explained in [3].

CA The compositional agent is defined in CompositionalAgent2.java and is described in detail in [1].

5 Three games

THSim has three different types of language games implemented: observational games (OG), guessing
games (GG) and selfish games (SG), see [2] for details. These three games differ in the way hearers
have to infer the speakers’ intentions and in the way associations between the semantics and signals are
adapted. In the current implementation, all games can be played by HA and HA2; CA can only play OG
and GG (the SG will be implemented in due time). Below follows a brief summary of the three games.

Observational game: In the observational game, the speaker draws the attention of the hearer to the
topic the speaker selected to communicate about, thus establishing joint attention prior to the verbal
interaction. This way, the hearer observes both the signal and the reference, allowing association
between signal and meaning to be adapted following Hebbian learning.

Guessing game: In the guessing game, the speaker does not draw the hearer’s attention to the topic,
so the hearer has to guess the speaker’s intention from its utterance. After the hearer guessed
something, the agents verify whether the guess was right or not. If it was not right, the speaker
provides corrective feedback so the hearer can adopt new knowledge and adapt associations using
reinforcement learning.

Selfish game: In the selfish game, the hearer also has to guess the speaker’s topic, but the agents do
not verify the success of the hearer’s guess. Associations between signals and meanings present in
a context (or situation) are increased. Learning then proceeds following cross-situational statistical
learning.

Table 1 summarises the three different language games.

Joint Corrective Learning
type Attention Feedback Rule
OG + - Hebbian
GG - + Reinforcement
SG - - Cross-situational

statistical

Table 1: A summary of the three different game types

6 Parameters of the Control Panel

Table 2 presents the parameters that can be set in the control panel. This section explains these param-
eters in more detail, see also [2, 3, 1] for more details on some of the parameters.

agentType specifies the type of agent. Holistic - flat relates to HA, Holistic - hierarchical
relates to HA2 and Compositional (default) to CA.

gameType specifies the type of language game that is played during a simulation, unless varGames=true
because that overrides gameType. The games that can be set are observational games, guessing games
(default) and selfish games.

uPType allows the experimenter to set the rule with which prototypes are moved in the direction of the
observation. Four rules can be selected from: centre-of-mass (default), simulated annealing, walk
and none. In the latter case, the prototypes are static. For the other rules, consult [2].

features allows the user to select those features that the agents use for categorising objects. The features
that can be selected from are Red, Green and Blue colour components, a Shape feature, X-axis position
and Y-axis position (see [2] for a description).

popSize is the total population size at each instance. If the ILM is activated (ie. nIter>1, the number
of adults are popSize/2, which is rounded to the floor: if popSize is an odd number (e.g., if popSize=3,
then nAdults=1). The number of learners is nLearners=popSize-nAdults.

nGames lets you specify the number of games that are played each iteration. I.e. the simulation runs
until the game number lg equals nIter×nGames. When the simulation has been stopped somewhere and
(lg mod nIter)≥nGames, the simulation does not continue to run when you press Run or Step.

stepSize lets you specify the number of games played when the Step button is pressed, as long as (lg
mod nIter)<nGames.

nIter If nIter=1, there is no population turnover in the experiment and all agents are considered equal.
If nIter>1, there is a population turnover according to the iterated learning model, and half of the
population are adult agents and the other half are learner agents (TIP: let popSize be an even value)

pAdultSpeaker is the probability with which the speaker is selected from the adult population. The
speaker is selected from the learner population with probability 1-pAdultSpeaker. This only applies
when nIter>1.

pAdultHearer is the probability with which the hearer is selected from the adult population. The
hearer is selected from the learner population with probability 1-pAdultHearer. This only applies when
nIter>1.

trainingSetSize is the parameter with which bottlenecks can be regulated. If trainingSetSize>0, a
bottleneck is imposed as follows: At the start of each iteration, trainingSetSize different objects are

Parameter Value Description Possible values

agentType Compositional The type of agent that is initialised. Holistic - flat,
Holistic - hier-
archical, Com-
positional

gameType guessing game Indication which type of language game is played during the
simulation.

Observational
game, guessing
game, selfish
game

uPType centre-of-mass Indication with which adaptation scheme the prototypes are
moved toward the topic’s feature vector at the end of a suc-
cessful disrimination game.

centre-of-mass,
simulated an-
nealing, walk,
none

features RGBAXY Indication which features are used by the agents. RGBAXY
popSize 2 Number of agents in the population. N > 2
nGames 1000 Number of games played (during one iteration). N > 0
stepSize 1 Number of game played when ‘Step’ button is pressed. N > 0

nIter 1 Number of iterations. N > 0
pAdultSpeaker 1.0 Probability that speaker is selected from adult group. 0 ≤ X ≤ 1
pAdultHearer 0.0 Probability that hearer is selected from adult group. 0 ≤ X ≤ 1
trainingSetSize 0 Bottleneck size 0 ≤ N ≤ 120

pOG 1.0 Probability that an OG is played (varGames). 0 ≤ X ≤ 1
pGG 0.0 Probability that a GG is played (varGames). 0 ≤ X ≤ 1
pWC 1.0 Word-creation probability. 0 ≤ X ≤ 1

alphabetSize 26 Size of the alphabet (Compositional Agent only) 1 ≤ N ≤ 26
etaN 0.9 Learning parameter for OG and GG. 0 ≤ X ≤ 1
etaS 0.9 Learning parameter for SG. 0 ≤ X ≤ 1

preLing 0 Nr. of games played before learner starts inducing grammar
(CompositionalAgent only)

