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AbstractWe present a general architecture for e�cientand deterministic morphological analysis basedon memory-based learning, and apply it tomorphological analysis of Dutch. The systemmakes direct mappings from letters in contextto rich categories that encode morphologicalboundaries, syntactic class labels, and spellingchanges. Both precision and recall of labeledmorphemes are over 84% on held-out dictionarytest words and estimated to be over 93% in freetext.1 IntroductionMorphological analysis is an essential compo-nent in language engineering applications rang-ing from spelling error correction to machinetranslation. Performing a full morphologicalanalysis of a wordform is usually regarded as asegmentation of the word into morphemes, com-bined with an analysis of the interaction of thesemorphemes that determine the syntactic classof the wordform as a whole. The complexity ofwordform morphology varies widely among theworld's languages, but is regarded quite higheven in the relatively simple cases, such as En-glish. Many wordforms in English and otherwestern languages contain ambiguities in theirmorphological composition that can be quite in-tricate. General classes of linguistic knowledgethat are usually assumed to play a role in thisdisambiguation process are knowledge of (i) themorphemes of a language, (ii) the morphotac-tics, i.e., constraints on how morphemes are al-lowed to attach, and (iii) spelling changes thatcan occur due to morpheme attachment.State-of-the art systems for morphologicalanalysis of wordforms are usually based ontwo-level �nite-state transducers (fsts, Kosken-niemi (1983)). Even with the availability of

sophisticated development tools, the cost andcomplexity of hand-crafting two-level rules ishigh, and the representation of concatenativecompound morphology with continuation lexi-cons is di�cult. As in parsing, there is a trade-o� between coverage and spurious ambiguity inthese systems: the more sophisticated the rulesbecome, the more needless ambiguity they in-troduce.In this paper we present a learning approachwhich models morphological analysis (includ-ing compounding) of complex wordforms as se-quences of classi�cation tasks. Our model,MBMA (Memory-Based Morphological Analy-sis), is a memory-based learning system (Stan-�ll and Waltz, 1986; Daelemans et al., 1997).Memory-based learning is a class of induc-tive, supervised machine learning algorithmsthat learn by storing examples of a task inmemory. Computational e�ort is invested ona \call-by-need" basis for solving new exam-ples (henceforth called instances) of the sametask. When new instances are presented to amemory-based learner, it searches for the best-matching instances in memory, according to atask-dependent similarity metric. When it hasfound the best matches (the nearest neighbors),it transfers their solution (classi�cation, label)to the new instance. Memory-based learn-ing has been shown to be quite adequate forvarious natural-language processing tasks suchas stress assignment (Daelemans et al., 1994),grapheme{phoneme conversion (Daelemans andVan den Bosch, 1996; Van den Bosch, 1997),and part-of-speech tagging (Daelemans et al.,1996b).The paper is structured as follows. First, wegive a brief overview of Dutch morphology inSection 2. We then turn to a description ofMBMA in Section 3. In Section 4 we present



the experimental outcomes of our study withMBMA. Section 5 summarizes our �ndings, re-ports brie
y on a partial study of English show-ing that the approach is applicable to other lan-guages, and lists our conclusions.2 Dutch MorphologyThe processes of Dutch morphology includein
ection, derivation, and compounding. In-
ection of verbs, adjectives, and nouns ismostly achieved by su�xation, but a circum-�x also occurs in the Dutch past participle (e.g.
ge+werk+t as the past participle of verb werken ,to work). Irregular in
ectional morphology isdue to relics of ablaut (vowel change) and tosuppletion (mixing of di�erent roots in in
ec-tional paradigms). Processes of derivation inDutch morphology occur by means of pre�xa-tion and su�xation. Derivation can change thesyntactic class of wordforms. Compounding inDutch is concatenative (as in German and Scan-dinavian languages): words can be strung to-gether almost unlimitedly, with only a few mor-photactic constraints, e.g., rechtsinformatica-
toepassingen (applications of computer sciencein Law). In general, a complex wordform inher-its its syntactic properties from its right-mostpart (the head). Several spelling changes occur:apart from the closed set of spelling changes dueto irregular morphology, a number of spellingchanges is predictably due to morphologicalcontext. The spelling of long vowels varies be-tween double and single (e.g. ik loop , I run,versus wij lop+en , we run); the spelling of root-�nal consonants can be doubled (e.g. ik stop ,I stop, versus wij stopp+en , we stop); there isvariation between s and z and f and v (e.g. huis ,house, versus huizen , houses). Finally, betweenthe parts of a compound, a linking morphememay appear (e.g. staat+s+loterij , state lottery).For a detailed discussion of morphological phe-nomena in Dutch, see De Haas and Trommelen(1993). Previous approaches to Dutch morpho-logical analysis have been based on �nite-statetransducers (e.g., XEROX'es morphological an-alyzer), or on parsing with context-free wordgrammars interleaved with exploration of pos-sible spelling changes (e.g. Heemskerk and vanHeuven (1993); or see Heemskerk (1993) for aprobabilistic variant).

