
Using free link structure to calculate

semantic relatedness

Sander Wubben

ILK Research Group Technical Report Series no. 08-01

Tilburg University

Faculty of Humanities

Department of Communication and Information Sciences

Tilburg, The Netherlands

July 2008



Abstract

In this thesis I present a new metric for the calculation of semantic relatedness. This metric uses

the free link structure of conceptual networks to find shortest paths between concepts. I apply this

metric to a conceptual network extracted from Wikipedia and a purpose build conceptual network:

ConceptNet. These metrics are compared to existing metrics that use a hierarchical structure, such

as WordNet. All metrics are tested on the Finkelstein-353 benchmark set, containing 353 wordpairs

with a humanly assigned relatedness score. Finally, I demonstrate that a free link pathfinding

measure based on Wikipedia is better for calculating semantic relatedness than existing WordNet

measures.
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Preface

“Tug on anything at all and you’ll find it connected to everything else in the universe.”

- John Muir

During the first half of the Master track I already thought a lot about possible topics for my Mas-

ter’s thesis. I was very much intrigued by the vastness of Wikipedia and the possible ‘missing

links’ that could be found by connecting articles. It was very pleasant that I got the opportunity

to join the Dutch Common Sense team for the Battle of the Universities, because the Open Mind

Commons project was very much in line with wat I wanted to do in the first place.

Unfortunately the team did not make it to the next round, but the Dutch Open Mind Commons

site is now a fact and I got to do the research I really wanted to be doing. The research process

involved steering slightly away from common sense and more towards semantic relatedness. This

is a very interesting area of research, and mining Wikipedia is another interesting activity that gets

a lot of attention these days. I hope that by combining the two I have made a valuable contribution.

I would like to thank my supervisor, professor Antal van den Bosch. Despite being a very busy

man, he managed to always make time somehow. Of course I also thank my girlfriend, Marianne,

for listening to all my technobabble and never growing tired of it.
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CHAPTER 1

Introduction

Why is it that computers can easily beat the best human chess-players or do billions of calcula-

tions on massive amounts of data, yet they lack any intelligence? Wouldn’t it be great if a com-

puter could actually understand what you tell it? Making machines understand language has

been a focus of research ever since the day computers were created. The field that specifically fo-

cuses on autmatically understanding texts is that of computational liguistics. This field of research

has sprouted disciplines like machine translation, automatic text summarizaton, question answer-

ing, information retrieval, machine translation and so on. The problem in automating all these

tasks is that humans always use their world knowledge when interpreting text, which a computer

lacks. For example, in a conversation, humans will typically relate new information they receive

to knowledge already in their possession, and from that infer assumptions and new knowledge.

When we converse with others we expect our conversational partners to do the same. This is what

tends to make our conversations interesting. To develop a machine that is able to do even a tiny

part of the reasoning that humans do, it needs to have access to some kind of world knowledge.

For humans, common sense is the most basic form of world knowledge.

1.1 Common sense

Researchers like Marvin Minsky and Doug Lenat have long argued that common sense constitutes

the bottleneck for making intelligent machines (Lenat and Guha, 1989). Minksy describes how he

worked for a couple of years on making a system that could understand the simple children’s

story:

"Mary was invited to Jack’s party. She wondered if he would like a kite."

If you ask the question "Why did Mary wonder about a kite?", it is not hard to find the answer for

any sensible human being: the party Mary was invited to was probably a birthday party, and if

you go to a birthday party you bring a gift for the person that is celebrating his or her birthday.

Jack is a boy and boys generally like things to play with like kites or balls. These things are all
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CHAPTER 1: INTRODUCTION

knowledge we possess, and by inferring we can answer questions like this one. Minksy succeeded

in making the computer understand this story, by putting these assertions in a database the system

had access to. Unfortunately it failed on even a slightly different story. This led him to conclude

that in order to have a computer that is able to reason in the way that we do, it would require a

database with millions of assertions (Minsky, 1986).

1.2 Semantic relatedness

One step into gaining understanding into natural language is determining semantic relatedness,

or its inverse, semantic distance between two concepts. Measures of semantic similarity are being

used in applications such as text summarization and annotation, word sense disambiguition, infor-

mation retrieval, automatic indexing, automatic correction of errors in a text and even automatic

grading of essays.

It is important to make a distinction between the terms ‘semantic similarity’ and ‘semantic relat-

edness’. Semantic relatedness is a more general concept than semantic similarity. Semantically

similar concepts are related due to their anologous nature: bank is the same as a fincancial institu-

tion. Similarity typically shows a synonymy relation. A lot of other relations are possible too: car

and engine have a part-whole relation, good and bad have an antonym relation and intuitively we

know that snow and ski also share a relation, but what kind of relation is sometimes hard to qualify.

Concepts that are not considered semantically similar can very well be semantically related. The

term semantic distance is somewhat ambiguous: it can mean the inverse of semantic similarity, but

also the inverse of semantic relatedness.

In general computational linguistics applications benefit more from calculating relatedness rather

than just similarity. When dealing with ambiguous words, the context is required to disambiguate.

When we encounter bank and money in a text, we can disambiguate through relatedness. Yet most

measures that are used nowadays calculate similarity instead of relatedness.

1.3 Free link structure

In an effort to provide machines with world knowledge, knowledge engineers have constructed

numerous thesauri and ontologies that define in a formal way how certain concepts are defined

and how they are related. This is typically done in a top-down way: the engineers have some vision

about how the world works and they build their knowledge base from that vision. In recent years

a lot of much hyped Web 2.0 applications have been brought forth. Some of these applications, like

Wikipedia and ConceptNet, have made it possible to collect knowledge in a bottom-up way. An

overview of how the world works emerges from all the contributions done by many users. These

environments allow users to add knowledge in a way they choose themselves, and which is not

necessarily pre-defined.

2



CHAPTER 1: INTRODUCTION

1.4 Research question

In this thesis I will investigate how free link structure can be used to calculate the relatedness

between two given words. I will attempt to find a measure that is based on free link structure,

and apply this measure to a purpose built conceptual network, namely ConceptNet, but also to

a conceptual network extracted from the free link structure in Wikipedia. This measure will be

compared with existing measures that use WordNet as their primary source. This leads to the

following research question:

Is a measure based on free link structure valid for calculating semantic relatedness?

1.4.1 Subquestions

In order to calculate semantic relatedness using a free link structure, the measure that is developed

needs to be scalable. Conceptual networks can become very large, and the amount of possible

relations in such a network can easily get into the millions. Other relevant issues are which network

is best for using the metric on, and if there are certain factors that improve the metric. Taking this

into account, the following subquestions can be posed:

1. Are free link networks scale-free?

2. Is a network extracted from Wikipedia better than a purpose build network like ConceptNet?

3. Which factors benefit the computation of semantic relatedness?

These questions will be adressed throughout this thesis.

1.5 Outline

In this thesis, the second chapter will explore some of the different resources that are used for

calculating semantic relatedness, namely WordNet, Wikipedia and ConceptNet. In the third chap-

ter, different methods of calculating semantic relatedness that make use of lexical resources are

investigated. The subject of chapter 4 is pathfinding in networks and in particular scale-free net-

works. The new free link measure is introduced and explained in chapter 5. Chapter 6 contains

the description of the experiments conducted and in chapter 7 the results of these experiments are

presented. Finally, in chapter 8 the conclusions and discusssion can be found.

3



CHAPTER 2

Semantic Resources

2.1 WordNet

WordNet is an electronic semantic lexicon for the English language. Its development started in

1985 under the direction of professor George A. Miller and is currently supervised by Dr. Chris-

tiane Fellbaum at Princeton University. WordNet can be regarded as an ontology for natural lan-

guage terms. It attempts to model the lexical knowledge of a native speaker of English. Its design is

based on psycholinguistic and computational theories of human lexical memory (Fellbaum, 1998).

WordNet is widely used by researchers in among others the areas of computational linguistics and

text analysis.

WordNet uses a differential theory of lexical semantics, meaning that representations are not on

the level of individual words, but on the level of meanings of a word, called lexemes (Miller, 1995).

Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms called synsets,

each unambiguously expressing a certain concept. If a word has multiple meanings, they will be

filed into different synsets. The result of this approach is that in WordNet a word is defined by

its synonyms. Short general definitions called glosses are provided for each word and different

relations link the synsets. The WordNet database and software tools have been released under a

BSD style license and can be downloaded freely1. The database can also be browsed online2.

WordNet 3.0 contains over 155.000 words, grouped into over 117.000 synsets. Different WordNets

have been developed and interlinked for several European languages in the EuroWordNet project

(Vossen, 1998). These EuroWordNets are however not freely available.

2.1.1 Structure

The main structure of WordNet is that of a hierarchical network. Synsets can be related to other

synsets in a variety of ways. The most common relation in WordNet is the hypernym/hyponym

1http://wordnet.princeton.edu/obtain
2http://wordnet.princeton.edu/perl/webwn
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CHAPTER 2: SEMANTIC RESOURCES

(or IS-A) relation, which makes up for 80 percent of the total relations in WordNet. Concept X is

a hypernym of Y if every Y is an X. This also makes Y a hyponym of X. So, the concept animal

would be a hypernym of mammal and the concept mouse would be a hyponym of mammal.

This structure means that properties of concepts can be inferred: hyponyms inherit the properties

from their hypernyms (or parents). If animals give birth, then mammals give birth as well, because

they inherit this property. And if mammals suckle their young, mice suckle their young as well

because they are mammals.

Another relation that is possible in WordNet is the holonym/meronym relation (or PART-OF). If

Y is a part of X, X is the holonym of Y and Y the meronym of X. The concept computer is a

holonym of CPU and keyboard may be a meronym of computer. Figure 2.1 shows an example of

this structure.

������

������� ���	�
 ���	
����	

�
�	�������� ��
���
���
 �����	�
 
���
���
���


��� ������
� ����	�


Figure 2.1: A fragment of the WordNet taxonomy. Continuous lines denote hypernomy relations,

dotted lines holonymy relations

2.1.2 Organization

The largest part of the data in WordNet is generated by knowledge engineers in a top-down way.

Sources that are used for data acquisition include monolingual dictionaries and lexical databases.

WordNet’s coverage is limited to the sources that are used. EuroWordNet additionally uses bilin-

gual dictionaries to translate relations from one language to another. The Global WordNet Associ-

ation3 was founded to discuss, share and connect WordNets for different languages in the world.

3http://www.globalwordnet.org/
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CHAPTER 2: SEMANTIC RESOURCES

2.1.3 Quality

Because of the free availability of WordNet and its clear documentation and software tools, re-

searchers have used WordNet for a wide range of different applications in computational linguis-

tics.

