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Abstract

The present paper evaluates the role selected features and feature combinations play for er-
ror detection in spoken dialogue systems. We investigate the relevance of various, readily
available features extracted from a corpus of dialogues with a train timetable information
system, using RIPPER, a rule-inducing machine learning algorithm. The learningtask con-
sists of the identification of communication problems arising in either the previous turn or
the current turn of the dialogue. Previous experiments withour corpus have shown that
combining dialogue history and word-graph features is beneficial for detecting errors (in
particular in the previous turn). Other researchers have reported that combining prosodic
and ASR characteristics is helpful (primarily in the current turn). In this paper, we inves-
tigate the usefulness of large-scale combinations of thesefeatures for the above two tasks.
We show that we are unable to reproduce the benefits of prosodic features for learning prob-
lematic situations, even though the overall prosodic trends in our corpus are similar to those
earlier reported on. Moreover, the best results are obtained using just minimal combinations
of two sources of information.

1 Introduction

There is increasing interest in using machine learning (ML)for automatic error
detection in spoken dialogue systems (SDS). Such studies are largely varied with
respect to their definitions of the problem detection task, the learning methods
applied, and the attributes employed in the learning method. A wide spectrum
of features is exploited in such experiments, depending on what sources of infor-
mation are regarded to be relevant in the underlying task. Features are selected
on grounds of their supposed predictive power towards problems during the in-
teraction between the system and its user. The employed features range from
primitive attributes representing entities such as confidence scores output by the
automatic speech recognition (ASR) module of the system (Hirschberg, Litman,
and Swerts, 1999; Litman, Walker, and Kearns, 1999), lexical output of the ASR
module of a SDS (Hirschberg, Litman, and Swerts, 1999; Van den Bosch, Krah-
mer, and Swerts, 2001), experimental parameters and identification of the under-
lying ASR grammar (Hirschberg, Litman, and Swerts, 1999; Litman, Walker, and
Kearns, 1999), aspects of dialogue efficiency and quality (Litman, Walker, and
Kearns, 1999), presence or absence of default assumptions,the amount of slots
filled (Krahmer et al., 1999) or the system adaptivity (Hirschberg, Litman, and
Swerts, 1999), to highly complicated features, involving avariety of semantics-
based attributes of the user input (Hirschberg, Litman, andSwerts, 1999; Litman,
Walker, and Kearns, 1999; Walker, Wright, and Langkilde, 2000), and aspects of
syntax in the user answer (Krahmer et al., 1999). As opposed to the primitive at-
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tributes, the latter types of features cannot be straightforwardly extracted from a
SDS, which forms an obstacle for automatic, on-line error detection and recovery.

Recently there is an emerging trend to incorporate prosody,defined as the set
of suprasegmental speech features, such as intonation (speech melody), tempo,
pausing and loudness, into the modules of automatic speech recognition and un-
derstanding of diverse applications. The various tasks include the attempted use of
prosodic structures as a pre- or a postprocessor, e.g., to rerank n-best lists of recog-
nition hypotheses (Veilleux and Ostendorf, 1994; Hirose, 1995); to run separate
models for words that are or are not accented (Greenberg, 2001); to automatically
punctuate transcribed spoken texts; to chunk a continuous stream of speech into
smaller parts before it is fed into the recognition module and to classify speaker
turns in terms of a set of dialogue acts to run act-specific language models (Tay-
lor et al., 1996). More recently, people have started to explore whether prosody
may also be useful as a resource for error detection. CurrentSDS still make lots
of errors when they have to recognize spoken input from users, so the dialogue
manager (DM) of such systems needs a principled strategy to decide when it can
‘believe’ a certain recognized string. Traditional reliability measures, including
acoustic and semantic confidence scores, are still not efficient enough. The reason
to investigate prosody for the purpose of error detection ispartly motivated by the
fact that it functions eminently well as a cue to problems in human-human inter-
actions, e.g. (Shimojima et al., 1998). However, results from previous studies on
prosodically based error detection tools in SDS are a bit inconclusive, since they
appear to work well for some systems (Hirschberg, Litman, and Swerts, 1999), but
are far less successful for others (Lendvai et al., 2002). Asit is largely unknown
why there is so much variance in performance of these different tools, the current
study aims to gain further insight into the relative importance of prosody for error
detection on the basis of a series of experiments.