0 ≤ N ≤
nGames

memMeanings 1000 Size of memory for meanings (HolisticAgent(2)) N > 0
memWords 1000 Size of memory for words/symbols (HolisticAgent(2)) N > 0

cxtSize 4 The context size. 2 ≤ N ≤ 8
foa 4 Size of the focus of attention 1 ≤ cxtSize.

pNoise 0.0 Perceptual noise. 0 ≤ X ≤ 1
popGrowth 2 Growth of the population. 0 ≤ N ≤

maxAgents
maxAgents 20 Maximum population size (incrPop). N > 0
workDir null Working directory for print scores any valid direc-

tory.
testPop true Indication whether the population is tested or not true/false

printScores false Indication whether the scores are traced or not true/false
S2S true Indication whether in the first iteration all agents are consid-

ered equal (true) or not (false).
true/false

varGames false Indication whether different types of games are played during
a simulation run.

true/false

uScore true Indication whether or not the association scores are updated
according to the score-based rules.

true/false

adaptSG true Indication whether the hearer adapts its lexicon in SG. true/false
fCol true Indication whether the colours are selected from a fixed set of

12 different colours.
true/false

incrPop false Indication whether the population grows incrementally. true/false
log false Indication whether the simulation is logged. true/false
lex false Indication whether the lexicon is saved at the end of a simu-

lation run.
true/false

printGame false Indication whether to write the output of a language game to
the screen.

true/false

Table 2: An overview of the parameters that can be set in the control panel. The parameters (1st column)
with default values (2nd column) are described (3rd column) and have possible values (4th column). For
the possible values N means it has to be an integer and X means it has to be a double value. See the
text for further details.

selected randomly from the 120 different objects (10 shapes × 12 colours) to form a training set. During
each iteration, the population only communicate about the objects from the training set.

varGames pOG pGG can be used to vary the types of language games played within one simulation.
If varGames=true, the simulation selects each time one type of game from the OG, GG and SG. The
probability with which an OG is selected can be set by pOG, the probability with which a GG is selected
can be specified by pGG and the probability for selecting a SG is pSG=1-pOG-pGG.

pWC is the word-creation probability. The probability with which the speaker creates a new word when
it is unable to produce an utterance.

alphabetSize is the number of letters that are in the alphabet of a CA. At default, this is set to the
maximum of 26, which comprises the entire English alphabet. If lower, the alphabet contains the first
alphabetSize letters of the alphabet. So, when alphabetSize=3, the alphabet is {a,b,c}.

etaN is the learning parameter η used for the OG and the GG.

etaS is the learning parameter η used for the SG.

preLing sets the number of language games before a learner CA starts inducing language. Thus the first
preLing games are a ‘pre-linguistic‘ phase used to develop a part of the ontology.

memMeanings sets the memory size of HA and HA2 for the number of meanings the agent can store.
If the limit is reached, the agents start a forgetting mechanism that prunes all elements (both words and
meanings) of which the scores (or probabilities) are lower than a certain threshold.

memWords sets the memory size of HA and HA2 for the number of words (or symbols) the agent can
store. If the limit is reached, the agents start a forgetting mechanism that prunes all elements (both
words and meanings) of which the scores (or probabilities) are lower than a certain threshold.

cxtSize The size of the context specifies the number of objects that are constructed for each language
game. It has been found that the maximum context size is 8, which is due to the limited spatial size of
the display of the GEOM-world. If cxtSize is larger, then the simulation might end up in a infinite loop.
This should be fixed in future releases.

foa specifies the focus-of-attention size. The focus-of-attention is a subset of the context from which the
topic is selected and used by the hearers to guess the reference of a topic from. As it is a subset of the
context, foa≤cxtSize.

pNoise determines the noise that is applied to each feature perceived by each individual agent. The
noise is calculated based on the Gaussian function:

G(x, σ) =

{
e−(x

2σ)2 if x < 0
2− e−(x

2σ)2 if x ≥ 0
(1)

where σ =pNoise and x is a random value. Now, each feature fi is perceived by an individual agents as
f ′i according to

f ′i = fi ∗G(x, σ) (2)

where x ∈ [−0.5, 0.5] is a randomly generated value and i is the feature’s dimension (e.g. the red
component of the RGB colour space). Each feature is always bounded f ′i ∈ [0, 1]. In order to have noise,
the value pNoise must be larger than 0. However, the smaller pNoise is, the bigger the actual noise. If
pNoise=0, no noise is calculated. Figure 2 shows the G(x, σ) for different values of σ.

incrPop popGrowth maxAgents allow the experimenter to investigate how the the population can
be scaled up. If the population is large from the beginning, this is difficult. However, if the population
grows incrementally, larger populations might develop a stable communication system. If incrPop=true,

3.0

0.1

0.1

3.0

0.2

0.2

 0

 0.5

 1

 1.5

 2

−0.4 −0.2 0 0.2 0.4

G
(x

,s
)

x

Figure 2: The Gaussian-based function G(x, σ) that regulates the noise for different values of σ =
pNoise = {0.1, 0.2, . . . , 1.0, 2.0, 3.0}. In the production of noise, a random value − 1