3 Applying memory-based learningto morphological analysisMost linguistic problems can be seen as context-sensitive mappings from one representation toanother (e.g., from text to speech; from a se-quence of spelling words to a parse tree; froma parse tree to logical form, from source lan-guage to target language, etc.) (Daelemans,1995). This is also the case for morphologi-cal analysis. Memory-based learning algorithmscan learn mappings (classi�cations) if a su�-cient number of instances of these mappings ispresented to them.We drew our instances from the CELEX lex-ical data base (Baayen et al., 1993). CELEXcontains a large lexical data base of Dutch word-forms, and features a full morphological analy-sis for 247,415 of them. We took each wordformand its associated analysis, and created task in-stances using a windowing method (Sejnowskiand Rosenberg, 1987). Windowing transformseach wordform into as many instances as it hasletters. Each example focuses on one letter,and includes a �xed number of left and rightneighbor letters, chosen here to be �ve. Con-sequently, each instance spans eleven letters,which is also the average word length in theCELEX data base. Moreover, we estimatedfrom exploratory data analysis that this con-text would contain enough information to allowfor adequate disambiguation.To illustrate the construction of instances,Table 1 displays the 15 instances derived fromthe Dutch example word abnormaliteiten (ab-normalities) and their associated classes. Theclass of the �rst instance is \A+Da", whichsays that (i) the morpheme starting in a is anadjective (\A")1, and (ii) an a was deleted atthe end (\+Da"). The coding thus tells thatthe �rst morpheme is the adjective abnormaal .The second morpheme, iteit , has class \N A�".This complex tag indicates that when iteit at-taches right to an adjective (encoded by \A�"),the new combination becomes a noun (\N ").Finally, the third morpheme is en, which is aplural in
ection (labeled \m" in CELEX). Thisway we generated an instance base of 2,727,4621CELEX features ten syntactic tags: noun (N), adjec-tive (A), quanti�er/numeral (Q), verb (V), article (D),pronoun (O), adverb (B), preposition (P), conjunction(C), interjection (J), and abbreviation (X).



instances. Within these instances, 2422 di�er-ent class labels occur. The most frequently oc-curring class label is \0", occurring in 72.5% ofall instances. The three most frequent non-nulllabels are \N" (6.9%), \V" (3.6%), and \m"(1.6%). Most class labels combine a syntacticor in
ectional tag with a spelling change, andgenerally have a low frequency.When a wordform is listed in CELEX as hav-ing more than one possible morphological la-beling (e.g., a morpheme may be N or V, thein
ection -en may be plural for nouns or in�ni-tive for verbs), these labels are joined into am-biguous classes (\N/V") and the �rst generatedexample is labeled with this ambiguous class.Ambiguity in syntactic and in
ectional tags oc-curs in 3.6% of all morphemes in our CELEXdata.The memory-based learning algorithm usedwithin MBMA is ib1-ig (Daelemans and Vanden Bosch, 1992; Daelemans et al., 1997), anextension of ib1 (Aha et al., 1991). ib1-ig con-structs a data base of instances in memory dur-ing learning. New instances are classi�ed byib1-ig by matching them to all instances inthe instance base, and calculating with eachmatch the distance between the new instanceX and the memory instance Y , �(X;Y ) =Pni=1W (f i)�(xi; yi), where W (fi) is the weightof the ith feature, and �(xi; yi) is the distancebetween the values of the ith feature in in-stances X and Y . When the values of the in-stance features are symbolic, as with our linguis-tic tasks, the simple overlap distance function� is used: �(xi; yi) = 0 if xi = yi; else 1. The(most frequently occurring) classi�cation of thememory instance Y with the smallest �(X;Y )is then taken as the classi�cation of X.The weighting function W (f i) computes foreach feature, over the full instance base, itsinformation gain, a function from informationtheory; cf. Quinlan (1986). In short, the infor-mation gain of a feature expresses its relativeimportance compared to the other features inperforming the mapping from input to classi-�cation. When information gain is used in thesimilarity function, instances that match on im-portant features are regarded as more alike thaninstances that match on unimportant features.In our experiments, we are primarily inter-ested in the generalization accuracy of trained