In addition, from a machine learning perspective, it is interesting to learn how
prosodic features that are essentially continuous in nature, combine with more
discrete, categorical (symbolic) features, such as a word graph output by the ASR
or various aspects of the dialogue system, which have also been investigated in
terms of their usefulness for error detection. It is still anopen empirical question
what machine learning approach is best capable of integrating multiple features of
widely different nature.

The current study explicitly investigates the feasibilityand the usefulness of
combining different knowledge sources for error detectiontasks. In doing such
a multi-feature error detection exercise, we will treat this classification problem
not as one general task applied to a full set of recorded dialogues, but rather run
experiments that take into account what the specific dialogue situation is in which a
problem has occurred. That is, while different investigations have brought to light
that prosodic behaviour in relation to dialogue problems very much depends on the
specific situation at hand (Litman and Pan, 1999; Swerts, Litman, and Hirschberg,
2000), this fact has not yet fully been exploited in error detection tasks. We will
propose to do this by looking at the type of question the dialogue system has posed
to the user most recently in the course of the interaction.
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The paper’s structure is the following. In Section 2 we first describe the dia-
logue data used for our study and the schema used for annotating communication
problems. Subsequently, we describe the collection of features hypothesized to
be predictive in detecting communication problems. In Section 3, the learning
tasks and the learning method are described. Experimental results on the differ-
ent feature types are treated in Section 4, after which our conclusions are given in
Section 5.

2 Data

2.1 Corpus and labeling

The corpus used in the present study consists of 441 full dialogues, broken down
into 3738 pairs of system questions and user answers that were sampled from a
range of telephone calls of users with a Dutch human-machinetrain information
system. Virtually all dialogues involve a different speaker. The SDS prompts the
user for information needed to perform a train timetable database query. It gives
feedback on what it has understood from the user input via implicit or explicit ver-
ification, thus the user will always become aware of eventualmisunderstandings
from the following system question. The percentage of unsuccessful conversations
in our corpus is 47.6%. Problems emerge primarily because ofpoor speech recog-
nition and ineffective dialogue management, and secondarily because of erroneous
user inputs or false default assumptions by the system. The errors were annotated
by three persons. All data were annotated by at least two of them, and differences
in annotation were resolved through discussion. Labeling marks whether or not the
user’s input gave rise to communication problems in the course of the conversation.
This feature is the one to be predicted by the machine learner. Further annotation
of the dialogues concerns the type of prompt the system has most recently given.
The types of system question are the following: Open question (O), Explicit veri-
fication (E), Implicit verification (I), Yes/no question (Y), Meta-question (M), and
eXceptional behavior (X), if necessary in combination withthe suffix Repetition
(R) which indicates that the current system prompt is a repetition of the previous
prompt.

To illustrate the labeling task, consider Figure 1 containing the first three pairs
of system questions and user answers in a running dialogue, where “S” denotes
a system question, and “U” the user answer. Apparently, the first user utterance
is not recognised correctly; the second system question is about the departure and
arrival stations, which the user has just given. However, the unsolicited infor-
mation about the day of travel is correctly understood from the user input and is
verified implicitly in the prompt. Thus, our labeling marks the first user turn as
“ PROBLEM”, meaning that processing this utterance caused some communication
problem in the dialogue.
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Turn # S/U Utterance Annotation

1 S Goedenavond(: : :). Van welk station naar welk
station wilt u reizen?(Good evening. From which
station to which station do you want to travel?)

O

U Ik moet volgende week dinsdag van Schiphol naar
Nijmegen. (I need to go from Schiphol to Nijme-
gen on Tuesday next week.)

PROBLEM

2 S Van waar naar waar wilt u op dinsdag twaalf de-
cember reizen? (From where to where would you
like to travel on Tuesday twelve December?)

I

U Van Schiphol naar Nijmegen. (From Schiphol to
Nijmegen.)

NO PROBLEM

3 S Hoe laat wilt u vanuit Schiphol naar Nijmegen
reizen? (At what time do you want to travel from
Schiphol to Nijmegen?)

I

U Rond kwart over elf ’s avonds. (Around quarter
past eleven in the evening.)

PROBLEM

Figure 1: The first three turns of an example dialogue.