2 ≤ x ≤ 1
2 is produced

and the result of G(x, σ) is multiplied by the original feature values. Here, σ = pNoise is specified by the
experimenter. If pNoise=0, the feature values remain undisturbed.

the population increases each iteration with the number specified with popGrowth, until a maximum
population size is reached of maxAgents. incrPop only has effect when nIter>1, while popGrowth and
maxAgents only apply to incrPop.

workDir sets the work directory in which the files are stored for tracing the word-meaning scores (see
Section 7.9). If you specify a directory that does not exist, THSim will try to create the directory. If
that fails, THSim will produce an error message and quits.

testPop If testPop=true, the population is tested at the end of each iteration/simulation. During this
test, 200 different situations (context and topic) are constructed. Then each agent plays the role of a
speaker, and each agent tries to interpret (or decode) the utterances produced by the other agents. From
these tests, a couple of measures are calculated and written to the standard output. During the test
period, agents do not adapt their knowledge. (See Section 7 for more information.)

printScore indicates whether or not the word-meaning scores of some words are traced and put into a
file (see Section 7.9). These files are stored in the working directory specified with workDir. This works
only in combination with HA and HA2.

S2S regulates wether or not in the first iteration all agents are considered equal or not. When they
are (default), the first iteration makes no distinction between adults and learners and each agent is
equally likely to be selected as speaker or hearer. If S2S=false, the population in the first iteration
distinguishes between adults and learners and the selection of speakers and hearers are regulated according
to pAdultSpeaker and pAdultHearer. In all cases, the system will work as a ‘normal’ iterated learner
from the second iteration onwards. This only applies when nIter>1.

uScore allows the user to specify whether the association scores are adapted based on the score functions,
e.g., σ = η · σ + 1− η, or based on the usage. The default value (true) selects the score-based update.

name code RGB-vector
black 000 [0.00,0.00,0.00]
blue 010 [0.00,0.00,1.00]
cyan 020 [0.00,1.00,1.00]

green 030 [0.00,1.00,0.00]
magenta 040 [1.00,0.00,1.00]

orange 050 [1.00,0.78,0.00]
pink 060 [1.00,0.69,0.69]
red 070 [1.00,0.00,0.00]

yellow 080 [1.00,1.00,0.00]
gray 090 [0.50,0.50,0.50]

dark gray 100 [0.25,0.25,0.25]
light gray 110 [0.75,0.75,0.75]

Table 3: The colours of the objects with names, description code (for output) and the RGB values.

adaptSG can be used to turn off the adaptation of scores in the SG. This can be useful to investigate
the effect of score adaptation in the SG relative to the OG and GG when varGames=true.

fCol indicates whether or not the colours are selected (randomly) from a fixed set of predefined colours.
If this is not selected, the colours are generated as random RGB vectors, ie. each component R, G and
B is assigned a random value between 0 and 1.

log indicates whether the language game data is saved in a file. When log=true, the system will ask for
a filename.

lex indicates whether the lexicon is saved in a file at the end of each iteration. The system will ask for a
filename when lex=true.

printGame tells the system to write the output of a game to the standard output of the program.

7 Output

THSim has various ways of digesting information that is relevant for a user. In the user interface there
are three windows that display information to the user, see Fig. 1. By pressing the Show button, you
can additionally display the lexicon or grammar on the screen as will be discussed shortly. Additionally,
there are a number of different ways to output information in a file or to the standard output. The
remainder of this section describes the output presented by THSim.

7.1 GEOM world

The left top window of THSim displays the GEOM world. GEOM world is the environment where the
agents ‘look’ at during a language game. This environment is drawn for every language and displays the
figures that are generated by the simulator. The figures displayed form the context of the language game,
consult [2] for more details.

The objects can have 12 different colours (see Table 3) and 10 different shapes (see Table 4). Each
object is positioned at a x- and y-coordinate in the display. The agents detect the feature values of the
objects as values between 0 and 1. These values depend on the aspects of the objects. The colour features
the agents can detect are the components of the RGB vector of the colour. The shape feature (fS) is
calculated based on the area As of the shape and the area Ab of the smallest rectangle that can be drawn
around the shape according to:

fS = 2(
As

Ab
− 1

2
) (3)

name code feature
circle 0 0.57

triangle 1 0.00
rectangle 2 1.00

square 3 1.00
pentagon 4 0.50

regular hexagon 5 0.33
irregular hexagon 1 6 0.67
irregular hexagon 2 7 0.77
irregular pentagon 8 0.88

cross 9 0.11

Table 4: The shapes of objects with names, description code (for output) and their feature values,
calculated following Eq. (3).

7.2 Language games

The left bottom window of THSim shows more information about the language game that is played.
On the top line the window provides information concerning the iteration number, the language game
number and the type of language game (o=OG, g=GG, s=SG).

The second row presents which agents are speaker and hearer and what topic they identified. If no
topic was identified, the hearer’s topic is indicated with -1. (This also happens if the speaker does not
produce an utterance.)

The third row indicates for holistic agents (HA and HA2) which meaning the agents used to distinguish
the topic. If the discrimination game failed, this is indicated by the message “Discr. game fails”. This
message also appears if the speaker did not produce an utterance, because then the hearer did not receive
an utterance.