models, i.e., the ability of these models to usetheir accumulated knowledge to classify newinstances that were not in the training mate-rial. A method that gives a good estimateof the generalization performance of an algo-rithm on a given instance base, is 10-fold cross-validation (Weiss and Kulikowski, 1991). Thismethod generates on the basis of an instancebase 10 subsequent partitionings into a trainingset (90%) and a test set (10%), resulting in 10experiments.4 Experiments: MBMA of DutchwordformsAs described, we performed 10-fold cross vali-dation experiments in an experimental matrixin which MBMA is applied to the full instancebase, using a context width of �ve left and rightcontext letters. We structure the presentationof the experimental outcomes as follows. First,we give the generalization accuracies on test in-stances and test words obtained in the exper-iments, including measurements of generaliza-tion accuracy when class labels are interpretedat lower levels of granularity. While the lattermeasures give a rough idea of system accuracy,more insight is provided by two additional anal-yses. First, precision and recall rates of mor-phemes are given. We then provide predictionaccuracies of syntactic word classes. Finally, weprovide estimations on free-text accuracies.4.1 Generalization accuraciesThe percentages of correctly classi�ed test in-stances are displayed in the top line of Table 2,showing an error in test instances of about 4.1%(which is markedly better than the baseline er-ror of 27.5% when guessing the most frequentclass \0"), which translates in an error at theword level of about 35%. The output of MBMAcan also be viewed at lower levels of granularity.We have analyzed MBMA's output at the threefollowing lower granularity levels:1. Only decide, per letter, whether a seg-mentation occurs at that letter, and if so,whether it marks the start of a derivationalstem or an in
ection. This can be derivedstraightforwardly from the full-task classlabeling.2. Only decide, per letter, whether a segmen-tation occurs at that letter. Again, this can



instance left focus rightnumber context letter context task1 a b n o r m A+Da2 a b n o r m a 03 a b n o r m a l 04 a b n o r m a l i 05 a b n o r m a l i t 06 a b n o r m a l i t e 07 b n o r m a l i t e i 08 n o r m a l i t e i t 09 o r m a l i t e i t e N A�10 r m a l i t e i t e n 011 m a l i t e i t e n 012 a l i t e i t e n 013 l i t e i t e n 014 i t e i t e n m15 t e i t e n 0Table 1: Instances with morphological analysis classi�cations derived from abnormaliteiten , ana-lyzed as [abnormaal] A[iteit] N A�[en]m.be derived straightforwardly. This task im-plements segmentation of a complex wordform into morphemes.3. Only check whether the desired spellingchange is predicted correctly. Because ofthe irregularity of many spelling changesthis is a hard task.The results from these analyses are displayedin Table 2 under the top line. First, Ta-ble 2 shows that performance on the lower-granularity tasks that exclude detailed syntac-tic labeling and spelling-change prediction isabout 1.1% on test instances, and roughly 10%on test words. Second, making the distinctionbetween in
ections and other morphemes is al-most as easy as just determining whether thereis a boundary at all. Third, the relatively lowscore on correctly predicted spelling changes,80.95%, indicates that it is particularly hardto generalize from stored instances of spellingchanges to new ones. This is in accordance withthe common linguistic view on spelling-changeexceptions. When, for instance, a past-tenseform of a verb involves a real exception (e.g.,the past tense of Dutch brengen , to bring, is
bracht ), it is often the case that this exception iscon�ned to generalize to only a few other exam-ples of the same verb (brachten , gebracht ) and

not to any other word that is not derived fromthe same stem, while the memory-based learn-ing approach is not aware of such constraints.A post-processing step that checks whether theproposed morphemes are also listed in a mor-pheme lexicon would correct many of these er-rors, but has not been included here.4.2 Precision and recall of morphemesPrecision is the percentage of morphemes pre-dicted by MBMA that is actually a morphemein the target analysis; recall is the percentageof morphemes in the target analysis that arealso predicted by MBMA. Precision and recallof morphemes can again be computed at di�er-ent levels of granularity. Table 3 displays thesecomputed values. The results show that bothprecision and recall of fully-labeled morphemeswithin test words are relatively low. It comesas no surprise that the level of 84% recalledfully labeled morphemes, including spelling in-formation, is not much higher than the level of80% correctly recalled spelling changes (see Ta-ble 2). When word-class information, type ofin
ection, and spelling changes are discarded,precision and recall of basic segment types be-comes quite accurate: over 94%.