In information retrieval, query expansion can be used to increase the recall of a certain query. The

results of early research in this area was not very good, especially when long queries were used

(Voorhees, 1994). Later research expanded queries by adding parent and grandparent terms of the

WordNet hierarchy to specific terms and children and grandchildren terms to abstract terms. In

addition, all synonyms for a term were added to the query (Richardson and Smeaton, 1995). The

precision of this system was however disappointing.

Mandala used WordNet as a tool for the automatic construction of thesauri, based on co-occurrence

determined by automatic statistical identification of semantic relations, or on the predicate-argument

association, in which the argument is constructed by identifiying the most significant words of an

environment (predicate) and those with which they relate (Mandala et al., 1998). Success was also

achieved by Moldovan, who used WordNet for word sense disambiguation, increasing the preci-

sion of internet search by supplying a natural language interface (Moldovan and Mihalcea, 2000).

WordNet can be used to calculate semantic similarity, because of the information contained in the

IS-A hierarchy. As is demonstrated in Figure 2.1, a computer and a record player can be thought

of as being more alike than for example a computer and a tree, because computer and record player

have a direct common ancestor in the IS-A hierarchy, while computer and tree do not.

2.2 Wikipedia

The encroaching rise of the Internet and the World Wide Web has enabled collaboration and co-

operation on a global scale. The focus has shifted more and more from a ‘few to many’ to a ‘many

to many’ perspective. The web encyclopedia Wikipedia4 is one of the best known examples of this

process. Wikipedia is the world’s largest collaboratively edited source of encyclopaedic knowl-

edge. Since its beginning in 2001 it has grown exponentially (Voss, 2005). There are Wikipedias

available for more than 250 languages, of which 77 Wikipedias contain over 10,000 articles. To-

gether these Wikipedias contain over 10 milllion articles, written by over 7 million contributors of

whom 75,000 are regular editors. In the beginning of 2008 the English version contained over 2

million articles and received over 55 million visitors a month5.

Part of Wikipedia’s success is its implementation of wiki software. A wiki is a content management

system that allows users to edit existing content of websites and create new content easily. This

idea was introduced by Ward Cunningham, who started developing WikiWikiWeb in 1994 and it

has turned out to work very well in the encyclopedic domain: everyone can extend or edit the

4http://www.wikipedia.org/
5http://en.wikipedia.org/wiki/Wikipedia:Statistics
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encyclopedia. In their book The Wiki Way: Quick Collaboration on the Web (Leuf and Cunningham,

2001) described the wiki concept as follows:

• A wiki invites all users to edit any page or to create new pages within the wiki Web site,

using only a plain-vanilla Web browser without any extra add-ons.

• Wiki promotes meaningful topic associations between different pages by making page link

creation almost intuitively easy and showing whether an intended target page exists or not.

• A wiki is not a carefully crafted site for casual visitors. Instead it seeks to involve the visitor

in an ongoing process of creation and collaboration that constantly changes the Web site

landscape.

2.2.1 Structure

Everyone with access to the internet can write articles and edit most of Wikipedia’s existing arti-

cles, as long as the article lives up to Wikipedia’s editing policies. Contributors are endorsed to

write neutral (NPOV: Neutral Point of View6) and obvious articles, citing sources, providing hy-

perlinks to other relevant articles and assigning categories to the article. A general Wikipedia page

is structured as follows:

• Title

• First paragraph giving a general explanation or definition

• Overview of paragraphs

• Second and other paragraphs dealing with the subject matter

• Recommendations for further reading

• References

• Categories the article belongs to

Ambiguous terms are disambiguated on disambiguation pages (see Figure 2.2), listing all possible

uses of the given term. Redirection pages make sure you end up on the right page, no matter how

you write the word you are looking for (for example: R2D2, r2d2, r2-d2 and Artoo all redirect to the

page R2-D2 about the Star Wars droid).

The main property of Wikipedia is that it is for the greatest part unstructured. On one hand editors

are encouraged to supply their articles with categories. These categories can be part of larger

categories, thus creating an ontology-like structure. On the other hand editors can link to any

other page in Wikipedia, no matter if it is part of the same category, or any category for that matter.

6http://en.wikipedia.org/wiki/ Wikipedia:NPOV
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Figure 2.2: Disambiguation page for Bank

So although the category-graph is structured, the free links are not. An article can be assigned

multiple categories, but the number of free links provided in an average article far exceeds the

number of categories. This leads me to believe that Wikipedia is mainly an unstructered scale-free

network, in the same way that the World Wide Web is. This bottom-up free architecture is radically

different from the hierarchical top-down architecture as seen in WordNet. Scale-free networks will

be explored further in chapter 4.

2.2.2 Organization

One of the key characteristics of Wikipedia (or for that matter any wiki), is that it lacks any top-

down organization. As mentioned earlier, any visitor can not only read articles but also edit them

or create new articles. This does not mean Wikipedia lacks organization. In editing Wikipedia,

people assume different roles. There are readers, editors, administrators, recent changes check-

8
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ers, stylists, policy makers, subject area experts, content maintainers, software developers, system

operators and many more (Riehle, 2006). It can be concluded that people involved in maintaining

Wikipedia largely organise themselves. Experts gather in different dedicated WikiProjects, to work

on in-depth articles about one subject, others check lots of articles for errors or check whether the

style lives up to Wikipedia’s standards, while others are more involved in developing policies.

Analysis of the Dutch Wikipedia has shown that it can be considered an extreme form of self-

management in regard to labour division. This bottom-up approach of self distribution of roles

does not lead to chaos, but rather to an integrated and coherent data structure. Contributions

rougly seem to follow a Pareto distribution (20 % of the contributors supplying 80 % of the content)

(Spek, 2006).

2.2.3 Quality

One of the greatest criticisms on Wikipedia is that due to its nature of being an encyclopedia cre-

ated and edited by anyone, it lacks authority and thus quality. When editing an article about for

example black holes, edits made by a physicist do not weigh heavier than edits made by a layman.

Another danger is people with double agendas. A lot of cases are known of people editing ar-

ticles about themselves, one of the numerous examples is Adam Curry, a pod-cast pioneer who

removed information about other pod-cast pioneers from Wikipedia. So, guidelines and policies

alone cannot assure the quality of articles. A lot of this critisism came out of the corner of the

traditionally edited paper encyclopedias, such as Britannica, who have seen their sales plummet

since Wikipedia became a popular source of knowledge.

Their criticism does not appear to be totally justified, as research by Nature revealed. Nature com-

pared the quality of Wikipedia with that of the Encyclopaedia Britannica. In their study, articles

were chosen on a broad range of scientific disciplines and taken from both the Wikipeda and Bri-

tannica webpages. These were sent to relevant experts for a peer review. The reviewers were not

told which article was from which website. The 42 returned reviews were used. Eight serieous er-

rors were found, four in each encyclopedia. Factual errors, ommisions and misleading statements

were more common. In Wikipedia 162 were found and in Brittanica 123. So with regard to scien-

tific articles the differences between Wikipedia and a ‘proper’ encyclopedia like Britannica are not

that big (Giles, 2005). In june 2008 Britannica announced it is going to accept contributions from

users, in a “collaborative but non-democratic” way.

The mechanism that seems to assure a great deal of quality in Wikpedia is the peer reviewed

process: articles are under constant consideration of its viewers. Articles that need to be expanded

or corrected receive banners stating so, inviting users to improve the articles. Of course, if an article

is viewed often, errors in it will be corrected very quickly. Indeed, research has shown that articles

with many edits have a higher quality than articles that have been edited less frequently. Because

popular articles receive more views, they are edited more heavily as well. This means popular

articles are in general of higher quality than less popular articles (Wilkinson and Huberman, 2007).

In addition to that, articles are not only checked by humans, but also by bots. Bots may check
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articles for quality, but also edit out commonly made mistakes.

One feature that takes full advantage of the peer-reviewed process is the existince of the earlier

mentioned WikiProject pages. Experts in one specific area can organise themselves in these projects

and work collaboratively on developing high quality content for the articles in their interest areas.

Another feature that helps assure Wikipedia’s quality is the discussion page that is linked to each

entry. When editing controversial articles like those about Global Warming or Palestina, on these

discussion pages users can argue with each other, providing arguments and sources for their view-

points. Tis prevents edit wars, where groups of users with different viewpoints keep editing out

any changes made by the opposing group.

A third feature of Wikipedia that helps quality is the process of featuring high quality articles on

the Wikipedia frontpage. These so called Featured Articles (FA) are elected through well estab-

lished and visible processes (Figure 2.3). The requirements for promoting an article to FA status

have increased dramatically over the years. Nowadays, over 200 of the early FAs have been de-

moted because they do not meet the current FA criteria. The first step towards the FA status for an

article is to become a Featured Article Candidate (FAC). In order to become a FAC, someone needs

to nominate the article. These nominations are public and when editors raise objections the nomi-

nators are expected to address these objections by editing the aricle. In order to be promoted from

FAC to FA, concensus must be reached. Anyone can cast a vote for or against promotion, provided

it is backed by exlicit reasoning. The FA director finally decides when concensus is reached. Differ-

ent tools are used to smooth the process, such as citation checking scripts and workflow templates

(Viégas et al., 2007).

Figure 2.3: Overview of the Featured Article promotion and denotion processes, taken from

(Viégas et al., 2007)

10



CHAPTER 2: SEMANTIC RESOURCES

2.3 ConceptNet

ConceptNet 7 is a freely available, machine-usable common sense resource. ConceptNet 3 presently

consists of over 250,000 elements of common sense knowledge, in the form of semi-structured

fragments of natural language. The creation of ConceptNet was inspired by the large amount of

common sense concepts and relations in Cyc (Lenat, 1995), and by the ease-of-use of WordNet.

The represention of a semantic network of WordNet was used, but augmented in several ways

(Liu and Singh, 2004) , (Havasi et al., 2007). Nodes in ConceptNet represent concepts and edges

represent relations (Figure 2.4).

Figure 2.4: An example of the ConceptNet 3 structure

2.3.1 Structure

Nodes in ConceptNet can, in addition to noun phrases which are typically found in WordNet (like

for example food and junk food), also encompass higher-order compound concepts in the form of

verb phrases. These verb phrases match an action verb with one or two direct or indirect argu-

ments (for example: buy food,drive a car). Knowledge about a greater deal of real world concepts

can be represented in the semantic network in this way. The downside to this approach is that

ConceptNet does not distinguish between word senses.

A second difference with WordNet is that ConceptNet extends WordNet’s small ontology of mainly

taxonomic semantical relations to include a richer set of possible predicates that express the rela-

tions between concepts. These predicates represent the edges and are, just like the nodes, presented

in natural language. Some examples hereof are displayed in Table 2.1. In addition to these specific

relation types, a relation can also be unspecified, such as ConceptuallyRelatedTo, which says that

two concepts are related, but the nature of the relationship cannot be determinded.