For compositional agents (CA), the third row shows the rule that is used, where the rule is of the
form S->word/F/S or of the form S->[3,60]/F/S, where F is the frequency with which the rule has been
used and S is the rule weight. The ’word’ is presented when the rule is holistic. Compositional rules are
specified by the covers of the conceptual space (or linguistic category) they rewrite to. A cover is given
by the integer representation of a bit-string, which indicates which dimensions belong to the conceptual
space. This is calculated as

∑n
i=1 δi2i−1, where n is the dimension of all features used in the simulation

(depends on which features you select), and

δi =

{
1 if i is a dimension of the the conceptual space.
0 otherwise

(4)

For instance, if the agents use all features RGBAXY to perceive their world, the value 63 represents
the bitstring 111111 relating to all features, the value 3 represents 110000 relating to the space covering
dimensions R and G (RG for short), and value 60 represents 001111 relating to conceptual space BAXY.
A prefix new or new part informs us that the rule is new or a part of the rule is new.

Then there are two diagrams indicating the feature vector of the identified topic (open boxes) and
the prototype of the meaning (coloured boxes). In Fig. 1 there are 6 features for each agents, when less
features have been selected, less will be displayed. The labels on the bottom of the diagram indicate to
which feature the value belongs.

Below the diagram, a line appears with the utterance the speaker produced and, if the hearer inter-
preted it, the line repeats the hearer’s interpretation. This is followed by the information ‘LG fails’ or
‘LG succeeds’. In case no expression is made, this is informed as well. For a holistic agent (HA and HA2),
the expression is the string given; for the compositional agent, the expression is given in a list between
square brackets. This list can have 1 or 2 words depending on whether the rule is holistic or not. (Fig.
1 shows an example of both a holistic and compositional rule.)

7.3 Statistics

The statistics diagram shows the running values of discriminative success and communicative success.
These values are calculated over the past 50 language games and is an average of the number of successful
discrimination or language games during this period. When the boundary of the diagram is reached, the
scale on the x-axis (number of games) is doubled. For the compositional agents, an additional measure
‘compositionality’ is presented. This is – in contrast to the compositionality presented in [1] – a measure
that gives us the average number of compositional utterances used in a period of 50 language games.

At the end of each iteration or at the end of the simulation, the display also shows the test results.
For the holistic agents (HA and HA2) these are pCoherence and iCoherence. pCoherence stands for
production coherence and is the average number of agents producing the same words to express an object
averaged over 200 test games. iCoherence is the average number of agents that successfully interpreted
the mostly used expressions for the objects over the same 200 test games.

For the compositional agent, the pCoherence given at the end of each iteration is the same as above.
The iAccuracy is the proportion of agents that could successfully interpret the utterances produces by
the other other agents, averaged over the 200 test games. The compositionality given at the end of
the population test, differs from the one shown in the graph. Here it is the proportion of compositional
rules with respect to the number of expressions made, averaged over the number of agents, as presented
in [1].

7.4 Lexicons and Grammars

When pressing the Show button after a simulation has stopped, the lexicon window pops up. This
window shows a representation of the lexicon (HA and HA2) or the grammar (CA) for all agents in the
population at that moment.

Figure 3 shows the lexicon window for a HA. The lexicon is shown as a table of dimension popSize x
nWords. Each column of the table represents the lexicon of an agent, and each row a word in the agents’
lexicons. The cells of the table are filled with grids of dimension NxM, where N=10 is the horizontal
dimension in which each grid indicates a value between 0 and 1 (the leftmost cells have values in the
range [0.0, 0.1〉, the second cells have values in the range [0.1, 0.2〉 and so forth), and the M equals the
number of features an agent detects (dimension of the conceptual space). Inside some of the grid cells,
black squares of different sizes appear. These squares indicate that the word has a meaning with a value
that is represented by the horizontal position of the grid-cell in the dimension specified in the grid cell’s
row. The size of the square indicates the weight of that part of the meaning with the word.

Following the largest blocks in the grid for word “decihe” for agent A6 (Fig. 3), we see that the
agent has a preferred meaning for “decihe” with fR ∈ [0.0, 0.1〉, fG ∈ [0.9, 1.0], fB ∈ [0.0, 0.1〉, fS ∈
[0.9, 1.0], fX ∈ [0.7, 0.8〉, fY ∈ [0.8, 0.9〉. Other meanings of A6 for “decihe” use more or less the same
colour (green) for different shapes on different positions in the world. Looking at the meanings for the
same word of agent A7, we see that it has similar meanings.

Figure 4 shows the grammar window for a population of two compositional agents. This display is
very similar to the lexicon shown in Fig. 3 but differs in a number of ways. The first few lines show the
compositional rules of the agents grammars, together with their rule weights, displayed as black squares
of different size (as before, the size is proportional to the value). The rules rewrite from a sentence S1 to
compositions of linguistic categories that are indicated by a string containing the labels of each dimension
that is part of the conceptual space of this linguistic category. For instance, the strongest rule (ie. the one
with highest rule weight) is of the form S->R ; GBS, so where the first constituent has the 1-dimensional
conceptual space relating to the red component, and the second constituent has a linguistic category of
which the conceptual space is spanned by the dimensions G (green componenent), B (blue component)
and S (shape).