2.2 Feature representations

The primary hypothesis underlying our study is that communication problems have
concrete correlates in what the user is saying at a certain point of the dialogue. The
relevant attributes should be selected, and training data should be represented ac-
cording to these features in order to train a ML algorithm on the problem detection
task. We designed a conversion step of the SDS data to instances, where one in-
stance represents a “current” state in the dialogue system.The selected features
that make up these representations are deliberately low-level; moreover, they can
all be automatically extracted in real time from the online system, of which the in-
ternal states were available to us in logs and audio files. Table 1 lists the dialogue
characteristics used. We distilled features both from the state of the system and
from what is recognised from the user’s reply.

From the user, we use both the output of the ASR module and the raw audio.
The ASR output of this particular system produced a word graph, from which we
stripped all recognised words, encoding these in total as a 759-bit binary bag-of-
words vector. The 759 bits represent all words that occurredin our corpus. This
bag-of-words representation originates from the vector space model for document
representation, used in information retrieval (Salton, 1989). Further user features
extracted from the word graph are the duration of the initialpause, the speech
tempo, and the degree of branching in the word graph. Anotherlexical attribute
used is the most confidently recognized string in the word graph.

The initial pause in the utterance (the length of the silencethat precedes the
utterance) is assumed to indicate the degree of hesitation of the user in responding,
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Aspect Feature
DM: prompt six previous question types
ASR: confidence summed confidence score of most confident path
ASR: branching branching factor in the word graph of current and previous ut-

terance
ASR: lexical bag-of-words of previous and current user turn; most confident

recognized string
Prosody: pitch maximum and minimum F0; position of maximum and mini-

mum; mean F0 and standard deviation
Prosody: energy maximum energy (RMS); position of maximum; mean RMS

and standard deviation
Prosody: duration length of utterance in seconds; length of initial pause in frames
Prosody: tempo number of syllables per second

Table 1: Overview of the employed features

cf. (Krahmer et al., 2001). The speech tempo of the utterancecorresponds to
the number of uttered syllables per second. To compute the number of syllables
in an utterance, we used a memory-based syllabifier for Dutch(Daelemans and
van den Bosch, 1992). The branching factor in the ASR word graph was also
calculated both for the current and the preceding utterance, characterizing a degree
of confusion in the graph; a lot of branching in the word graphcan be an indicator
of system uncertainty, or noisy user input. The confidence measurements of the
ASR were also converted into a feature: we used the total confidence, summed
over nodes, of the overall most confident path.

From the audio we automatically extracted F0 (fundamental frequency) mea-
surements, RMS (energy, amplitude) measurements and duration of the utterance
from initial silence to final silence, using the GIPOS software package. The
method used to determine F0 is Hermes’ method of subharmonicsummation (Her-
mes, 1988) combined with dynamic programming to smooth the F0 contour and
remove any possible pitch measuring errors.

To conclude our feature selection, we selected the sequenceof the six most
recent system question types as a superficial representation of the dialogue so far.
The number of six is arbitrarily chosen; the assumption is that some patterns in
the sequences of questions may mark typically problematic situations at the next
utterance (such as two or more repetitions of the same question type), but it is
unlikely that essential parts of these patterns will originate in the questions asked
five or more turns before.

2.3 Descriptive Statistics

A statistical description of the prosodic properties of ourdata is given in tables
2 and 3 that show the mean values of prosodic features calculated from all non-
problematic and all problematic utterances in the corpus. We performed a paired
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Qt = E Qt = I Qt = O Qt = Y

Feature :Pr Pr :Pr Pr :Pr Pr :Pr Pr
F0 max(Hz) 217.8 224.2 236.0 237.6 241.6 238.8 213.3 207.6
F0 mean(Hz) 144.4 148.4 159.9 161.7 160.7 163.8 147.5 150.7
RMS max 5507.2 5421.56683.7 ** 5540.77325.9 ** 6091.05173.7 ** 4290.0
RMS mean 241.8 264.9 378.3 ** 330.5 447.2 ** 379.6 248.1 240.8
Duration(s) 1.9 ** 2.6 2.7 ** 2.9 3.6 ** 3.4 1.8 * 2.0
Tempo(syll/s) 1.0 1.4 2.0 2.1 2.4 * 2.5 1.0 ** 1.3