7http://conceptnet.media.mit.edu/
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Relation Example sentence patterns

IsA NP is a kind of NP.

MadeOf NP is made of NP.

UsedFor NP is used for VP.

CapableOf NP can VP.

DesireOf NP wants to VP.

CreatedBy You make NP by VP.

InstanceOf An example of NP is NP.

PartOf NP is part of NP.

EffectOf The effect of VP is NP|VP.

Table 2.1: Some of the specific predicates in ConceptNet 3, along with an example of a sentence

pattern that produces each predicate.

The final difference between ConceptNet and WordNet is the nature of the information present.

ConceptNet contains more informal knowledge of practical value. In WordNet a dog is a canine

and a cat is a feline, and both are carnivores, placental animals, etcetera. But WordNet does not

contain the knowledge that both cats and dogs are pets. The taxonomical information about cats

and dogs is less likely to enter into ConceptNet than practical information about these concepts.

In addition, ConceptNet also contains a lot of defeasible information: facts that are often true, but

not necessarily alway, like: EffectOf(‘fall off bicycle’, ‘get hurt’). In our everyday lives we deal with

these kind of fuzzy truths all the time.

2.3.2 Organization

While CYC and WordNet take their knowledge from the inputs of knowledge engineers, Concept-

Net is in the aspect of knowledge acquisition more like Wikipedia: it takes its knowledge from

contributors on the Internet. Users can add assertions using predefined formats, such as: You are

likely to find A in B. The user can fill in anything he wants in the A and B spots. Another important

feature of the Open Mind Commons (OMCS) website8 is the ability to provide feedback. Users can

rate each others assertions positively or negatively, influencing the score of those assertions. The

higher the score, the more reliable a statement is considered. Every time a user adds an assertion

that is already present in the database or rates an assertion positively, its score is increased by one.

OMCS also asks feedback in a different way. If concept A and concept B appear in corresponding

positions in many similar predicates, they can be considered similar to each other. If concept A

appears in a predicate that B does not appear in, OMCS can infer that the same predicate might be

true for B. Because of the natural language interface to ConceptNet, OMCS can return this inferred

predicate to a user and ask if it makes sense. It also asks users to fill in the blanks on concepts that

do not have enough predicates. Analogous to other concepts it will ask question that the user can

evaluate as true or false (Figure 2.5).

8http://commons.media.mit.edu/en/
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Figure 2.5: The Open Mind page for ’Oven’, giving users the ability to provide feedback in two

ways: judging assertions and judging or altering inferences from the system

2.3.3 Quality

A study by (Singh et al., 2002) was carried out to determine the quality of the OMCS 1 database.

About 3000 standard items were randomly selected and judged manually. Of these items, 12.3 %

was marked as garbage and thus unusable. The remaining items were judged on generality, truth,

neutrality and sense on a scale from 1 (worst) to 5 (best). Generality scored on average just above

3 and all the other attributes scored over 4. The items were also judged on age level. 84 % of the

items was judged do be on grade- or high school level, indicating that most of the database indeed

consists of facts most people know, and thus can be considered common sense.
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Lexical Semantic Relatedness

Measures

There are two general approaches to measuring semantic relatedness: one approach that uses lexi-

cal resources for measuring semantic relatedness and one approach that uses distributional statis-

tics of words in a corpus to measure semantic similarity. I will focus mainly on the first approach:

lexical semantic relatedness. Lexical semantic relatedness measures take a lexical resource and

transform this resource into a network or graph and compute semantic relatedness by using the

paths that exist in the generated graph.

3.1 Approaches using dictionaries or thesauri

Kozima and Furugori used the Longman Dictionary of Contemporary English as a lexical resource

and translated it into a semantic network. Every headword in the dictionary was turned into

a node, and each node was connected to other nodes of words that occured in the definition of

the headword. Similarity between words is computed by spreading activation on the semantic

network. Each word is represented by all the words in its definition (Kozima and Furugori, 1993).

A thesaurus is similar to a dictionary, but contains relations such as synonyms and antonyms. Ro-

get’s Thesaurus was the first of thesauri. It was compiled in 1805 by Dr. Peter Mark Roget, and

published in 1852. It thas been updated ever since and now contains over 250.000 words, starting

with 15.000 words back in 1852. Unlike in a dictionary, entries in Roget’s Thesaurus are listed con-

ceptually rather than alphabetically and there are no definitions for words. Roget’s Thesaurus is

structured into six primary classes. Each class is composed of multiple divisions and each division

is divided into sections. Semantically related words become clustered in categories in one of the

many branches of this system. Polysymy can be solved by looking at the other words in the cluster

and by their index entry. The index entry for each word contains category numbers and labels.

Categories can contain pointers to other categories.
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Using Roget’s Thesaurus, (Morris and Hirst, 1991) identified five types of semantic relations be-

tween words. If any of the following conditions are met two words are considered similar.

1. Both words have a category in common in their index entries.

2. One word has a category in its index entry that contains a pointer to a category of the other

word.

3. One word is either a label in the other word’s index entry or is in a category of the other

word.

4. Both words are contained in the same subcategory.

5. Both words have categories in their index entries that point to a common category.

3.2 Path-based measures

The most basic way of computing semantic similarity between two concepts c1 and c2 is measuring

the distance in a semantic network such as WordNet between c1 and c2. This can be achieved by

finding the paths from each sense of c1 to each sense of c2, and then taking the shortest. This

results in the semantic distance. The semantic distance is inversed to get the semantic similarity.

Computing the path length between c1 and c2 can be done using the formula

simpath(c1, c2) = max[ 1
Np ]

where N p is the number of nodes in path p (see Figure 3.2(a)). This simple representation is based

on the notion that all distances between nodes are equal. This is typically not the case. Resnik

points out that the basic path length measure will suffer from the great differences in depth found

in different parts of the taxonomy (Resnik, 1995). This is due to the fact that some classes are far

more specific than others.

To overcome this problem, Leacock and Chodorow proposed a normalized path-length measure

(lch) which also considers the depth of the taxonomy that is used:

simlch(c1, c2) = − log length(c1;c2)
2D

where length(c1; c2) is the number of nodes along the shortest path between the two nodes (the

basic path length), and D is the maximum depth of the taxonomy (Leacock et al., 1998).

Wu and Palmer presented in a paper on translating verbs from English to Mandarine Chinese

a scaled measure (wup) which measures what they call conceptual similarity and takes into ac-

count the depth of the nodes together with the depth of their most-specific common subsumer

(Wu and Palmer, 1994). This hypernym is also know as the lowest superordinate (LSO).

simwup(c1, c2) = − log depth(LSO(c1;c2))
depth(c1)+depth(c2)
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3.3 Information content based measures

The method Resnik uses to solve the problem of determining the importance of a category hinges

on the intuition that one criterion of similarity between two concepts is the extent to which they

have common attributes. In a IS-A taxonomy this can be determined by inspecting the relative po-

sition of the LSO. Instead of using path length, Resnik uses the most informative class to compute

similarity, so the structure of the semantic network is only used to find the LSO. A class consists of

al the synonyms found at the LSO and all the synonyms of its hyponyms. To find the informative-

ness of the classes Resnik gathered their frequencies from the one-million-word Brown Corpus of

American English. For example: to compute the frequency of the class money all occurences of the

word money and all its defined synonyms are counted, as well as the occurences of all hyponyms

such as nickel and dime and their defined synonyms. The frequencies are then adjusted to take into

account the number of classes a word belongs to. Using information theory, the propability of the

classes can then be determined. The similarity between word c1 and word c2 is determined by the

most informative (and thus least probable) class they belong to:

simres(c1, c2) = − log p(LSO(c1, c2))

with p being the probability of the class both words belong to. The probability p can be calculated

by counting the frequencies in a corpus:

p(c) =
∑w∈W(c) count(w)

N

where W(c) is the set of words that are subsumed by concept c and N is the total number of words

that are present in the corpus and the taxonomy (Resnik, 1995). Figure 3.1 demonstrates that

simres(dime, creditcard) = simres(money, credit)

because both pairs share the same LSO, while

simpath(dime, creditcard) < simpath(money, credit))

because the path between dime and credit card is longer than the path between money and credit.

Additionally, the similarity will decrease as the LSO is situated higher in the taxonomy, because

then it becomes more abstract and as a result more probable. If the LSO is the top node, its proba-

bility will become 1 and thus the similarity − log(1) = 0 (Budanitsky and Hirst, 2006).

The problem with many semantic similarity measures is that they are specifically tailored for one

domain. To overcome this problem, (Lin, 1998) attempted at a similarity measure that would be

universally applicable and theoratically justified. He based his measure on the three intuitions

that:

1. The similarity between objects A and B is related to their commonality; the more commonal-

ity they share, the more similar they are.

2. The similarity between A and B is related to the differences between them, the more differ-

ences they have, the less similar they are.
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Figure 3.1: An example of the WordNet taxonomy, showing lowest superordinates of nickel and

dime (coin) and of nickel and credit card (medium of exchange). Dashed lines indicate

that some intervening nodes have been left out. Adapted from (Resnik, 1995).

3. The maximum similarity between A and B is reached when A and B are identical, no matter

how much commonality they share.

Both the method used by Lin (lin) and the method used by (Jiang and Conrath, 1997) (jcn) augment

the information content of the LSO of two concepts with the sum of the information content of the

individual concepts. The difference between the two is that lin scales the information content of

the LSO by this sum, while jcn subtracts the information content of the LSO from this sum, and

takes the inverse of this number to convert it from a distance to a similarity measure.

3.4 Text overlap based measures

For word sense disambiguation, Lesk constructed an algorithm based on the idea that related

words are often defined using the same words. Given a word to disambiguate, the original Lesk

algorithm compares the definition text of each sense of that word (the glosses of that word) from

a dictionary with the glosses of every other word in the sentence. The sense whose gloss shows

most overlap with the glosses of the other words will then then picked (Lesk, 1986). Overlap is

calculated by counting the number of content words in common.

The working of the algorithm can be demonstrated by considering the words pine cone. The algo-

rithm, using the Oxford Advanced Learner’s Dictionary, finds the following two senses for pine:

17



CHAPTER 3: LEXICAL SEMANTIC RELATEDNESS MEASURES

1. Kind of evergreen tree with needle shaped leaves.

2. Waste away through sorrow or illness.

For cone it finds three senses:

1. Solid body which narrows to a point.

2. Something of this shape whether solid or hollow.

3. Fruit of certain evergreen tree.

The glosses of sense one for pine and sense three for cone show the largest overlap, so these senses

are picked for pine cone. A drawback of Lesk’s approach, is that dicitonary glosses tend to be

fairly short and thus do not provide sufficient vocabulary to make subtle distinctions in degrees

of relatedness. (Banerjee and Pedersen, 2003) expanded Lesk’s approach to include the glosses of

other concepts to which the senses of the words under considerations are related according to a

given concept hierarchy such as WordNet. The advantage is that the glosses of these words can be

expanded by the words in the hierarchy and also that relations that are not explicit in the hierarchy

can implicitly be observed through the gloss overlap. For example, in WordNet, car and tyre do not

share a relationship, while their glosses show a large degree of overlap. In addition to that, vehicle

and car do share an IS-A relationship, so the gloss of car can be extended by the gloss of vehicle.