The cells of this table contain the terminal rules, which are preceded by a string indicating the
dimensions of the conceptual space that determines the linguistic category of the rule. Each cells now
prints the word of the rule above the grid, followed by the rule weight (again this is a black square). The
grid, again, shows the meaning for this rule, which are now occupied by the categorical features (ie. the

1Apologies for the unfortunate coincidence with the letter used to refer to the feature shape.

Figure 3: The lexicon window for a holistic agent.

meaning blocks of the CA). At the bottom of Fig. 4 three terminal slots are shown that have a lower
dimension than the holistic space. For instance, the lowest terminal rule has the linguistic category that
covers dimensions B and S, has a word “muu” and for both agents, the rule weight is low (it looks like
1x1 pixel, so the rule weight is in the range [0.0, 0.1〉). The categorical features are at the same position
in the grids, so they word has – at least – similar meanings for both agents.

The lexicon (and grammar) window is scrollable, so you can scroll through the whole language for all
agents. Elements of the that have extremely small weights are excluded for display for reasons of clarity.
Before you continue the simulation, you MUST press the button Done to close the window, otherwise
you cannot continue. This is done to prevent THSim to update the language after each game, which
would take a lot of overhead on the computations.

7.5 Logfile

When log=true the log file outputs for each language game data that can be used for analysing the
simulations. For the holistic agents HA and HA2, the data is printed in 17 columns as indicated in Table
5.

Topic’s are described (column 3 and 9) to indicate in which range the object’s feature fit:

Figure 4: Top: the lexicon window showing the grammar for a compositional agent. Bottom: Another
fragment of the grammar.

Colors If the features include the colour features, there are two ways these are descrided

1. if the colours are fixed, the first two places indicate the colour number, see Table 3.

2. otherwise, each value is classified as the X and Y co-ordinates.

Shapes the shape feature (S) is assigned a value indicating one of the 10 objects, see Table 4

XY coordinates the X and Y features are represented with an integer between 0 and 9 indicating their

Col Abbr. Description
1 lg Language game number
2 S Speaker ID
3 topic A description of the speaker’s topic.
4 mS-id Meaning ID of the speaker’s topic, -1 means no meaning.
5 mS-layer The hierarchical layer of the meaning.
6 mS-ptype The meaning’s prototype in array notation [-1] means that no

meaning is found.
7 uS-form The form that is uttered, * means no utterance is made.
8 H The hearer’s ID.
9 topic A description of the hearer’s topic.
10 mH-id Meaning ID of the hearer’s topic.
11 mS-layer The hierarchical layer of the meaning.
12 mH-ptype The meaning’s prototype.
13 uH-form The utterance recognised by the hearer.
14 < DS > Discriminative success
15 DS Boolean indicating iscrim. success
16 < CS > Communincative success
17 CS Boolean indicating commun.success

Table 5: The output of the log file for holistic agents HA and HA2.

place along the x- or y-axis. These features f are classified accroding to the following classification
(these may also be used to classify the RGB features when they are constructed randomly):

0: 0.0 ≤ f < 0.1

1: 0.1 ≤ f < 0.2

2: 0.2 ≤ f < 0.3

3: 0.3 ≤ f < 0.4

4: 0.4 ≤ f < 0.5

5: 0.5 ≤ f < 0.6

6: 0.6 ≤ f < 0.7

7: 0.7 ≤ f < 0.8

8: 0.8 ≤ f < 0.9

9: 0.9 ≤ f ≤ 1.0

For instance, the object with feature vector (1.0,0.0,0.0,0.57,0.81,0.89) will be classified as 070088
when the color was selected as a fixed color; 070 is the colour code, the final 0 is the shape code, the
first 8 encodes the X-coordinate and the second 8 the Y-coordinate. If the object was formed with a
randomly constructed RGB vector and has feature vector (0.10,0.22,0.76,0.77,0.35,0.55) is described by
127735. You can use these codes to have an own notion of the topic when analysing the data.

The logfile for the compositional agents has 11 columns as outlined in Table 6.

7.6 Lexicon file

The lexicon file prints the lexicon of holistic agents (HA and HA2) as it is at the end of each iteration, first
in a readable (global) format, followed by a table. The readable lexicon lists for each word for each agent
the meaning that has the highest association score at the end of an iteration, followed by its association
score. Below is a fragment of the output. The first column indicates the agent’s ID, in the second column
the word is presented, the third to eighth columns indicate the values of the meaning’s prototype in each
dimension (if less than six features are selected, there are less columns), the final column presents the
association score.

Col Abbr. Description
1 lg Language game number
2 < DS > Discriminative success
3 DS Boolean indicating iscrim. success
4 < CS > Communincative success
5 CS Boolean indicating commun.success
6 < COMP > Compositionality (as in graph)
7 COMP Boolean indicating compositional rule use
8 sGramm Grammar size speaker
9 sHol Number of holistic rules in grammar speaker
10 hGramm Grammar size hearer
11 hHol Number of holistic rules in grammar hearer

Table 6: The output of the log file for the compositional agents.

