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Abstract

The input to a cognitively plausible model of language acqui-
sition must have the same information components and statis-
tical properties as the child-directed speech. There are collec-
tions of child-directed utterances (e.g., CHILDES), but a real-
istic representation of their visual and semantic context is not
available. We propose three quantitative measures for analyz-
ing the statistical properties of a manually annotated sample of
child-adult interaction videos, and compare these against the
scene representations automatically generated from the same
child-directed utterances, showing that these two datasets are
significantly different. To address this problem, we propose
an interaction-based framework for generating utterances and
scenes based on the co-occurrence frequencies collected from
the annotated videos, and show that the resulting interaction-
based dataset is comparable to naturalistic data. We use an
existing model of cross-situational word learning as a case
study for comparing different datasets, and show that only
interaction-based data preserve the learning task complexity.
Keywords: Child language acquisition; computational model-
ing; child-directed speech; cross-situational word learning.

Introduction
A usage-based approach to language claims that natural lan-
guages in all their complexity can be learned merely from
the input (or usage) data that is available to human learn-
ers. Computational modeling has been extensively used as
a methodology for supporting this view: using a dataset
that is statistically similar to child-directed input, a compu-
tational model can show that certain linguistic representa-
tions are learnable without domain-specific prior knowledge.
Therefore, the input to a cognitively plausible model of lan-
guage acquisition must have the same information compo-
nents and statistical properties as the natural child-directed
speech (CDS). A careful analysis and reconstruction of such
data is a prerequisite of developing a model.

Recent decades have seen a significant growth in the
variety and quantity of data collections for studying lan-
guage. One major resource in this domain is CHILDES
(MacWhinney, 2000), a collection of corpora containing
recorded interactions of adults with children of different age
and language groups. The interaction transcriptions have
been used in several models of grammar induction from a
large text corpus (e.g., Clark, 2001). The problem arises when
a learning task demands perceptual and linguistic input. This

might be due to the nature of the process under study (e.g.,
learning the meaning of words) or the theoretical framework
on which the model is based (e.g., construction grammar). In
such cases, each utterance must be paired with a representa-
tion of its visual context. Many of the databases in CHILDES
contain video recordings of the interaction sessions, but these
recordings are mostly not annotated and hard to use without
preprocessing or manual coding. Some models in fact use a
small set of manually annotated videos as input (e.g., Yu &
Ballard, 2007; Frank, Tenenbaum, & Fernald, 2013), but this
approach is limited in quantity and scalability.

A common strategy for dealing with this challenge is to use
artificially generated input: each sentence is constructed by
randomly sampling from a presumed distribution over a list of
words; the visual context is similarly built by sampling from
a set of symbols which represent concepts or objects (e.g.,
Siskind, 1996; Niyogi, 2002). To make the data more natu-
ralistic, some models select sentences from the transcriptions
of actual child–adult interactions, and build the accompany-
ing scene artificially by assuming a semantic representation
for each word in the sentence and combining them (Fazly,
Alishahi, & Stevenson, 2010).

Generating the visual context automatically based on child-
directed utterances (Utterance-Based Data, or UBD) elimi-
nates the quantity concern (since manual annotation of the
surrounding scene is not needed). However, the generated
context is different from what the child observes in impor-
tant ways. In a natural interaction scenario between a child
and an adult, the surrounding scene is rather consistent or
changes minimally (although the attention of the participants
might move from one set of perceivable objects or actions
to another). In contrast, in the automatic scene genera-
tion approach the utterance determines the scene, so the vi-
sual context can change drastically from one sentence to the
next. A disproportional variation in visual context or scene
can affect language learning; for example, context diversity
has been shown to facilitate cross-situational word learning
(Kachergis, Yu, & Shiffrin, 2009). Moreover, a UBD ap-
proach guarantees that the relevant meanings for all the words
in an utterance are included in the constructed scene. Ar-
tificial noise can be added by post-processing data and ran-



domly removing some meaning elements from the scene, but
the noise ratio can still be unrealistically low.