Figure 3.2(c) shows another example.

(Patwardhan and Pedersen, 2006) expanded this approach with their gloss vector by applying sec-

ond order co-occurrence vectors on the WordNet glosses. They based their research on the assump-

tion that vectors built from the contexts of words are useful representations of word meanings. This

was demonstrated earlier by (Schutze, 1998).

For example, car and mechanic are likely first order co-occurrences since they commonly occur

together. A first order context vector for a given word simply indicates all the first order co-

occurrences of that word as found in a corpus, such as the collection WordNet glosses. Because the

Gloss Vector measure is based on second order co-occurrences, it includes the contexts of mechanic

and car as well. Mechanic and police are second order co-occurrences since they are both first order

co-occurrences of car. A spatial representaton is in Figure 3.3.
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(b) information content
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geological formation

a local and well-defined

elevation of the land

the land along
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the shore of a

sea or ocean

(c) text overlap

Figure 3.2: Examples of calculating sim(hill, coast) in WordNet using three different approaches

3.5 WikiRelate!

The semantic relatedness measures originally developed for WordNet were applied to Wikipedia

by (Strube and Ponzetto, 2006). Users can assign categories to their Wikipedia articles. These cat-

egories can be part of larger categories, thus forming a hierarchical graph. This category graph

was used to construct a semantic network. For every word pair under consideration, WikiRelate!

first retrieves the Wikipedia pages the words refer to. These pages are then hooked to the cate-
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Figure 3.3: First Order Context Vectors and a Gloss Vector

gory tree by extracting the categories each page belongs to. Finally the path can be found between

the extracted categories along the Wikipedia category graph. In the case of ambiguous concepts,

Strube and Ponzetto try to let the queries diambiguate themselves. If a disambiguation page is

hit, all links from that page are used as a lexical association list. Words between parentheses are

split and added to the list. If overlap is found between the lexical association list of word A and

word B (or overlap between the two lists, if both words need to be disambiguated), that link is

followed and the target becomes the concept to use. If no overlap is found the first redirect on the

disambiguation page is used.

If the pair under consideration is King and Rook, first both concepts need to be disambiguated.

King points to a disambiguation page linking to among others Monarch, King Kong and King (chess)

while Rook leads to a disambiguation page redirecting to among others Rook (chess), Rook (bird),

Rook (rocket). Chess shows up in both lists, meaning that those specific redirects are used for both

concepts(King (chess) and Rook (chess).

The Resnik, Wu & Palmer and Leacock & Chodorow algorithms all show a large increase in corre-

lation with human judgements on the Finkelstein-353 dataset when using the WikiRelate! system

over WordNet 2.0. This clearly shows that the larger coverage of Wikipedia is of great benefit to

semantic relatedness measures.

3.6 Wikipedia-based Explicit Semantic Analysis

Gabrilovich and Markovitch recognized the need to augment texts with common sense knowledge

to compute semantic relatedness. They proposed Explicit Semantic Analysis (ESA), a method that

represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedia.
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Figure 3.4: Schematic of the Wikipedia-based Explicit Semantic Analysis.

They used machine learning techniques to build a semantic interpreter that maps fragments of

natural language text into a weighted sequence of Wikipedia concepts that are ranked by their rel-

evance to the text. This means that texts are explicitly represented by weighted vectors of concepts

(interpretation vectors) (Gabrilovich and Markovitch, 2007).

The meaning of a text fragment is thus interpreted in terms of its affinity with a range of Wikipedia

concepts. Semantic relatedness is then computed by comparing the vectors of the texts in the space

defined by the Wikipedia concepts (Figure 3.4). This can be done using conventional methods such

as the cosine metric. The representation of texts is explicit in that way that representations are in

natural language concepts present in human cognition, as opposed to Latent Semantic Analysis

(LSA), which uses abstract latent semantics.
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Pathfinding In Graphs

Pathfinding is the process of plotting the shortest route from point A to point B. In hierarchical

graphs this is an easy task: just go up in the hierarchy until the lowest superordinate of both A and

B is found. In small-world networks the task is more challenging.

4.1 Small-world networks

A small-world network is a certain type of graph in which most nodes are not neighbors of one

another, but most nodes can be reached from every other by a small number of steps through the

graph. The small-world phenomenon became known by an experiment in the science of social

networks by Stanley Milgram of Harvard University. Milgram noticed that people’s friendship

circles are often highly clustered. These clusters can be linked by people who are members of vari-

ous clusters, allowing even large communities to be quite cohesive. To test this idea, he concocted

an experiment to see how well connected the world really was. In his experiment, performed in

1967, Milgram randomly chose a stockbroker near Boston and 160 residents of a small town near

Omaha, Nebraska. He sent the residents of the town each a package and instructions to send the

packages by mail to the Boston stockbroker identified only by his name, occupation and rough lo-

cation. They were not allowed to look him up in a telephone book and could only send the package

to the stockbroker himself or to someone in their social network they knew on a first-name basis

and whom they thought would most likely get the package further on the way to the stockbroker.

Milgram found on average it took only six intermediaries to link the two people (Milgram, 1967).

Later this concept of ‘six degrees of seperation’ was popularized by John Guare’s play by the same

name and the game “Six Degrees of Kevin Bacon” developed at the University of Virginia1, which

links actors by co-occurence in movies to Kevin Bacon. This game was inspired by the Erdos num-

ber, a similar metric, but instead of actors it links scientists who collaborated on writing articles to

mathematician Paul Erdos.
1http://oracleofbacon.org/
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4.1.1 Scale-free networks

Scale-free networks are a special kind of small-world network. In a scale-free network most nodes

have a low connectivity. There are however a number of nodes with a very high degree of con-

nectivity. This behaviour was discovered by (Barabasi and Albert, 1999), who crawled the web

to map its connectedness. They discovered that the web was not connected randomly, but that

certain nodes had many more connections than average. These nodes act as hubs: they connect

the various parts of the network (see Figure 4.1). The structure and dynamics of these networks

are independent of the scale of the network, hence the name scale-free. The heavily tailed and

right skewed distribution of the degree of connectivity of the nodes follows a power law, which is

defined by

P(k) ∼ k−γ

where the probability P(k) that a node in the network is connected to k other nodes is roughly

proportional to −γ. The coefficient γ varies approximately from 2 to 3 for most real-world net-

works. Figure 4.2 compares this distribution to the bell-shaped distribution of random networks.

The existence of these well connected nodes ensures that path-lengths do not grow significantly

when the network grows. This means the network can grow endlessly without losing its usability.

Another benefit of scale-free networks is that it is very resistant to failure. A lot of nodes can be

turned off, without the network losing its connectivity. Only when a number of highly connected

nodes is targeted does the network start to fail.

(a) random network (b) scale-free network

Figure 4.1: A random and a scale-free graph. Highly connected nodes are colored red.

Interestingly, many real world phenomena have scale-free characteristics: social networks, com-

puter networks, semantic networks, the spreading of viruses (both the real world and the computer

variants), public transport (airports are obvious examples of hubs), but also cellular metabolism

and even the working of brain functions (Eguíluz et al., 2005).
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Figure 4.2: Connectedness distributions of the nodes in a random and scale-free graph.

4.1.2 Preferential attachment

So how can the emergence of scale-free networks be explained? The answer is a sort of ‘the rich

get richer’ process. Well connected nodes in a network are more likely to receive new connections

than poorly connected nodes. When for example a new person enters a social network, the chance

of him getting acquinted with well-connected people in that network is relatively high, because he

has easy access to those persons; through their relations. The same is true for the World Wide Web:

when a new webpage is created, the chance is high it will link to well established sites, because the

maker of a new website is more likely to know about those well-connected sites.

4.2 Pathfinding algorithms

A great benefit of scale-free networks is that path lengths do not grow to endless lengths when the

network grows. This means these networks can be traversed no matter how large they grow. Of

course, to do this automatically, efficient algorithms are needed. Because of the small wordliness

of such a network, all nodes are close to each other, which means the number of possible paths

rises extremely fast for each extra step, specially in large networks.

4.2.1 Depth-first search

A depth-first search (DFS) algorithm takes a certain node in the graph as its root and explores as far

as possible along each branch originating from the rootnode as possible. The algorithm traverses

the graph deeper and deeper, until the goal node is found, or a dead end is encountered. Then it

backtracks to the previous node that was not explored fully yet, following that one as deep as it

can. These nodes are kept in a stack, meaning that nodes that go in last will go out first (LIFO). Of

course, a list of already explored nodes needs to be maintained as well, to prevent loops.

DFS lends itself well to heuristic methods of choosing a branch that is likely to be the best. Space

complexity of DFS is much lower than for example breadth-first search. Its time complexity is

proportional to the number of vertices plus the number of edges in the graph that is traversed, in
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big O notation: O(|V| + |E|). When searching in large graphs, the list of nodes that have already

been visited by DFS can grow extremely large, as do the paths that DFS takes. This can be solved

by limiting the depth of the tree. This method is called iterative deepening depth-first search.

DFS can be used to find connected components, for topological sorting or to solve problems that

have only one solution. In that regard it is very similar to the classic method of finding a path

trough a maze. If he graph contains cyclic paths DFS will not always find the shortest path.

4.2.2 Breadth-first search

A breadth-first (BFS) algorithm also begins in a root node, but unlike DFS it explores all of that

nodes neighbouring nodes first. For each node it has encountered, it then explores all its yet un-

explored neighbouring nodes. In this way the algorithm builds an evergrowing front of nodes to

explore, until it encounters the target node. Nodes that need to be eplored are stored in a queue:

nodes that go in first, go out first (FIFO). This means that the network is traversed layer by layer.

If the graph depth is d and the branching factor of the nodes in the graphs is b, then in big O

notation the space and time complexity of BFS asymptotically approaches O(bd). However, as we

have seen earlier, in small-world networks d is usually not higher than 6.

BFS will always find a path from the source- to the targetnode and it will always find the shortest

path possible, meaning BFS is complete.

Bidirectional breadth-first search

Breadth first search can be made more time and space efficient by dividing the task in two parts.