Global lexicon, iteration 9999:

A2 vuto 0.20 0.83 0.28 0.93 0.64 0.62 : 0.40
A3 vuto 0.22 0.52 0.22 0.94 0.78 0.28 : 0.47
A2 taga 0.64 0.58 0.31 0.94 0.72 0.27 : 0.04
A3 taga 0.16 0.25 0.23 0.89 0.31 0.73 : 0.00
A2 dajahe 0.38 0.38 0.83 0.95 0.25 0.41 : 0.39
A3 dajahe 0.59 0.20 0.84 0.93 0.35 0.35 : 0.28

After the global lexicon is printed, the full lexicon of each individual agent is printed in a table form.
A fragment of this lexicon is given below.

A3: nMeanings=65 nSymbols=51
M F dummy vuto taga dajahe ...
0 (-100) 0.0 0.0 0.0 0.0 ...
1 (0.59,0.75,0.81,0.82,0.31,0.20) 0.0 0.0 0.0 0.07880 ...
2 (0.27,0.23,0.31,0.90,0.42,0.30) 0.0 0.14980 0.00254 0.00205 ...
.
.
.

The first line gives the agent ID, the number of meanings and symbols (words) the agent has. The
second line is the legend of the table: It says that the meanings (M) are in the rows and forms/words
(F) are in the columns, followed by a dummy word and a series of words. In the first row, a dummy
meaning is given. (The table is a direct copy from the table stored by the agents. The dummies are used
for the usage-based approach to reserve space where we can keep track of the sum of the values in the
row or column without needing to calculate these every time we need them.) In the first column of the
table the meaning ID is given, followed by its prototype in vector notation in the second column. The
third column is a dummy, and all other columns give the associations scores relating to the words of the
corresponding column. Note that the meaning with ID=0 is also a dummy meaning.

The above is only printed for HA and HA2. If the simulation concerns a CA, its grammar is stored
as outlined below.

7.7 Lexicon II file

The second lexicon file can only be specified from the command line using option -L (see Section 8) and
prints out the global readable lexicon at the end of each iteration for the holistic agents (HA and HA2)
or the individual grammars for the compositional agents. The grammars look like the fragment printed
below. For each iteration and each agent, the number of nSymbols, nMeanings and nRules are given
(note nSymbols is redundant). This information is followed by the actual grammar, which contains rules

as 15->jmqkur/[5,14,15,8]/1/0.01. This rule rewrites the sentence with cover 15 (this relates to the
conceptual space of RGBS) to the signal jmqkur with a meaning that can be constructed from categorical
features with index 5, 14, 15 and 8. These indices relate to the categorical features stored in the ontology
as printed below the grammar. In this example, we only see categorical feature 5, which is written as: 5:
0: [0.300] and is of dimension 0 (Red-component) with value 0.300. The integer behind the second
slash in the rule indicates the frequency with which this rule has been used, and the final value is the
rule’s rule weight.

Compositional rules are given in the form: 15->[8,7]/[12,13,10,3,...,28,30]/174/0.45604,
where the sentence rewrites to two components with covers 8 and 7 (shape S and colour RGB). The
meanings that can be used in relation to this rule are listed after the first slash, which is followed by the
rule’s frequency and weight. The components with cover 8 and 7 rewrite to rules such as shown below
this compositional rule.

Grammar, iteration 1:

A2: nSymbols=0 nMeanings=35 nRules2=804

grammar:
15->jmqkur/[5,14,15,8]/1/0.01
15->flrm/[9,2,11,16]/2/0.01
15->nnn/[13,14,7,12,1,18,15,11]/7/0.10899
15->ppyfhea/[13,10,15,12]/2/0.10899
.
.
15->[8,7]/[12,13,10,3,...,28,30]/174/0.45604
8->p/[12,20,4,27,16]/95/0.28133
7->tbt/[13,10,3]/1/0.01
7->pyfhea/[13,10,15]/1/0.01
.
.

ontology:
1: 0 : [0.579]
2: 1 : [0.116]
3: 2 : [0.637]
4: 3 : [0.111]
5: 0 : [0.300]
.
.

Currently, the lexicon II file can only be specified from the command-line using the ‘-L’ option, see
below.

7.8 Standard output

In addition to the writing to files and displays, THSim also outputs some information to the standard
output (ie. the terminal from which we started the simulator). Each line of output is preceded by a word
or abbreviation indicating the type of output. This is handy with respect to finding the information back
and to ’grep’ the information. In linux it is possible to redirect the standard output into a file, e.g., by
starting THSim using java THSim > myfile.data. Later on, you can extract the information by using
the commands cat and grep. For instance, if I redirect the output into the file myfile.data and I want
to extract the results of the population test (preceded by TP), I give the following command:

cat myfile.data | grep TP

and I get the information I want.

There are different types of output, which are discussed here and organised by their prefixes:

param Outputs the parameters that you have set from the command line (see next section).

info Contains currently two types of information:

1. Always at the start of an iteration (or after the simulation was stopped and restarted) there ap-
pears a line giving information about the number of iterations (nIter) and languages (nGames)
that have to be played, the current iteration number (iter) and language game number (lg),
the population size (popSize), the number of adults (nAdults) and the number of learners
(nLearners).