UBD also differs from actual exchanges between children
and their caregivers in that it lacks any interaction-based
features. Crucially, utterances and actions directed at the
learner at each point in time are independent of the learner’s
reaction to previous input data. In reality, the content of
adult’s utterance often depends on what the child just did or
said (Kishimoto, Shizawa, Yasuda, Hinobayashi, & Minami,
2007; Chouinard & Clark, 2003). Interaction is suggested
to be an essential mechanism of language development (e.g.,
MacWhinney, 2010).

In this paper, we investigate the characteristics of the vi-
sual context in a sample of child–adult interaction sessions,
and compare them to those in an automatically generated
one. We show that in every measure, the two contexts are
considerably different, and argue that these differences might
have implications for modeling child language learning. We
propose a hybrid approach for generating an input corpus of
utterance–scene pairs, where co-occurrence frequencies col-
lected from a sample of manually annotated videos are used
for generating utterances and visual contexts. Our framework
not only takes the usage frequencies of the words and objects
into account, but also includes interaction-based features such
as dependence of adult’s utterance on child’s recent behavior.
Finally, as a case study, we use an existing model of word
learning (Fazly et al., 2010) to compare the complexity of the
learning task using UBD vs. Interaction-Based Data (IBD,
generated by our proposed framework). Our results show
that using UBD for word learning unrealistically simplifies
the learning task. Using IBD, in contrast, yields results that
are closely comparable to the ones based on manually anno-
tated scenes from videos of child–adult interaction.

Analyzing Utterance-based Input
We analyze the cognitive plausibility of UBD by comparing
its characteristics to a carefully annotated set of video record-
ings of child–adult interactions. The details of this data set
are described below.

Data set
As part of a larger project to study cross-cultural aspects of
child-language acquisition (CASA MILA; Vogt and Mastin,
2013a, 2013b), three 13-month-old children from the Nether-
lands were recorded on video. The videos were recorded at
the children’s homes and involved interactions with one of the
parents. The parents were instructed to continue their daily
routines and ignore the recordings.

For each child, we selected an interaction session in a toy
playing setting. The video fragments were 8 min 37 sec,
8 min 50 sec and 10 min long. We excluded some short
episodes from the analysis, namely those (1) where the child
or the adult was not captured properly by the camera, and
(2) where the other parent was present, and the child’s atten-
tion was focused on him/her. From the videos we extracted

adults’ and children’s gaze directions, actions, objects or par-
ticipants that the actions were directed at, and utterances. Us-
ing this data, we constructed a corpus of child-directed utter-
ances, each paired with a representation of the accompanying
scene.

Scene representation There is no easy way to determine
which elements a child perceives as potential referents at a
certain moment of time. In fact, any object, action or event
from the natural environment can be occasionally referred to
in speech. However, studies suggest that children use certain
mechanisms and constraints such as referential and salience
cues to focus on relevant aspects of the scene (e.g., Behrend,
1990; Moore, Angelopoulos, & Bennett, 1999). In particular,
Yu, Smith, Shen, Pereira, and Smith (2009) show that objects
in child’s and parent’s hands dominate the child’s visual field.

In coding the interaction context in the video recordings,
we consider two different interpretations for a scene:

active: all the objects that either participant (or both of them)
is acting on or looking at during an utterance, in addition
to the actions that (s)he performs (a similar approach was
used by Frank, Goodman, and Tenenbaum (2008)).

all: the full set of visible objects, the action(s) performed
during an utterance and the participants.

In addition, a third dataset was automatically generated:

UBD: Fazly et al. (2010) construct a scene by putting to-
gether the semantic symbols that correspond to the words
in the accompanying utterance. Referential uncertainty is
simulated by merging the representations of two consecu-
tive scenes, and pairing them with only one of the utter-
ances. They include noise into the data by removing the
semantic symbol of one word from the scene for 20% of
the input items. Since we wanted to compare our results
to those of Fazly et al. (2010), we applied the exact same
approach to the child-directed utterances that we extracted
from the CASA MILA recordings.

Measures

To compare the datasets described above, we use three mea-
sures: scene stability, noise, and referential certainty.