Instead of only expanding the source node until the target node is hit, bidirectional search expands

both the target and source nodes, until the two fronts ‘hit’ each other. This approach shrinks space

and time complexity to O(b
d
2 + b

d
2 ).

4.2.3 Weighted search

The algorithms described above all assume that the edges between nodes are all equal in length.

When lengths or costs are assigned to edges the pathfinding task becomes different: it is no longer

sufficient to find the path with the shortest amount of edges. Instead, now the task is to find the

path with minimal costs. This is a far complexer problem than breadth-first search, because when

a path is found it is not necessarily the shortest path. There might be a path that is composed of

more edges, but when those edges are shorter, the total path is as well. The path that needs to be

found now needs to be calculated by adding all weights. A frequently used algorithm to handle

weighted graphs is Dijkstra’s algorithm (Dijkstra, 1959). Dijkstra’s algorithm adds nodes with

lowest costs first to its tree and explores along those nodes, updating earlier nodes if a shorter path
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A

B

D

C

E

F

G

H

I

Figure 4.3: DFS and BFS traversing a net-

work, with sourcenode A and

targetnode I.

Step DFS BFS Bidirectional

1 A A A

2 B B I

3 E C B

4 F D C

5 C E D

6 D F H

7 G G

8 H H

9 I I

is found. When a binary heap is used to store the tree in, time and space complexity for Dijkstra is

O(|E|+ |V| log |V|).

A modification of Dijkstra’s algorithm wich generally reduces time and space complexity is A∗.

This algorithm uses a heuristic to predict the direction it searches in (Stout, 1996). A∗ is generally

used in automobile- and web-based systems for computing driving directions and in pathfinding

for non-player characters in videogames. It is also used in parsing, string matching, and structured

prediction in computational linguistics.
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CHAPTER 5

A New Measure: Free Link

Pathfinding

In this chapter I describe a new measure of calculating semantic relatedness by finding the short-

est path between two concepts in an associative network. The associative networks that are ex-

plored are the link structure extracted out of Wikipedia and the predicates from the ConceptNet 3

database.

5.1 Creating the network

The Wikipedia dump contains over 2 million articles and 55 million links. This means the resulting

graph will have over 2 million nodes and 55 million edges. In ConceptNet there are over 18 thou-

sand concepts (nodes) that can be used (meaning they are not singletons) and over 254 thousand

assertions (edges) that have a score higher than zero. Both networks are sparse: they do not nearly

have as much connections as they could possibly have (namely, to all other nodes). To search these

networks efficiently, they need to be indexed well and and the algorithms need to be efficient.

5.1.1 Downloading the Wikipedia dump

If Wikipedia is regarded as a source to calculate semantic relatedness, it needs to be transformed

into a semantic network. In this network the articles will become the nodes, and the hyperlinks

between the articles can be considered as an establishment of a certain relation between the article

it links from and the article it links to. The nature of the relation is not defined: in that regard it is

similar to ConceptNet’s ConceptuallyRelatedTo relation. The hyperlinks will be transformed into the

edges of the network, connecting the articles with each other. Hyperlinks linking to pages outside

Wikipedia are discarded as well.

To form the semantic network, the nodes and edges need to be extracted from Wikipedia. To do
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CHAPTER 5: A NEW MEASURE: FREE LINK PATHFINDING

this, first a dump of all the articles in Wikipedia needs to be downloaded. Regularly, Wikipedia

dumps are made available for downloaded in XML and SQL format on the Wikimedia download

pages1. For this thesis, the English Wikipedia dump dated 12 march 2008 containing all articles

was downloaded2. This zipped dump is 3.5 Gb big, and it unzips to one large XML file of approx-

imately 15 Gb, containing all the Wikipedia articles. An example snippet of Wikipedia code taken

from the first paragraph of the article Baker is below::''This article refers to the cooking profession. For other uses, see[[Baker (disambiguation)]]''[[Image:USS John C. Stennis baker.jpg|200px|thumb|right|A baker preparesfresh rolls]]A '''baker''' is someone who primarily [[bake]]s and sells [[bread]].[[Cake]]s and similar foods may also be produced, as the traditionalboundaries between what is produced by a baker as opposed to a[[pastry chef]] have blurred in recent decades. The place where a bakerworks is called a '''bakehouse''', '''bakeshop''', or '''[[bakery]]'''.
5.1.2 Extracting the link structure

To form the network, only the article-names and hyperlinks between the articles need to be ex-

tracted. This is essentially the link structure. The remaining free text can be discarded entirely. The

only information that is stored is the type of link and the paragraph it was found in. A link can be a

normal link, appearing in the free text, or it can be either a category, redirect or recommendation as

described in Chapter 2. In the extration phase, one text-file is created containing all article names

and internal hyperlinks along with information about those links in that article. This text-file is 1.8

Gb in size.

5.1.3 Indexing in- and outlinks

The extracted file containing the links is far too big to allow efficient searching. Therefore, it needs

to be split into smaller files. Another problem that arises is that the file only contains the outgoing

links from any given article. It is however necessary to also know the incoming links to any given

article. To find these, an inverted index needs to be made of the entire extracted link structure file.

This is done by reading the entire file into memory and then maintaining a hash of articles and

links to that article. Every time a link to a certain article X is read from the file, the corresponding

article the links originates from is added to the list of articles linking to X. If we look at the example

1http://download.wikimedia.org/
2http://download.wikimedia.org/enwiki/20080312/enwiki-20080312-pages-articles.xml.bz2
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bread

yeast

flour

baking

biscuit
oven

pretzel

baker

bagel

Portal:Food/Topics

wheat

Dunkin’ Donuts

cooking

Figure 5.1: An example of some of the links found in various pages of Wikipedia.

in Figure 5.1, the outgoing links for bread (oven, biscuit, yeast and flour) can easily be extracted, but

the incoming links need to be collected from the pages of baker, bagel and Portal:Food/Topics.

The incoming and outgoing links are stored in different directories. It would be optimal to store

each concept in its own file. The downside to this approach is that it uses massive amounts of

disk space. Therefore, I opted for the approach of storing the concepts in files based on the four

first letters of the word. The file Circ.txt in the index_to-directory would for example hold among

others the links leading to Circle, Circus, Circulation etcetera. Figure 5.2 offers an overview of the

extraction process and structure of the index that is made.

5.1.4 Using ConceptNet 3

ConceptNet 3 can be freely downloaded as a PostGreSQL database, but also in Notation3 (N3) for-

mat. N3 is a compact and human readable non-XML serialization of Resource Description Frame-

work models. I downloaded the N3 file3 from the ConceptNet website. Due to the database being

in N3 format, the links can be extracted easily, along with user-assigned scores of the relationships.

Because users have the option to input text in natural language, the data needs some processing in

order to be of any value. An example of the N3 notation of ConceptNet 3 is below.<http://conceptnet.media.mit.edu/assertion/1115669>conceptnet:LeftConcept <http://conceptnet.media.mit.edu/concept/1000827>;conceptnet:RelationType <http://conceptnet.media.mit.edu/reltype/UsedFor>;conceptnet:RightConcept <http://conceptnet.media.mit.edu/concept/1002231>;conceptnet:LeftText "a knife";conceptnet:RightText "cutting";conceptnet:FrameId <http://conceptnet.media.mit.edu/frame/1441>;
3http://conceptnet.media.mit.edu/conceptnet_en_20080605.n3.bz2
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CHAPTER 5: A NEW MEASURE: FREE LINK PATHFINDINGconceptnet:Language <http://conceptnet.media.mit.edu/language/en>;conceptnet:Creator <http://conceptnet.media.mit.edu/user/10889>;conceptnet:Score 50;conceptnet:Sentence "a knife is used for cutting.".
5.1.5 Normalization

The assertion above defines the relation between a knife and cutting. It could just as easily have

been a relation between knives and to cut. Although the form can be different, the concepts are

the same. This requires the normalization of concepts: knives, a knife, the knife etcetera all need

to be normalized to one concept. This normalization step takes place before the concepts can be

indexed. Normalization requires two actions: first, non-content words need to be removed. These

stopwords are words such as a, the, many, be and so on. Then, the words that remain need to be

stemmed. This means that all suffixes are stripped so that only the stem remains. For this task, a

Perl implementation of the Porter stemmer4 (Porter, 1997) is used. The stopword-list that is used

is from Snowball5. After normalization, the same indexing process can be used for ConceptNet as

was used for the Wikipedia link structure. The extracted and normalized text file containing all

concepts, scores and links is only 4 Mb large.

Figure 5.2: Overview of the extraction process

4http://www.ldc.usb.ve/ vdaniel/porter.pm
5http://snowball.tartarus.org/index.php
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5.2 Implementing the search-algorithm

Because of the richness and scale of the links in small-world networks, a depth-first search is not

very likely to yield any results fast. The number of branches grow exponentially after each step,

meaning that finding the right branch is nearly impossible using depth-first search. Breadth-first

search is a better option, although in large networks such as Wikipedia performance can become

a problem: the front of links that need to be followed can become very large. If Wikipedia is

indeed a scale-free network this problem can be overcome. First of all, we know that in that case

the maximum number of steps stays constant, no matter how large the network is. And secondly,

because both in- and outgoing links were indexed, both forward and backward chaining can be

used, meaning a bidirectional breadth-first search algorithm can be applied. This limits the time

and space complexity considerably, as was shown in Chapter 4. For the implementation of the

bi-directional breadth-first search algorithm, the Algorithm::Sixdegreesmodule6 is used. Figure

5.3 illustrates how the search process works.

Concept A

Concept B

Scale-free network

Figure 5.3: A schematic of bidirectional BFS in a scale-free network. The grey areas indicate the

space that has been searched. The chain that connects both circles is a shortest path

5.2.1 Calculating relatedness

Semantic relatedness is calculated by using the total length of the shortest path that is found be-

tween two concepts c1 and c2. Similar to the basic path-measure in WordNet, the number of nodes

N p that are in the path are counted. Free link relatedness is then calculated as follows:

relatedness f reelink(c1, c2) = max[ 1
Np ]

When c1 and c2 are the same, only one node is in the path, and the relatedness will thus be 1
1 = 1.

6http://search.cpan.org/ petek/Algorithm-SixDegrees-0.03/lib/Algorithm/SixDegrees.pm
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For every extra node in the path, the semantic relatedness decreases.

5.2.2 Directed search

Because links in Wikipedia are directed, it is logical to treat them as such. This means the forward

chain only follows out-links and the backward chain only follows in-links. Once both chains are

connected a path is found. Because all links are followed, the first connection that is found is

always a shortest one. However, it is possible that the path leading from concept A to concept B

is longer than the path from concept B to concept A. Therefore, both the path from A to B and the

path from B to A needs to be found, and then the shortest path is selected.