instances wordsclass labeling granularity labeling example % � % �full morphological analysis [abnormaal] A[iteit] N A�[en]m 95.88 0.04 64.63 0.24derivation/in
ection [abnormal] deriv[iteit] deriv[en] infl 98.83 0.02 89.62 0.17segmentation [abnormal][iteit][en] 98.97 0.02 90.69 0.02spelling changes +Da 80.95 0.40 | |Table 2: Generalization accuracies in terms of the percentage of correctly classi�ed test instancesand words, with standard deviations (�) of MBMA applied to full Dutch morphological analysis andthree lower-granularity tasks derived from MBMA's full output. The example word abnormaliteitenis shown according to the di�erent labeling granularities, and only its single spelling change at thebottom line). precision recalltask variation (%) (%)full morphological analysis 84.33 83.76derivation/in
ection 94.72 94.07segmentation 94.83 94.18Table 3: Precision and recall of morphemes, de-rived from the classi�cation output of MBMAapplied to the full task and two lower-granularity variations of Dutch morphologicalanalysis, using a context width of �ve left andright letters.4.3 Predicting the syntactic class ofwordformsSince MBMA predicts the syntactic label ofmorphemes, and since complex Dutch word-forms generally inherit their syntactic proper-ties from their right-most morpheme, MBMA'ssyntactic labeling can be used to predict thesyntactic class of the full wordform. When ac-curate, this functionality can be an asset in han-dling unknown words in part-of-speech taggingsystems. The results, displayed in Table 4, showthat about 91.2% of all test words are assignedthe exact tag they also have in CELEX (includ-ing ambiguous tags such as \N/V" { 1.3% word-forms in the CELEX dataset have an ambiguoussyntactic tag). When MBMA's output is alsoconsidered correct if it predicts at least one outof the possible tags listed in CELEX, the accu-racy on test words is 91.6%. These accuraciescompare favorably with a related (yet strictlyincomparable) approach that predicts the wordclass from the (ambiguous) part-of-speech tagsof the two surrounding words, the �rst letter,

and the �nal three letters of Dutch words, viz.71.6% on unknown words in texts (Daelemanset al., 1996a).syntactic class correct test wordsprediction words (%) �exact 91.24 0.21exact or among alternatives 91.60 0.21Table 4: Average prediction accuracies (withstandard deviations) of MBMA on syntacticclasses of test words. The top line displays exactmatches with CELEX tags; the bottom line alsoincludes predictions that are among CELEX al-ternatives.4.4 Free text estimationAlthough some of the above-mentioned accu-racy results, especially the precision and recallof fully-labeled morphemes, seem not very high,they should be seen in the context of the testthey are derived from: they stem from held-outportions of dictionary words. In texts sampledfrom real-life usage, words are typically smallerand morphologically less complex, and a rela-tively small set of words re-occurs very often.It is therefore relevant for our study to havean estimate of the performance of MBMA onreal texts. We generate such an estimate fol-lowing these considerations: New, unseen textis bound to contain a lot of words that are in the245,000 celex data base, but also some numberof unknown words. The morphological analy-ses of known words are simply retrieved by thememory-based learner from memory. Due tosome ambiguity in the class labeling in the database itself, retrieval accuracy will be somewhat



below 100%. The morphological analyses of un-known words are assumed to be as accurate aswas tested in the above-mentioned experiments:they can be said to be of the type of dictionarywords in the 10% held-out test sets of 10-foldcross validation experiments. celex bases itswordform frequency information on word countsmade on the 42,380,000-words Dutch inl cor-pus. 5.06% of these wordforms are wordformtokens that occur only once. We assume thatthis can be extrapolated to the estimate thatin real texts, 5% of the words do not occurin the 245,000 words of the celex data base.Therefore, a sensible estimate of the accura-cies of memory-based learners on real text is aweighted sum of accuracies comprised of 95% ofthe reproduction accuracy (i.e, the error on thetraining set itself), and 5% of the generalizationaccuracy as reported earlier.Table 5 summarizes the estimated generaliza-tion accuracy results computed on the resultsof MBMA. First, the percentages of correct in-stances and words are estimated to be above98% for the full task; in terms of words, it is es-timated that 84% of all words are fully correctlyanalyzed. When lower-granularity classi�cationtasks are discerned, accuracies on words are es-timated to exceed 96% (on instances, less than1% errors are estimated). Moreover, precisionand recall of morphemes on the full task areestimated to be above 93%. A considerable sur-plus is obtained by memory retrieval in the es-timated percentage of correct spelling changes:93%. Finally, the prediction of the syntactictags of wordforms would be about 97% accord-ing to this estimate.We brie
y note that Heemskerk (1993) re-ports a correct word score of 92% on free texttest material yielded by the probabilistic mor-phological analyzer morpa. morpa segmentswordforms, decides whether a morpheme is astem, an a�x or an in
ection, detects spellingchanges, and assigns a syntactic tag to the word-form. We have not made a conversion of ouroutput to Heemskerk's (1993). Moreover, aproper comparison would demand the same testdata, but we believe that the 92% correspondsroughly to our mbma estimates of 97.2% correctsyntactic tags, 93.1% correct spelling changes,and 96.7% correctly segmented words.