2. If testPop=true, the population is tested of which the start is marked by the line “info testing
population”.

TP Outputs the test population results. The following information is digested in the given order (in
between brackets I indicate for which agents the output appears):

lg (HA,HA2,CA) the language game number.

pCoh (HA,HA2,CA) the production coherence.

iCoh (HA,HA2) the interpretation coherence.

iAcc (CA) the interpretation accuracy.

comp (CA) the compositionality measure

sim (CA) the proportion of the learners’ grammars that coincide with the adults’ grammars.

var (HA,HA2) the average variance between the meanings of speakers and hearers.

pCohAdults (HA,HA2,CA) the production coherence within the group of adults.

iAccAdults (HA,HA2,CA) the interpretation accuracy of the adult group with respect to the
group of learners (i.e. the proportion of utterances from the learners group that has successfully
been interpreted by the adults).

pCohLearners (HA,HA2,CA) the production coherence within the group of learners.

iAccLearners (HA,HA2,CA) the interpretation accuracy of the learner group with respect to the
group of adults (i.e. the proportion of utterances from the adults group that has successfully
been interpreted by the learners).

GR information regarding the agents’ grammars. This is only output for CA and contains the following:

id the identity of the agent.

gSize the grammar size.

nComp the number of compositional rules

nHol the number of holistic rules

domRule the rule that has been used most frequently in the past period, written in short hand
together with the frequency.

lx information regarding the lexicons. It prints the language game number followed by, for each agent,
the lexicon size. (HA and HA2 only.)

on information regarding the ontologies. It prints the language game number followed by, for each agent,
the ontology size. (HA and HA2 only.)

game This information is given when printGame is true and digests information regarding each game.
For the HA and HA2, the output is the same as in the logfile (see above). For the CA, it outputs
the game number, the speaker’s rule, the hearer’s rule, the game’s success and whether one of the
used rules was compositional.

Here is an example output for a holistic agent (HA) that is generated by the command line startup
using java THSim -T 0 -R true -s true -v false -k RGB, see Section 8

param agentType=1
param printGame=true
param start=true
param uInterface=false
param features=RGB
info nIter=1 nRuns=1000 iter=0 lg=0 popSize=2 nAdults=0 nLearners=0
game 1 3 050 1 1 [1.0,0.784,0.0] becegi 2 -1 -1 -1 -1 [-1] * 0.75 true 0.0 false
lx 0 1 2
on 0 5 2
game 2 3 030 2 1 [0.0,1.0,0.0] hagaha 2 -1 -1 -1 -1 [-1] * 0.71 true 0.0 false
.
.
game 1000 3 080 1 1 [1.0,0.611,0.0] becegi 2 080 10 2 [1.0,0.887,0.0] becegi 0.41 true 0.66 true
info testing population
TP 1 0.575 0.55 0.008 0.0 0.545 1.0 0.555

The final fame of this simulation (game 1000 was played by agent A3 as speaker about colour with
code 080 (ie. yellow, cf. Table 3). The meaning used by the speaker had ID 1, at layer 1 (note this is
an agent with hierarchical layering of conceptual spaces) and with meaning of prototype [1.0,0.611,0.0]
and the expressed form was becegi. (Note that this form was also used in game 1, showing how the
meaning has shifted from [1.0,0.784,0.0] to [1.0,0.611,0.0].) The hearer was agent A2, whose topic had
code 080 too with meaning ID 10 at layer 2 with prototype [1.0,0.887,0.0]. It successfully interpreted
the utterance becegi. The discriminative success at game 1000 is 0.41, this discrimination game was a
success (according to the first true), the communicative success at game 1000 is 0.66 and so was this
guessing game.

The test results given after the TP indicate that at the end of the 1st iteration (only one was played),
the production coherence yielded 0.575, the interpretation coherence was 0.55, the average variance be-
tween the meaning used was calculated to be 0.008. Within the adult-group (only agent A2) production
coherence (0.0) has no meaning as there is only one agent, the group of adults (ie. A2) has an interpre-
tation coherence for understanding the group of learners (ie. A3) of 0.545. The production coherence
within the learner group (1.0) has, again, no meaning. This group has an interpretation coherence with
respect to the adult group of 0.555.

The next fragment, shows the output obtained by a similar run of compositional agents.

param printGame=true
param start=true
param uInterface=false
param features=RGBS
info nIter=1 nRuns=1000 iter=0 lg=0 popSize=2 nAdults=0 nLearners=0
game 1 0->nil/[]/0/0.01 0->nil/[]/0/0.01 false false
.
.
game 1000 15->nyr/[5,6,..,26]/79/0.037 15->nyr/[5,6,..,27]/94/0.364 true false
info testing population
TP 1 0.55 0.207 0.396 0.823 0.55 0.21 0.55 0.205
GR a2 283 13 54 15->[1,14]/354
GR a3 254 10 70 15->[7,8]/641

At game 1 we see that the agents did not produce an expression. What you see is just a dummy rule.
In game 1000 the rule used by the speaker was 15->nyr/[5,6,..,26]/79/0.037, where the dots were
filled with a large number of other categorical features. The hearer used a very similar rule. The game
was a success (occurrence of true), but it was not a compositional rule (given the false).

The test results after iteration 1 yielded a production coherence of 0.55, an interpretation accuracy of
0.207, a compositionality of 0.396, a similarity of 0.823, a production coherence between adults (does not
mean a lot with 1 adult) or 0.55, an interpretation accurracy of the adult (A2) with respect to the learner
(A3) was 0.21, the production coherence within learners (A3) is 0.55 and the interpretation accuracy of
the learner with respect to the adult was 0.205.