A

B

C

(a) From A to C

A C

B

(b) From C to A

A

B

C

(c) From A and C to B

A C

B

(d) From B to A and C

Figure 5.4: Four different ways of connection between node A and C through B. 5.4(a) and 5.4(b)

are discovered when using directed search, 5.4(c) and 5.4(d) only when using undirected

search

5.2.3 Undirected search

In ConceptNet, links do not have a direction. A predicate indicates a relationship between two con-

cepts. This relation is thus true for both concepts. In the same fashion, although links in Wikipedia

are directed, it might be benificial to regard them as having no direction. If concept A links to

concept B it could be argued not only is A related to B, apparently B does have some relation to

A as well. Furthermore, if there is a concept B that links to both A and C, or A and C both link to

B, this relationship could never be found by following directed links, but it could be found by not

regarding links as having a direction (Figure 5.4). The page about cars might for example link to

both Ferrari and Lamborghini, indicating some relation between the two. To implement undirected

search, nodes are expanded by adding all in- and outlinks. This is done for both the forward and
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the backward chain. Again, when both chains connect, a shortest path is found.

5.2.4 Weighted search

The scores that are assigned by users to assertions in ConceptNet can be used to apply scores

to edges. This and the fact that the network is relatively small means weighted search can be

applied to ConceptNet. An implementation of Dijkstra’s algorithm is used for this task. A∗ is not

an option, because in a conceptual network it is very hard to apply a heuristic to determine the

general search direction. For the Dijkstra implementation the Boost::Graphmodule7 is used. The

semantic distance is calculated by assigning the inverse of the scores assigned to the predicates as

costs to the edges and then finding the path with the lowest cost:

distance f reelinkweighted(c1, c2) = min[∑n
i=m

1
si
]

To get the semantic relatedness, the inverse of this score is taken:

relatedness f reelinkweighted(c1, c2) = 1
distance f reelinkweighted(c1,c2)

7http://search.cpan.org/ dburdick/Boost-Graph-1.4/Graph.pm
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Experiments

Evaluating a system that calculates semantic relatedness is not an easy task. There is no universal

truth that determines how related two concepts are. Judging semantic relatedness is typically a

human task, because we do this automatically every day. The best way to evaluate such a system

is therefore to compare it to how humans would do given the same task. This can be done by

collecting human judgements for a representative sample of word pairs in an experimental set-

ting. The average judgements can then be used for automatic evaluation. There are not many

datasets that are based on semantic relatedness. Rather, most datasets focus on semantic similar-

ity (i.e. how synonimous two words are). Examples of these are the Rubenstein and Goodenough

(Rubenstein and Goodenough, 1965) and Miller and Charles (Miller and Charles, 1991) word pairs.

6.1 The Finkelstein WordSimilarity-353 test collection

The Finkelstein-3531 test collection is a dataset that does contain semantic relatedness scores. In

addition to that, it also is a very large dataset. While the previously mentioned Rubenstein &

Goodenough dataset only contains 65 word pairs, the Finkelstein set contains 353 word pairs,

among which are the 30 word pairs from the Miller & Charles dataset, but with newly assigned

judgements.

The collection contains two sets of English word pairs along with human-assigned similarity

judgements. The first set contains 153 word pairs along with their similarity scores assigned by

13 subjects. The second set contains 200 word pairs, with their similarity assessed by 16 subjects.

All the subjects in both experiments were Israeli students who possessed near-native command of

English. Their instructions were to estimate the relatedness of the words in pairs on a scale from

0 (totally unrelated words) to 10 (very much related or identical words) (Finkelstein et al., 2002).

The subjects were specifically instructed to take into account all possible relations, even antonymy.

On average, judgements of individual subjects show a SpearmanŠs rank order ρ = 0.79 with the

whole group. Table 6.1 displays some examples of these word pairs. This dataset is used as a gold

1http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/wordsim353.html
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standard to evaluate the different measures of calculating semantic relatedness.

mile kilometer 8.66

computer news 4.47

territory surface 5.34

atmosphere landscape 3.69

president medal 3.00

war troops 8.13

record number 6.31

skin eye 6.22

Japanese American 6.50

theater history 3.91

volunteer motto 2.56

prejudice recognition 3.00

decoration valor 5.63

century year 7.59

century nation 3.16

delay racism 1.19

delay news 3.31

minister party 6.63

peace plan 4.75

minority peace 3.69

attempt peace 4.25

government crisis 6.56

deployment departure 4.25

Table 6.1: A collection of word pairs from the Finkelstein-353 dataset along with the averaged as-

signed scores.

6.2 Correlation

The data from the Finkelstein dataset and the scores assigned by the different metrics is compared

using Spearman’s ρ rank order coefficients (Spearman, 1904). This is a non-parametric method of

calulating correlation, meaning it does not make any assumptions about the distribution of the

data. Because output-scores from the pathfinding measures are logaritmic and the scores assigned

by humans are continuous, it is best to calculate correlation on ranks instead of raw scores.
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6.3 WordNet experimental setup

To use the WordNet measures, the WordNet::Similaritypackage2 is implemented (Pedersen et al.,

2004), using WordNet 3.0. This module is used to find the distances between the concepts in the

Finkelstein dataset, resulting in a score for each word pair. For information content metrics, it uses

the British National Corpus (World Edition), the Penn Treebank (version 2), the Brown Corpus, the

complete works of Shakespeare, and SemCor.

6.4 Free link pathfinding experimental setup

6.4.1 Scale-freeness

First of all, the distribution of connections is measured for both Wikipedia as ConceptNet to inves-

tigate the scale-freeness of both networks. Then, the developed free link pathfinding software is

used on both the Wikipedia as the ConceptNet data to find semantic relatedness.

6.4.2 Pathfinding

The word pairs from the Finkelstein dataset are fed to the free link pathfinding system, resulting in

scores for each pair. For Wikipedia both directed and undirected search are tested, for Conceptnet

undirected search, as there are no obvious directions in the ConceptNet database, and weighted

search using the Dijkstra algorithm. The scores that are used are the inverse scores as assigned by

users of Open Mind Commons, because edges corresponding with highly rated assertions should

have short lengths (the distance between the two concepts is apparently low).

6.4.3 Modifying the network

On top of that, reranking is done for Wikipedia, counting redirects as having only half the lengths

of normal links. It is also tested how well the metric performs if only the links in the first paragraph

of Wikipedia articles are used. The distribution of connections is measured for both Wikipedia as

ConceptNet to investigate the scale-freeness of both networks.

2http://search.cpan.org/dist/WordNet-Similarity/
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Results

7.1 WordNet based measures

The correlation of the different measures applied to WordNet 3.0 on the full Finkelstein dataset

with human judgement can be observed in Table 7.1. Spearman rank-order correlation coefficient

is used to compare the computed relatedness scores with the scores assigned by the human test

subjects. Only one concept was not found in WordNet: Maradona did not yield any results. In

Figure 7.1 are scatterplots which show the correlation between the ranks of human judgements

and WordNet measures.

graph based

path 0.29

lch 0.30

wup 0.33

information content based

res 0.33

lin 0.20

jcn 0.18

text overlap based
lesk 0.41

vector 0.45

Table 7.1: Spearman’s ρ rank order coefficients of WordNet measures with human judgements
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Figure 7.1: Visualisation of different WordNet metrics (shown on the Y-axis) ordered by rank as-

signed by human subjects
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7.2 Free link pathfinding

7.2.1 Link distributions

The distributions of both in- and outdegree for all pages in Wikipedia is shown in Figure 7.2. It

shows the relation between the number of incoming or outgoing links for a page and the total

number of times a page with that amount of incoming and outgoing links is found. The scale of

both axes is logarithmic. The total connectedness of both Wikipedia (both in- and outdegree for a

page) and ConceptNet 3 is displayed in Figure 7.3.

Figure 7.2: Logaritmic distribution of in- and outdegree for the pages found in Wikipedia
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Figure 7.3: Logaritmic distribution of connectedness of both Wikipedia (left) and ConceptNet

(right)
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7.2.2 Relatedness

The basic directed free link pathfinding measure applied on Wikipedia shows a Spearman’s ρ of

0.45 and the undirected measure shows a ρ of 0.56 with human judgements on the full Finkelstein

dataset (Table 7.2). Only one wordpair could not be found: the word defeating was not found.

Reranking the undirected results by giving redirect links a weight of 0.5 and all other links a weight

of 1 resulted in ρ = 0.56. When using only the links found in the first paragraph of an article the

correlation is ρ = 0.51 when using undirected search. Figure 7.4 displays scatterplots which show

the correlation between the rank of human judgements and those of the pathfinding measures.

FLP Wikipedia directed 0.45

FLP Wikipedia undirected 0.56

FLP Wikipedia first paragraph undirected 0.51

FLP Wikipedia undirected reranked 0.56

FLP ConceptNet 0.35

FLP ConceptNet weighted 0.21

FLP ConceptNet non-missing 0.47

Table 7.2: Spearman’s ρ rank order coefficients of different free link path (FLP) variants with human

judgements.

WordNet measures 0.18 - 0.45

WikiRelate! 0.19 - 0.48

ESA Wikipedia 0.75

FLP Wikipedia 0.56

FLP ConceptNet 0.35

Table 7.3: Spearman’s ρ rank order coefficients of different measures with human judgements.

In ConceptNet, 58 of the wordpairs could not be found, significantly impairing the score. The

free link pathfinding measure applied to ConceptNet 3 yields a ρ of 0.35. When we look only at

those wordpairs that were found, the measure applied to ConceptNet performs sightly better than

the directed Wikipedia measure, but worse than the undirected Wikipedia measure: it shows a ρ of

0.47. The Dijkstra algorithm using the assigned scores by humans as costs gave a result of ρ = 0.21.

In Table 7.4 some examples are shown of the paths found. The size of the ConceptNet indexes is

very small compared to the indexes generated from Wikipedia: in total only 69 Mb versus the 3.4

Gb of Wikipedia. This means the runtime of the search algorithm is significantly shorter on the

ConceptNet data than on the Wikipedia data. A matter of seconds versus minutes. A comparison

between free link pathfinding and other measures is presented in Table 7.3. Results from ESA and

WikiRelate! were taken from (Gabrilovich and Markovitch, 2007).
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7.2.3 Path lengths

For all wordpairs found, the number of nodes visited was never more than 6, meaning only 5 hops

were needed at most to connect any wordpair. On average, undirected search in Wikipedia needed

2.3 hops to connect the two words, undirected search in Wikipedia using only the first paragraph

required 2.5 hops and the measure applied to ConceptNet connected two concepts in 2.4 hops.

Undirected Wikipedia search needed significantly more hops: in 3.4 hops it was able to connect

two concepts.