Estimate valuecorrect instances, full task 98.4%correct words, full task 84.2%correct instances, derivation/in
ection 99.6%correct words, derivation/in
ection 96.7%correct instances, segmentation 99.6%correct words, segmentation 96.7%precision of fully-labeled morphemes 93.6%recall of fully-labeled morphemes 93.2%precision of deriv./in
. morphemes 98.5%recall of deriv./in
. morphemes 98.0%precision of segments 98.5%recall of segments 97.9%correct spelling changes 93.1%exactly correct syntactic wordform tags 97.2%Table 5: Estimations of accuracies on real text,derived from the generalization accuracies ofMBMA on full Dutch morphological analysis.5 ConclusionsWe have demonstrated the applicability ofmemory-based learning to morphological anal-ysis, by reformulating the problem as a classi-�cation task in which letter sequences are clas-si�ed as marking di�erent types of morphemeboundaries. The generalization performance ofmemory-based learning algorithms to the taskis encouraging, given that the tests are doneon held-out (dictionary) words. Estimates offree-text performance give indications of highaccuracies: 84.6% correct fully-analyzed words(64.6% on unseen words), and 96.7% correctlysegmented and coarsely-labeled words (about90% for unseen words). Precision and recallof fully-labeled morphemes is estimated in realtexts to be over 93% (about 84% for unseenwords). Finally, the prediction of (possibly am-biguous) syntactic classes of unknown word-forms in the test material was shown to be91.2% correct; the corresponding free-text es-timate is 97.2% correctly-tagged wordforms.In comparison with the traditional approach,which is not immune to costly hand-crafting andspurious ambiguity, the memory-based learningapproach applied to a reformulation of the prob-lem as a classi�cation task of the segmentationtype, has a number of advantages:



� it presupposes no more linguistic knowl-edge than explicitly present in the cor-pus used for training, i.e., it avoids aknowledge-acquisition bottleneck;� it is language-independent, as it functionson any morphologically analyzed corpus inany language;� learning is automatic and fast;� processing is deterministic, non-recurrent(i.e., it does not retry analysis generation)and fast, and is only linearly related to thelength of the wordform being processed.The language-independence of the approachcan be illustrated by means of the following par-tial results on MBMA of English. We performedexperiments on 75,745 English wordforms fromCELEX and predicted the lower-granularitytasks of predicting morpheme boundaries (Vanden Bosch et al., 1996). Experiments yielded88.0% correctly segmented test words when de-ciding only on the location of morpheme bound-aries, and 85.6% correctly segmented test wordsdiscerning between derivational and in
ectionalmorphemes. Both results are roughly compa-rable to the 90% reported here (but note thedi�erence in training set size).A possible limitation of the approach maybe the fact that it cannot return more thanone possible segmentation for a wordform. E.g.the compound word kwartslagen can be inter-preted as either kwart+slagen (quarter turns)or kwarts+lagen (quartz layers). The memory-based approach would select one segmentation.However, true segmentation ambiguity of thistype is very rare in Dutch. Labeling ambigu-ity occurs more often (3.6% of all morphemes),and the current approach simply produces am-biguous tags. However, it is possible for ourapproach to return distributions of possibleclasses, if desired, as well as it is possible to \un-pack" ambiguous labeling into lists of possiblemorphological analyses of a wordform. If, forexample, MBMA's output for the word bakken(bake, an in�nitive or plural verb form, or bins,a plural noun) would be [bak] V=N [en] tm=i=m,then this output could be expanded unambigu-ously into the noun analysis [bak] N [en]m (plu-ral) and the two verb readings [bak] V [en] i (in-�nitive) and [bak] V [en] tm (present tense plu-ral).
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