The grammar size of agent A2 was 283 rules, of which 13 were compositional and 54 were holistic.
The most frequently used rule was 15->[1,14]/354, which was used 354 times.

7.9 Printed scores

If you set the parameter printScore=true, the simulator selects from the holistic agents (HA and HA2)
that make up the population a list of 10 words that first become successful. These words are then traced
for the remainder of the simulation (even over the subsequent generations). Everytime an agent uses
this word, it outputs the positive scores associated with these words (i.e. the scores > 0). The output is
stored in files in the working directory specified by workDir. De filenaam wordt dan opgebouwd uit de
string “scoreA”+id+word+”.txt”, where id stands for the identity of the agent and word for the word.
So, if word “hadeda” is traced for agent 2, the scores are stored in the file scoreA2hadeda.txt.

Below is a fragment of such a file. The first column of the file refers to the language game number
and the subsequent columns indicate the ID of the meaning (followed by a colon) and its score. If you
are unlucky, one of the meanings was merged with another meaning, in which case the ID might be the
ID of the other meaning. The prototypes of the meanings are not stored here. If you are interested in
these, you need to store the lexicon as well.

22 1: 0.107
78 1: 0.107 2: 0.108
81 1: 0.196 2: 0.108
85 1: 0.196 2: 0.198
89 1: 0.196 2: 0.178 22: 0.01
102 1: 0.176 2: 0.178 22: 0.01
121 1: 0.259 2: 0.178 6: 0.01 22: 0.01

Now that you’ve been given all kinds of output from THSim, you should be able to analyse the data
further yourself. For doing this, you are kind of on your own, though in linux there are many handy
tools, such as cat, grep and – especially – awk.

8 Command line processing

In order to speed up processing, it is possible to start THSim without a user interface. In addition,
parameter settings can be given from the command-line, so the user does not have to set these in
the control panel. Basically, one has to start THSim from the command-line by typing: java THSim
-option1 value1 -option2 value2 ... When you type java THSim -h, a list of possible options
with their default values and parameters they affect is displayed. The options are as given in Table 7.
If you do not specify an option, THSim will use its default value. One remark is required: If you wish
to process THSim without user interface, you need to set option -v false and you need to start the
simulation using option -s true (or you might evaluate a test function in which case you use the option
-t true).

References

[1] P. Vogt. The emergence of compositional structures in perceptually grounded language games. Sub-
mitted for publication.

[2] P. Vogt. THSim v3.2: The Talking Heads simulation tool. In W. Banzhaf, T. Christaller, P. Dittrich,
J. T. Kim, and J. Ziegler, editors, Advances in Artificial Life - Proceedings of the 7th European
Conference on Artificial Life (ECAL). Springer Verlag Berlin, Heidelberg, 2003.

option value Parameter Possible values Dependencies
-a 2 popSize N > 1 N ≤ maxAgents
-A 1.0 pAdultSpeaker 0 ≤ X ≤ 1 nIter> 1
-b true adaptSG true/false SG only
-B 0 trainingSetSize 0 ≤ N ≤ 120 0 means whole set
-c 4 cxtSize 1 < N ≤ 8
-C true fCol true/false
-d null workDir valid directory HA & HA2 only
-D true testPop true/false
-e 0.9 etaN 0 ≤ X ≤ 1
-E 0.9 etaS 0 ≤ X ≤ 1 SG only
-f log.txt logFile filename

-F 26 alphabetSize 1 < N ≤ 26 CA only
-g g gameType o: OG, g: GG, s: SG s is HA & HA2 only
-G 1.0 pGG 0 ≤ X ≤ 1
-H 0.0 pAdultHearer 0 ≤ X ≤ 1 nIter> 1
-i 1 nIter N > 1
-I false iHolistic true/false nIter> 1
-j false incrPop true/false nIter> 1
-J 2 popGrowth 0 < N ≤ (maxAgents −

popSize)
nIter> 1

-k RGBAXY features strings containing RGBAXY
-K 0 preLing 1 < N < nGames CA only
-l lex.txt lexFile filename

-L lexII.txt lexIIFile filename
-m 4 foa 1 < N < cxtGame HA & HA2 only
-M 1000 memMeanings N > 1 HA & HA2 only
-n 0.0 pNoise 0 ≤ X
-N 2000 maxAgents N ≥ popSize
-O 0.0 pOG 0 ≤ X ≤ 1
-p 1.0 pWC 0 ≤ X ≤ 1
-P false printScore true/false HA & HA2 only
-r 1000 nGames N > 1

-R false printGame true/false
-s false start true/false required if no UI
-S true S2S true/false nIter> 1
-t false test true/false

-T 2 agentType 0: HA, 1: HA2, 2: CA
-u c uPType c: centre-of-mass, s: simulated

annealing, w: walking/running
average, n: none

HA & HA2 only

-U s uScore s: score-based, u: usage based HA & HA2 only
-v true uInterface true/false
-V false varGames true/false
-W 1000 memWords N > 1 HA & HA2 only
-h this text

Table 7: The options and values that can be given as arguments to THSim as java THSim -option
value [-option value] The fourth column indicates the possible values and the final columns
any preconditions or other dependencies.

[3] P. Vogt. Minimum cost and the emergence of the Zipf-Mandelbrot law. In Proceedings of ALife 9.
The MIT Press, 2004.