Wikipedia undirected

Racism <-> United States <-> Broadcast delay <-> Delay

Government <-> Military <-> Crisis

Cucumber <-> Agriculture <-> Potato

Doctor <-> Doctors (BBC soap opera) <-> Nurse

Smart <-> Genius <-> Stupidity <-> Stupid

Wikipedia directed

Racism -> European Union -> 1950s -> Delay (audio effect) -> Delay

Crisis -> List of psychology topics -> Heuristic -> Social contract -> Government

Cucumber -> Fruit -> Potato

Doctor -> Mental health professional -> Psychiatric and mental health nursing -> Nurse

Smart -> Catholic Bishops’... -> Tagalog... -> Grammatical number -> Noun -> Stupid

ConceptNet

Racism <-> Pain <-> Person <-> Delay

Government <-> Person <-> Pray <-> Crisis

Cucumber <-> Farmer’s market <-> Potato

Doctor <-> Nurse

Smart <-> People <-> Stupid

Table 7.4: Some examples of paths found between concepts in Wikipedia and ConceptNet
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Figure 7.4: Visualisation of the free link pathfinding metric used on different resources (shown on

the Y-axis) ordered by rank assigned by human subjects
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CHAPTER 8

Discussion

In this Chapter the research questions posed in Chapter 1 are adressed. The results obtained in

Chapter 7 are discussed to draw a conclusion.

8.1 Network type

Both ConceptNet and Wikipedia networks are constructed using free link structure. Link distribu-

tions in both networks seem to follow a powerlaw. In particular the indegree of Wikipedia articles

shows a very clear power law ditribution, only fanning out near the bottom of the graph were

frequencies are very low. This is because frequencies lower than 1 cannot exist for numbers of

links leading to existing pages, and distributions of frequencies of these highly connected pages

are somewhat random. The outdegree shows a sort of concave gap at the top of the graph, roughly

between 1 and 20 outlinks. This means in Wikipedia articles with 1 to 20 outgoing links are less

frequent than would be expected from a scale-free network. The constraints Wikipedia endorses

on its users might have something to do with this: articles with few links are more likely to be

flagged for expansion, deletion or merging with existing articles. Apparently a typical Wikipedia

article links to 20 or more other articles. Apart from this, the distribution is very similar to the in-

rank distribution, albeit on a somewhat smaller scale: articles can have only that many outgoing

links before they become too large to be readable and editable.

Overall, both Wikipedia and ConceptNet seem to show a distribution that roughly follows a power

law distribution. ConceptNet’s distribution seems a little more random, probably because of the

significantly smaller scale of the network. The average path-lengths on the finkelstein dataset seem

to confirm this notion. On networks of three different scales (namely the entire Wikipedia, only

the first paragraph of Wikipedia and ConceptNet), the average number of hops needed to get from

one word to the other does not differ very much: respectively 2.3, 2.5 and 2.4.
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8.2 ConceptNet versus Wikipedia

With a correlation of 0.56 for undirected search versus 0.45 for directed, undirected is the best

way to go when computing semantic relatedness using the Wikipedia network, despite the fact

that links in Wikipedia do have an explicit direction. This can probably be accounted to the more

complex type of relations that can be covered by undirected search as described in Chapter 5.

Wikipedia undirected search also easily outperforms ConceptNet, which only scores a correlation

of 0.35. This lower score can mainly be attributed by the lack of coverage of ConceptNet. In

Wikipedia, only 1 wordpair could not be found, while in ConceptNet 58 could not be found. Even

when only non-missing wordpairs are considered, ConceptNet performs worse than Wikipedia

with a correlation of 0.47 with human judgements. It is better than Wikipedia directed search, so it

definitely shows potential, taking into account that the ConceptNet indexes are roughly 50 times

smaller than the ones created from Wikipedia.

Using only the first paragraph of articles in Wikipedia, which generally contains the definition of a

word, still generates satisfying results (ρ = 0.51), but is still lower than when the entire Wikipedia

is used. Apparently there are more useful links in the body of the article than there are ‘garbage’

links that mess up the calculation of semantic relatedness. Still, the first paragraph shows to be a

good representation of an article. Reranking results using the notion that redirect links cost half

as much as normal links does not change the score significantly. Apparently it does as much good

as it does damage. The idea is not wrong: redirects show a very strong relationship between

two pages. The problem here is the implementation: because of the richness of the network, the

algorithm arbitrarily can take a number of routes between concepts which are all equal in length.

If redirects are to be considered as having a lower cost than normal links, then it needs to be made

sure that the algorithm always prefers to take redirect routes rather than normal links. For this,

weighted search needs to be used. IN muy experiments, weighted search did not provide better

results for ConceptNet. Results using weights were actually worse (ρ = 0.21). However, weighted

search was not the focus of this study. The scores can probably be used in another way to augment

the pathfinding scores, maybe by combining the number of hops and the scores in another way

than multiplying them.

8.3 Free link pathfinding versus other methods

The free link pathfinding method using Wikipedia as introduced in this thesis outperforms any

other existing pathfinding method for calculating semantic relatedness. It also outperforms any

method that makes use of WordNet, even the ones that make use of textual content, such as

extended gloss vectors. This cannot be explained by coverage: both in WordNet 3.0 and in the

Wikipedia dump of march 2008 only one wordpair was not found. This proves that a bottom-up

free link structure in conceptual networks is better for finding semantic relatedness than top-down

hierarchical structures as used in ontologies, such as WordNet.
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The performance of WikiRelate! is also lower, but it needs to be taken into account that the

Wikipedia dump that was used in this thesis is a lot newer and bigger than the dump used for

WikiRelate!. Still, when only similar pathfinding metrics are considered, the performance achieved

by free link pathfinding scores significantly better. While ESA’s performance (ρ = 0.75) is even

higher, the comparison is not realistic. ESA is a fully integrated machine learning architecture that

makes extensive use of Wikipedia’s free text. The free link measure is a robust, simple and portable

method that uses only link structure from any given conceptual network.

8.4 Future research

I recommend using the Wikpedia free link pathfinding algorithm for doing future research into

semantic relatedness, as it has proved to be a valid method of calculating the relatedness of con-

cepts and preferable above methods that use a hierarchical knowledge structure. Although a first

version was described in this thesis, I believe the free link pathfinding algorithm can be thor-

oughly improved. This initial version was developed to be adapted easily to different conceptual

networks, and to treat all links in that network as being equal. Although I experimented with

weighted search, no satisfying results were yet obtained. It is however my belief that this approach

should be pursued further, to find the proper way to obtain and use scores to weigh relations. This

could result in obtaining more accurate and diverse results, as opposed to the discrete scores that

are obtained now. On the Finkelstein-353 dataset, only six different scores were obtained for relat-

edness of all word pairs (see Figure 7.4, due to the limited amount of steps needed in a scale-free

network.

It is also recommendable to evaluate the free link pathfinding measure by using it in other higher

order natural language processing tasks, such as automatic summarization, information retrieval,

word sense disambiguation and machine translation. It should be valuable to explore how much

these tasks can be improved by using this method to calculate semantic relatedness.
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Appendix A

Below are the results from Wikipedia and ConceptNet undirected search for all wordpairs in the
Finkelstein WordSimilarity-353 set.

word pair human Wikipedia ConceptNet

love-sex 6.77 .33 .50

tiger-cat 7.35 .33 .50

tiger-tiger 10.00 1.00 1.00

book-paper 7.46 .50 .50

computer-keyboard 7.62 .33 .50

computer-internet 7.58 .50 .50

plane-car 5.77 .25 .33

train-car 6.31 .33 .33

telephone-communication 7.50 .33 .50

television-radio 6.77 .50 .33

media-radio 7.42 .33 .50

drug-abuse 6.85 .33 .33

bread-butter 6.19 .50 .50

cucumber-potato 5.92 .33 .33

doctor-nurse 7.00 .33 .50

professor-doctor 6.62 .33 .33

student-professor 6.81 .33 .33

smart-student 4.62 .25 .33

smart-stupid 5.81 .25 .33

company-stock 7.08 .33 .33

stock-market 8.08 .50 .50

stock-phone 1.62 .33 .25

stock-CD 1.31 .25 .20

stock-jaguar .92 .33 .25

stock-egg 1.81 .25 .25

fertility-egg 6.69 .25 .25

stock-live 3.73 .25 .33

stock-life .92 .25 .25

book-library 7.46 .50 .50

bank-money 8.12 .50 .50

wood-forest 7.73 .50 .50

money-cash 9.15 .50 .50

professor-cucumber .31 .33 .20

king-cabbage .23 .25 .25

king-queen 8.58 .50 .50

king-rook 5.92 .25 .33

bishop-rabbi 6.69 .33 .33

Jerusalem-Israel 8.46 .50 .50

Jerusalem-Palestinian 7.65 .50 .

holy-sex 1.62 .25 .

fuck-sex 9.44 .33 .33

Maradona-football 8.62 .33 .

football-soccer 9.03 .33 .33

football-basketball 6.81 .50 .50
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football-tennis 6.63 .33 .33

tennis-racket 7.56 .33 .25

Arafat-peace 6.73 .25 .

Arafat-terror 7.65 .25 .

Arafat-Jackson 2.50 .20 .

law-lawyer 8.38 .50 .50

movie-star 7.38 .33 .25

movie-popcorn 6.19 .25 .50

movie-critic 6.73 .25 .50

movie-theater 7.92 .33 .50

physics-proton 8.12 .50 .20

physics-chemistry 7.35 .50 .33

space-chemistry 4.88 .33 .25

alcohol-chemistry 5.54 .50 .25

vodka-gin 8.46 .50 .

vodka-brandy 8.13 .33 .33

drink-car 3.04 .33 .33

drink-ear 1.31 .25 .25

drink-mouth 5.96 .33 .50

drink-eat 6.87 .20 .33

baby-mother 7.85 .33 .50

drink-mother 2.65 .33 .33

car-automobile 8.94 .50 .50

gem-jewel 8.96 .25 .33

journey-voyage 9.29 .25 .25

boy-lad 8.83 .20 .

coast-shore 9.10 .50 .33

asylum-madhouse 8.87 .33 .

magician-wizard 9.02 .50 .25

midday-noon 9.29 .50 .33

furnace-stove 8.79 .50 .33

food-fruit 7.52 .50 .50

bird-cock 7.10 .50 .33

bird-crane 7.38 .25 .50

tool-implement 6.46 .50 .25

brother-monk 6.27 .50 .25

crane-implement 2.69 .20 .20

lad-brother 4.46 .20 .

journey-car 5.85 .25 .25

monk-oracle 5.00 .33 .

cemetery-woodland 2.08 .33 .25

food-rooster 4.42 .25 .33

coast-hill 4.38 .33 .33

forest-graveyard 1.85 .33 .33

shore-woodland 3.08 .33 .25

monk-slave .92 .25 .25

coast-forest 3.15 .33 .33

lad-wizard .92 .20 .