Scene stability As mentioned before, the stability of the
visual scene is one of the main points of deviation between
natural interaction settings and the artificially generated in-
put. We measure scene stability as the overlap between every
pair of consecutive scenes. Since in both cases (the produced
scenes in UBD and the annotated ones in our data set) a scene
is represented as a set of symbols, we define the overlap be-
tween each two sets as the cardinality of their intersection
divided by the cardinality of their union:

overlap(Si,Si+1) =
|Si∩Si+1|
|Si∪Si+1|



Noise We count a word’s usage (or token) in an utterance
as noisy if its semantic symbol is not included in the scene
representation for that utterance. The total number of noisy
words in an utterance, then, is calculated as

noise(Ui) =
|Ui|− |Ui∩Si|

|Ui|
where Si is the current scene, and Ui is the (correct) mean-
ing representation of the current utterance. To avoid making
arbitrary decisions about the meaning of abstract or function
words, we limit our analysis of noise to objects and actions.

Referential certainty We define the referential certainty
for a scene as

certainty(Si) =
|Ui∩Si|
|Si|

Conceptually referential certainty shows what portion of a
scene is referred to in the respective utterance. Note that this
measure is the opposite of the more commonly used refer-
ential uncertainty, but it avoids the problem of having zero
denominators in case the meaning representation of the utter-
ance does not overlap with the scene.

Results
We calculated the above measures for three datasets: child-
directed utterances extracted from CASA MILA and paired
with two interpretations of the accompanying visual scene
(i.e. active and all), or with UBD-style automatically gen-
erated scene representations. Results are shown in Table 1.

Table 1: Plausibility measures for three datasets
all active UBD

Scene stability 0.916 0.436 0.112
Noise 0.414 0.426 0.099
Referential certainty 0.019 0.112 0.602

The average values provided in the table inform us that
the all condition differs substantially from the other two in
terms of scene stability (µ = 0.916 vs. 0.436 and 0.112) and refer-
ential certainty (µ = 0.019 vs. 0.112 and 0.602). For this reason,
and taking into account the fact that the standard deviation
values for the all condition are rather small as compared
to the respective means (σstability = 0.065;σcertainty = 0.032), we elim-
inate this condition from the analysis.1 To compare the other
two conditions, we ran the Mann–Whitney U-test for each
of the three measures. We found significant differences be-
tween the annotated data (active condition) and the UBD in
terms of all three measures: scene stability (Mdn = 0.400 vs. 0.059;

U = 5230,nactive = 274,nUBD = 133, p < .001,r =−.583), noise (Mdn = 0.400 vs.

0.000; U = 8927,nactive = 278,nUBD = 139, p < .001,r = −.466) and referen-
tial certainty (Mdn = 0.000 vs. 0.571; U = 3910,nactive = 278,nUBD = 139, p <

.001,r = −.690). This demonstrates that UBD may be an easier
input for the learner than the natural data.

1The noise values for the active and the all conditions are almost
equal, since the way we interpret a scene has little impact on the
amount of noise in utterances. Due to this fact, for noise we also use
only the active condition in the further analysis.

An interaction-based framework for input
generation

We propose an interaction-based framework for generating
input data which resembles the verbal and non-verbal ex-
changes between a child and a caregiver. Our model is in-
spired by the language game model used to study the evolu-
tion of language (Steels, 1996; Vogt & Haasdijk, 2010). In
this model, agents communicate with each other through ver-
bal and non-verbal behavior. Language game interactions in-
volve a context, and agents communicate about items in this
context, potentially learning associations between words and
items.

We simulate the input generation process as a series of in-
teractive sessions between two agents, Adult and Child. Each
session starts with constructing a visual context (i.e., a col-
lection of objects), followed by a sequence of exchanges be-
tween the two agents, until one of them leaves or terminates
the session. In each turn, Adult performs an action (AdAct)
while producing an utterance (AdUttr), to which Child re-
sponds by performing another action (ChAct) and producing
an utterance (ChUttr, implemented as presence or absence of
a verbal reaction).2 The main algorithm can be described as
follows:

for s← 1 to number of interaction sessions do
t← 0;
Context← setupContext(s);
repeat

t← t +1;
Situationt ← initialize(Context);
Situationt ← updateAdult(AdActt−1,AdUttrt−1);
Situationt ← updateChild(ChActt−1,ChUttrt−1);
(AdActt ,AdUttrt)← adultTurn(Situationt);
Situationt ← updateAdult(AdActt ,AdUttrt);
(ChActt ,ChUttrt)← childTurn(Situationt);

until ChActt = ‘leave’ or AdActt = ‘leave’;
end

Each of the main steps in the algorithm are explained in
more detail below.