Table 2: Prosodic means of unproblematic (:Pr) and problematic (Pr) current turns for four
system question types (“Qt”). “*” denotes statistical differences between the two means in
a pairedt-test withp < :05 significance; “**” denotesp < :01 significance.t-test on these pairs of means to check whether the differences between them are
of statistical significance. The utterances are, furthermore, grouped according to
their co-occurence with the four most common types of systemprompts during the
dialogue, characterizing the utterances per prompt type (Explicit verification, Im-
plicit verification, Open question, and Yes/no question). Figures for the remaining
prompt types are not included in the table; they occur less frequently and produce
fewer statistically significant outcomes. Figures are not given for all prosodic at-
tributes, but typically the other F0 and RMS measurements correlate statistically,
as calculated in a Pearson’s correlation test, thus for example a high F0 maximum
often is accompanied by a high F0 mean measurement.

If we compare the actual values of the means for problematic turns according
to the most recently asked system question (Qt), we find that these vary across
prompt types: for example, the mean length of problematic answers following a
Yes/no question is generally much shorter than the mean length of problematic
answers following an Explicit verification question (cf. Table 2). Table 3 reveals
such subtilities that a user’s answer following an Implicitverification of a mis-
understood information does not tend to be spoken louder, asone would expect
(Hirschberg, Litman, and Swerts, 2000; Oviatt, McEachern,and Levow, 1998) as a
consequence of hyperarticulation. Judged by the outcomes of the t-test, character-
istics of some of the prosodic attributes are in accordance with findings concerning
hyperarticulate speech, but others are clearly not, when distinguishing according to
the actual prompt type. Furthermore, thet-test reveals that the scales of the differ-
ences between means of problematic and unproblematic turnsdepend on whether
the communication problem occurs in the current turn (Table2) or in the previous
turn (Table 3) of the dialogue. What follows from Tables 2 and3 is that it may be
useful to decompose the error detection task into two tasks,and that the type of
system prompt just given may hold predictive power towards detecting problems.
The importance of the system question type was exploited in our machine learning
method, as set out in the following subsection.
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Qt = E Qt = I Qt = O Qt = Y
Feature :Pr Pr :Pr Pr :Pr Pr :Pr Pr
F0 max(Hz) 209.8 ** 236.5 234.4 240.8 236.6 ** 272.7 211.8 * 263.8
F0 mean(Hz) 142.1 * 151.3 159.2 163.6 161.4 * 175.1 147.7 * 181.7
RMS max 5050.6 * 6253.56133.3 5919.76637.5 5936.65010.0 5189.3
RMS mean 206.9 ** 320.2 348.7 356.5 411.3 * 353.7 246.4 295.2
Duration(s) 1.8 ** 2.7 2.6 ** 3.1 3.5 3.3 1.8 ** 2.6
Tempo(syll/s) 0.9 ** 1.4 2.0 2.1 2.5 ** 1.9 1.0 ** 1.6

Table 3: Prosodic means of the current turn, depending on whether the previous turn was
unproblematic (:Pr) or problematic (Pr), given for four system question types (“Qt”). “*”
denotes statistical differences between the two means in a pairedt-test withp < :05 signif-
icance; “**” denotesp < :01 significance.

3 Machine Learning applied to automatic error detection

3.1 Task specification

Drawing on the statistical characteristics of our corpus, error detection is carried
out by means of two different series of experiments: (1) predicting miscommunica-
tion in the current user utterance versus (2) detecting a miscommunication problem
in the previous user utterance given the most recent question-answer pair. Predict-
ing whether the current user utterance will cause problems (henceforth: current-
turn-problem, CTP) has been reported being more difficult (Van den Bosch, Krah-
mer, and Swerts, 2001; Lendvai et al., 2002), since this taskhas not only to deal
with problems that are due to cognitive misunderstandings between the two par-
ties, such as assumptions and presuppositions, but also to filter out technical factors
that pose problems to the given dialogue system itself, suchas its inability to cope
with hyperarticulation or with noisy input.

The second task, aimed at identifying problems that emergedin the previous
turn of the dialogue (henceforth: previous-turn-problem,PTP), consists of spotting
turns signaling that the processing of the previous user input went wrong. The clas-
sifier of the PTP task can thus draw additional information from the subsequent,
aware turn of the user; cf. (Litman, Hirschberg, and Swerts,2001), where peo-
ple give feedback about the progress of the communication bymeans of prosody
(Hirschberg, Litman, and Swerts, 2000) and by means of implicit and explicit lex-
ical cues (Van den Bosch, Krahmer, and Swerts, 2001; Krahmeret al., 1999).