chord-smile .54 .20 .25

glass-magician 2.08 .25 .25

noon-string .54 .25 .25

rooster-voyage .62 .25 .20

money-dollar 8.42 .33 .50

money-cash 9.08 .50 .50

money-currency 9.04 .50 .33

money-wealth 8.27 .50 .33

money-property 7.57 .33 .33

money-possession 7.29 .25 .33

money-bank 8.50 .50 .50

money-deposit 7.73 .33 .25

money-withdrawal 6.88 .33 .33

money-laundering 5.65 .25 .50

money-operation 3.31 .25 .33
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tiger-jaguar 8.00 .50 .33

tiger-feline 8.00 .50 .33

tiger-carnivore 7.08 .50 .50

tiger-mammal 6.85 .50 .33

tiger-animal 7.00 .50 .50

tiger-organism 4.77 .33 .33

tiger-fauna 5.62 .33 .20

tiger-zoo 5.87 .33 .50

psychology-psychiatry 8.08 .50 .

psychology-anxiety 7.00 .33 .

psychology-fear 6.85 .33 .

psychology-depression 7.42 .33 .

psychology-clinic 6.58 .33 .

psychology-doctor 6.42 .33 .

psychology-Freud 8.21 .33 .

psychology-mind 7.69 .50 .

psychology-health 7.23 .33 .

psychology-science 6.71 .50 .

psychology-discipline 5.58 .33 .

psychology-cognition 7.48 .50 .

planet-star 8.45 .50 .33

planet-constellation 8.06 .33 .33

planet-moon 8.08 .50 .50

planet-sun 8.02 .50 .33

planet-galaxy 8.11 .33 .50

planet-space 7.92 .50 .50

planet-astronomer 7.94 .50 .25

precedent-example 5.85 .25 .

precedent-information 3.85 .25 .

precedent-cognition 2.81 .25 .

precedent-law 6.65 .50 .

precedent-collection 2.50 .25 .

precedent-group 1.77 .25 .

precedent-antecedent 6.04 .20 .

cup-coffee 6.58 .50 .50

cup-tableware 6.85 .25 .25

cup-article 2.40 .25 .20

cup-artifact 2.92 .25 .25

cup-object 3.69 .25 .25

cup-entity 2.15 .25 .25

cup-drink 7.25 .33 .50

cup-food 5.00 .25 .33

cup-substance 1.92 .25 .33

cup-liquid 5.90 .25 .50

jaguar-cat 7.42 .33 .50

jaguar-car 7.27 .25 .33

energy-secretary 1.81 .25 .33

secretary-senate 5.06 .33 .25

energy-laboratory 5.09 .33 .25

computer-laboratory 6.78 .50 .50

weapon-secret 6.06 .25 .25

FBI-fingerprint 6.94 .50 .

FBI-investigation 8.31 .33 .

investigation-effort 4.59 .25 .33

Mars-water 2.94 .50 .50

Mars-scientist 5.63 .33 .25

news-report 8.16 .25 .25

canyon-landscape 7.53 .33 .25

image-surface 4.56 .33 .33

discovery-space 6.34 .33 .25

water-seepage 6.56 .33 .

sign-recess 2.38 .25 .25

Wednesday-news 2.22 .25 .25
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mile-kilometer 8.66 .50 .25

computer-news 4.47 .33 .33

territory-surface 5.34 .25 .25

atmosphere-landscape 3.69 .25 .25

president-medal 3.00 .33 .25

war-troops 8.13 .25 .33

record-number 6.31 .25 .25

skin-eye 6.22 .33 .25

Japanese-American 6.50 .33 .33

theater-history 3.91 .33 .25

volunteer-motto 2.56 .25 .

prejudice-recognition 3.00 .33 .33

decoration-valor 5.63 .20 .20

century-year 7.59 .50 .50

century-nation 3.16 .33 .20

delay-racism 1.19 .25 .25

delay-news 3.31 .25 .25

minister-party 6.63 .25 .33

peace-plan 4.75 .33 .33

minority-peace 3.69 .25 .25

attempt-peace 4.25 .25 .25

government-crisis 6.56 .33 .25

deployment-departure 4.25 .20 .

deployment-withdrawal 5.88 .20 .

energy-crisis 5.94 .33 .25

announcement-news 7.56 .25 .20

announcement-effort 2.75 .20 .20

stroke-hospital 7.03 .33 .33

disability-death 5.47 .33 .33

victim-emergency 6.47 .25 .33

treatment-recovery 7.91 .25 .17

journal-association 4.97 .25 .25

doctor-personnel 5.00 .25 .25

doctor-liability 5.19 .25 .25

liability-insurance 7.03 .50 .20

school-center 3.44 .25 .33

reason-hypertension 2.31 .33 .17

reason-criterion 5.91 .25 .20

hundred-percent 7.38 .20 .

Harvard-Yale 8.13 .33 .33

hospital-infrastructure 4.63 .25 .

death-row 5.25 .25 .25

death-inmate 5.03 .25 .25

lawyer-evidence 6.69 .33 .25

life-death 7.88 .50 .50

life-term 4.50 .20 .25

word-similarity 4.75 .25 .20

board-recommendation 4.47 .20 .25

governor-interview 3.25 .25 .25

OPEC-country 5.63 .33 .

peace-atmosphere 3.69 .25 .25

peace-insurance 2.94 .33 .25

territory-kilometer 5.28 .20 .17

travel-activity 5.00 .25 .33

competition-price 6.44 .50 .25

consumer-confidence 4.13 .33 .25

consumer-energy 4.75 .33 .33

problem-airport 2.38 .25 .25

car-flight 4.94 .25 .33

credit-card 8.06 .33 .50

credit-information 5.31 .25 .25

hotel-reservation 8.03 .33 .25

grocery-money 5.94 .25 .33
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registration-arrangemen 6.00 .20 .20

arrangement-accommodati 5.41 .20 .20

month-hotel 1.81 .33 .20

type-kind 8.97 .50 .33

arrival-hotel 6.00 .25 .25

bed-closet 6.72 .25 .33

closet-clothes 8.00 .50 .50

situation-conclusion 4.81 .25 .20

situation-isolation 3.88 .20 .25

impartiality-interest 5.16 .33 .25

direction-combination 2.25 .25 .20

street-place 6.44 .33 .33

street-avenue 8.88 .33 .50

street-block 6.88 .33 .25

street-children 4.94 .25 .50

listing-proximity 2.56 .20 .

listing-category 6.38 .20 .

cell-phone 7.81 .20 .25

production-hike 1.75 .20 .33

benchmark-index 4.25 .25 .

media-trading 3.88 .25 .20

media-gain 2.88 .25 .20

dividend-payment 7.63 .25 .

dividend-calculation 6.48 .25 .

calculation-computation 8.44 .50 .50

currency-market 7.50 .50 .33

OPEC-oil 8.59 .33 .

oil-stock 6.34 .33 .25

announcement-production 3.38 .20 .20

announcement-warning 6.00 .20 .20

profit-warning 3.88 .20 .20

profit-loss 7.63 .33 .25

dollar-yen 7.78 .33 .

dollar-buck 9.22 .50 .25

dollar-profit 7.38 .25 .25

dollar-loss 6.09 .25 .25

computer-software 8.50 .50 .50

network-hardware 8.31 .25 .25

phone-equipment 7.13 .20 .25

equipment-maker 5.91 .20 .

luxury-car 6.47 .20 .33

five-month 3.38 .25 .

report-gain 3.63 .25 .20

investor-earning 7.13 .25 .25

liquid-water 7.89 .50 .50

baseball-season 5.97 .33 .25

game-victory 7.03 .25 .33

game-team 7.69 .33 .33

marathon-sprint 7.47 .33 .25

game-series 6.19 .25 .25

game-defeat 6.97 .25 .33

seven-series 3.56 .20 .

seafood-sea 7.47 .50 .33

seafood-food 8.34 .50 .33

seafood-lobster 8.70 .50 .50

lobster-food 7.81 .33 .50

lobster-wine 5.70 .33 .25

food-preparation 6.22 .25 .50

video-archive 6.34 .25 .20

start-year 4.06 .25 .25

start-match 4.47 .25 .25

game-round 5.97 .25 .33

boxing-round 7.61 .33 .33
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championship-tournament 8.36 .50 .

fighting-defeating 7.41 . .33

line-insurance 2.69 .25 .33

day-summer 3.94 .33 .25

summer-drought 7.16 .33 .25

summer-nature 5.63 .33 .33

day-dawn 7.53 .33 .25

nature-environment 8.31 .33 .25

environment-ecology 8.81 .50 .25

nature-man 6.25 .33 .50

man-woman 8.30 .50 .50

man-governor 5.25 .25 .25

murder-manslaughter 8.53 .50 .

soap-opera 7.94 .33 .33

opera-performance 6.88 .50 .50

life-lesson 5.94 .25 .33

focus-life 4.06 .25 .25

production-crew 6.25 .33 .25

television-film 7.72 .50 .50

lover-quarrel 6.19 .25 .20

viewer-serial 2.97 .20 .

possibility-girl 1.94 .25 .25

population-development 3.75 .33 .25

morality-importance 3.31 .17 .33

morality-marriage 3.69 .33 .25

Mexico-Brazil 7.44 .50 .33

gender-equality 6.41 .25 .25

change-attitude 5.44 .25 .33

family-planning 6.25 .33 .33

opera-industry 2.63 .33 .25

sugar-approach .88 .25 .20

practice-institution 3.19 .25 .25

ministry-culture 4.69 .33 .

problem-challenge 6.75 .25 .33

size-prominence 5.31 .25 .

country-citizen 7.31 .33 .50

planet-people 5.75 .33 .33

development-issue 3.97 .20 .25

experience-music 3.47 .25 .33

music-project 3.63 .33 .25

glass-metal 5.56 .33 .33

aluminum-metal 7.83 .33 .50

chance-credibility 3.88 .25 .25

exhibit-memorabilia 5.31 .17 .

concert-virtuoso 6.81 .33 .

rock-jazz 7.59 .33 .33

museum-theater 7.19 .33 .33

observation-architectur 4.38 .33 .25

space-world 6.53 .33 .50

preservation-world 6.19 .25 .25

admission-ticket 7.69 .33 .25

shower-thunderstorm 6.31 .33 .33

shower-flood 6.03 .33 .33

weather-forecast 8.34 .25 .

disaster-area 6.25 .25 .20

governor-office 6.34 .25 .33

architecture-century 3.78 .33 .17
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Appendix B

A collection of scripts developed for this thesis can be downloaded from:

http://stuwww.uvt.nl/people/wubben/files/thesis.tar.gz
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