Visual context From the sample data we extracted all the
objects that were directly used by adults or children in their
interactions. In each computational simulation, we randomly
selected a fixed number of objects from the list and added
them to the context. Since the size of the visual context may
depend on the interaction domain (e.g., toy playing, book
reading, etc.), we added it as a parameter to our framework.

Actions and action types We compiled two lists of actions,
one for each agent. Actions might take arguments that can
be an object type or the agents themselves (e.g., take toy or
touch child). In order to base our computational model on
more general behavioral patterns rather than on occasional
events, we classified agents’ actions into six types, based on

2Since children in our sample video recordings were too young
to talk, we did not gather enough statistical information about their
produced utterances. However, the main concern of our framework
is to create realistic child-directed input, and the child-produced data
is an outcome of the learning model.



the factors that motivate them. These action types are listed
in Table 2.

Table 2: Action types and their motivating factors
Action type Motivating factor Example

Continuation
Same person’s
previous action

Adultt : [move bag]
Adultt+1: [move box]

Reaction
Other person’s
previous action

Childt : [put ball]
Adultt+1: [take ball]

Result
Same person’s
prev. utterance

Adultt : Bumba first
Adultt+1: [take Bumba]

Reaction to
utterance

Other person’s
prev. utterance

Adultt : The tree
Childt+1: [take toy tree]

Initiating None Adultt : [sit down]

Utterances and utterance types We compiled a list of ut-
terances produced by adults. Some of these contain place-
holders which, depending on the context, can be filled with
the labels for the respective actions and their arguments. Sim-
ilar to actions, we recognized six utterance types based on
their motivating factor, as listed in Table 3.

Table 3: Utterance types and their motivating factors
Utterance

type
Motivating factor Example

Accompa-
nying

Same person’s
current action

Adultt : [show ball]
Adultt : This is a ball

Continua-
tion

Same person’s
prev. utterance

Adultt : Dad the ball?
Adultt+1: Can dad the ball?

Reaction
Other person’s
previous action

Childt : [stand up]
Adultt+1: Gonna walk?

Answer
Other person’s
prev. utterance

Childt : babbling
Adultt+1: Yeah, Bumba

Unknown None Childt : babbling

Producing actions and utterances At each step t during a
session, the actions and utterances produced by the agents are
sampled from the frequency distributions collected from the
annotated videos, each conditioned on the current situation.
A situation includes all the relevant parameters, including the
current and previous utterances and actions of both agents,
the action arguments, and the visual context. Thanks to these
parameters, the agents do not produce completely random ac-
tions and utterances, and the interaction process appears to be
logical. (For more details on the estimated probabilities for
each variable, see Matusevych (2012).)

Each turn in a session consists of the following steps:
1. The current situation (Situationt ) is set to include the vi-

sual context (Context), the previous actions (AdActt−1 and
ChActt−1) and utterances (AdUttrt−1 and ChUttrt−1)

2. Adult’s next action is generated:
(a) An action type for Adult (AdActTypet ) is randomly se-

lected, conditioned on Situationt
(b) An action for Adult (AdActt ) is randomly selected, con-

ditioned on AdActTypet and Situationt
(c) Arguments for the action are randomly selected, condi-

tioned on AdActt

(d) Situationt is updated to include AdActt and its arguments
3. Adult’s next utterance is generated:

(a) An utterance type for Adult (AdUttrTypet ) is randomly
selected, conditioned on Situationt

(b) An utterance for Adult (AdUttrt ) is randomly selected,
conditioned on AdUttrTypet and Situationt

(c) Situationt is updated to include AdUttrt

4. Child’s next action and utterance (ChActt and ChUttrt ) are
generated in the same way as Adult’s.

A sample interaction session
We illustrate the interaction process using the following ex-
ample (see Table 4).

Table 4: A fragment of a generated interaction
Context: puzzle, piece-clown, bin, ball, piece-frog
Turn Agent Action Utterance

1. Adult play puzzle —
1. Child play piece-clown babbling
2. Adult point puzzle It fits here.
2. Child touch bin babbling
3. Adult play puzzle Yes?

The example can be interpreted as following. Adult starts
the interaction by playing with a puzzle toy without say-
ing anything. Child plays with a clown-shaped puzzle piece
and babbles. Adult points at the puzzle saying It fits here.
However, Child’s attention is distracted by the bin, which
he touches. He continues babbling. Adult continues playing
with the puzzle toy, asking Yes?. His question can be inter-
preted either as a support for his previous utterance or as an
attempt to clarify the child’s utterance. The interaction goes
on in this manner until one of the agents leaves.

Comparing IBD and UBD
We used the interaction-based framework for generating a
dataset. While in UBD scenes were constructed from utter-
ances, in IBD each scene included salient elements, namely,
the objects that the agents had in their hands, the agents’ most
recent actions and their arguments—in a manner similar to
the active condition in the Analyzing Utterance-based Input
section above. Using the same three measures—scene sta-
bility, noise, and referential certainty—we compare IBD to
UBD and manually annotated CASA MILA data (both con-
ditions).
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Figure 1: Plausibility measures for four datasets



As can be seen in the charts (Figure 1), for each of the
three measures the input data generated by our framework is
much closer to the manually annotated data from the inter-
action videos than UBD. Again, for the reasons specified in
the Analysis section, we did not use the all condition in the
further analysis. For the other three conditions, the Kruskal–
Wallis H-test showed the significant difference in terms of
stability (H(2) = 213.822, p < .001), noise (H(2) = 95.725, p < .001) and
certainty (H(2) = 289.410, p < .001). To examine the pairwise dif-
ferences between the three groups, we used Mann–Whitney
tests, taking into account Bonferroni correction (which re-
sulted in .025 level of significance). The difference be-
tween active and IBD was not significant in terms of noise
(Mdn= 0.400 vs. 0.333; U = 37897.5,nactive = 278,nIBD = 278, p> .025), and sig-
nificant with only small effect size in terms of scene stability
(Mdn = 0.400 vs. 0.500; U = 30012,nactive = 274,nIBD = 274, p < .001,r = −.174)

and certainty (Mdn= 0.000 vs. 0.000; U = 35002.5,nactive = 278,nIBD = 278, p<

.025,r = −.100). However, the difference between UBD and
IBD was significant with a large effect size for each mea-
sure: scene stability (Mdn = 0.059 vs. 0.500; U = 2586,nUBD = 133,nIBD =

274, p < .001,r = −.699), noise (Mdn = 0.000 vs. 0.333; U = 10008.5,nUBD =

139,nIBD = 278, p < .001,r = −.426) and certainty (Mdn = 0.571 vs. 0.000;

U = 2451.5,nUBD = 139,nIBD = 278, p < .001,r =−.760). These results con-
firm that data generated by the proposed framework is more
suitable for training and evaluating cognitive models than
UBD. We further investigate this claim by using these dif-
ferent data sets in an existing model of word learning.

Case study: learning word meaning
We used the cross-situational word learning model of Fazly
et al. (2010) as a case study for our proposed input genera-
tion framework. Our goal is to show that the complexity of
the learning task depends on the properties of the input data,
and less realistically generated input can considerably sim-
plify the task.

Description of the model
The model of Fazly et al. (2010) incrementally learns the
meaning of each word (e.g., play) as a probability distribu-
tion over all the possible meaning components, each repre-
sented as a unique symbol (e.g., PLAY,BALL). At each mo-
ment in time, the model receives a new input item, consisting
of an utterance and its (ambiguous) semantic representation,
which is an unordered set of symbols. The model uses its
previous knowledge of word meanings to align each word
in the current utterance with the most likely symbols in the
current scene representation. It then uses these alignments
to update the meaning of each word by accumulating such
cross-situational evidence over time.

Model performance on different types of input
We compared the performance of the word learning model on
four different data sets:

1. the manually annotated portion of CASA MILA (active);
2. UBD generated from the same data set (UBD-CASA

MILA);

3. original UBD used by Fazly et al. (2010) and generated
from the Manchester corpus in the CHILDES database
(UBD-Manchester);

4. IBD generated by our framework as a result of simulations
with 19 objects in the environment (which was the average
context size in the analyzed CASA MILA dataset).3

For measuring the learning success at each moment, we used
effective ratio calculated as the number of words that the
learner has acquired at that time, divided by the number of
words that she heard so far. The growth of the effective ratio
over time is presented in Figure 2. Note that the size of UBD
(CASA MILA) set is two times smaller than that of the original
CASA MILA dataset, because only every other natural utter-
ance could be included into UBD. For UBD (Manchester) and
IBD the graphs show values averaged over 10 word learning
simulations.
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Figure 2: Overall model performance on four different
datasets for 300 (left) and 6500 (right) utterances

The graph on the left shows the effective ratio over the
course of 300 input items, which is slightly more than the
size of the CASA MILA dataset. It is clear from these results
that the performance of the word learning model is very sim-
ilar when it is trained on data collected from CASA MILA
and on data generated by our framework (IBD). In contrast,
the model performs much better when it is trained on any of
the UBD sets. This difference again suggests that UBD is not
representative of what young language learners have access
to, and a more realistic approach to data generation must be
applied. The graph on the right shows the same measure over
the course of 6500 utterances (the size of UBD-Manchester).
The same pattern can be seen: there is a considerably large
gap between the learning curves in UBD and IBD cases. It
is also clear that in the latter case, the size of the input to the
learner does not have to be constrained by the amount of data
available in an existing collection.

Conclusion and discussion
We manually annotated a small dataset of video recordings
of child–adult interactions and collected various types of co-

3Since one of the main parameters of the framework was the con-
text size, we also investigated whether the learning process would
vary with the number of objects in the environment, but our manipu-
lations did not result in changing the overall learning pattern in terms
of effective ratio.



occurrence frequencies of utterances, utterance types, accom-
panying actions and action types, action arguments and par-
ticipants, and other objects available in the visual context. Us-
ing three quantitative measures, we compared the character-
istics of these utterances and their surrounding scenes with
the product of the most realistic existing approach to auto-
matic generation of scene representations (Fazly et al., 2010).
Our analyses show significant differences between the two
datasets, and using an existing model of word learning as a
case study further demonstrates that automatically generated
utterance-based data simplifies the learning task to an unre-
alistic scale. However, manual annotation as an alternative
approach (e.g., Yu & Ballard, 2007; Frank et al., 2013) is not
scalable due to the limited quantity of the data available. The
hybrid approach that we propose eliminates these problems:
we present an input generation framework which can produce
an infinite stream of child–adult interaction data containing
both linguistic and visual information, whose statistical prop-
erties are closely comparable to those of manually annotated
data.

Any data annotation or generation scheme inevitably in-
corporates assumptions about important components and in-
formation cues in language learning, which can be seen as
built-in biases brought to the learning task. However, compu-
tational models need data and will benefit from any attempt
to make this data more naturalistic.

An extension of the proposed framework can potentially
provide certain interaction features such as the participants’
focus of visual attention and head movement. Such extra fea-
tures can allow computational models to systematically inves-
tigate the impact of interaction factors in language learning.

The dataset that we analyzed was limited in size and the
interaction domain (toy playing). We add a parameter to our
framework to account for potential variation in the size of
the visual context. But humans’ linguistic behavior (e.g., the
structural and pragmatic characteristics of utterances) may
also depend on the domain to some extent (e.g., Choi, 2000).
Therefore, a larger and more diverse collection of interaction
videos will provide a more realistic base for estimating the
input generation probabilities in our framework. The larger
CASA MILA corpus of interaction data that is currently un-
der development (Vogt & Mastin, 2013a) is one suitable can-
didate for such expansion.
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