It is important to distinguish between these two tasks because in this way we
have a two-fold approach to error detection in SDS. Note alsothat there can be
different labels assigned to the same feature values acrossthe two tasks, as certain
utterances are unproblematic in the current turn (CTP task)but at the same time
reflect awareness of problems that occurred in the previous turn of the dialogue
(PTP task). By differentiating between the two tasks, thus training separate clas-
sifiers on the tasks, we reuse the data in a unified, but still double-perspective way
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of error detection, enabling classification of subtle processes within one utterance.

For illustration, compare again the respective values in Table 2 and Table 3
for discovering the dissimilarity between actual feature values in the two tasks.
The figures in the tables are rather different not only withinone dialogue attribute
(across a row), but also with respect to the same attribute across the two tasks. For
example, in the learning task of the CTP, the classifier mightuse the information
that problematic utterances tend to be produced with a faster speech tempo after an
Open question, whereas utterances that signal a miscommunication in the preced-
ing turn (the PTP task) are produced with a slower tempo than the unproblematic
ones.

3.2 Learning method

In a previous study (Lendvai et al., 2002) we employed a rule induction method
with domain knowledge incorporated as enforced conditioning on the induced
rules, the knowledge being the type of question the system has asked in its most
recent prompt. In other words, all induced rules condition at least on a question
type value, in combination with zero or more conditions on other features. This
approach enhanced learner performance on all attributes: in the previous-turn-task
it resulted in an average 25% improvement of learning accuracy in identifying er-
rors, indeed indicating that the scale of difference between the prosodic means is
correlated with the type of system question to which users respond.

In the current study we use RIPPER (Cohen, 1995) to automatically perform
error detection, based on the above method. RIPPER is a fast rule induction al-
gorithm that induces a ruleset based on the training examples. It first separates
the training set in two, then on the basis of one part it induces rules, heuristically
maximizing coverage and accuracy for each rule, with potential overfitting. When
the induced rules classify instances in the other part belowa certain threshold, they
are not stored. Rules are induced per class, ordered from low-frequency classes to
high-frequency ones, leaving the most frequent class as thedefault rule, which is
generally beneficial for the size of the rule set. RIPPERwas used with its standard
settings1.

During the experiments training and testing was done by 10-fold cross-
validation, where partitioning was done with complete dialogues as units, thereby
ensuring that no material from the same dialogue could be part of both the training
and the test set. The performance of the classifier was evaluated according to mea-
sures of predictive accuracy on deciding between problematic and unproblematic
instances, and precision, recall, and F-score of the correct detection of errors. The
latter metric combines precision and recall in a single figure. We employ the un-
weighted variant of F-score, which is defined as2PR=(P +R) (P = precision,R
= recall) (van Rijsbergen, 1979). In evaluating a classifier’s performance in error
detection more importance should be given to values of F-score than to predic-
tive accuracy as the given F-score characterizes the rate ofprecision and recall for
1We used RIPPERversion 1, release 2.4.
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the prediction of the problem class while accuracy can be opaquely biased to the
majority non-problem class.

3.3 Baselines

Because of the inherent differences in the two prediction tasks, two different base-
lines were established. For predicting miscommunication in the current turn of the
dialogue, a majority-class baseline is calculated.When the data are split accord-
ing to the last system question type, some question types arefollowed by more
problematic utterances than unproblematic ones, such as open questions (“O”),
repeated open questions (“OR”), and implicit verification questions (“I”). Always
guessing the majority class given the prompt type produces abaseline of 65.2%
accuracy and an F-score of 62.4%.

For the task of identifying a communication problem in the previous turn of
the conversation, we make use of the fact that the system is already aware of a
lot of problems; this is signalled directly whenever the system repeats its previous
prompt. Applying a strategy of always identifying a problemwhen the last system
prompt is repeated gives a higher baseline for the second task, henceforth referred
to as the “system knows” baseline. There are 974 of these questions in the corpus,
yielding 82.9% accuracy and 75.3% F-score.

4 Results

We describe the results in three steps. First, we investigate the predictive power
of prosodic features in detecting communication problems in the current and the
previous utterance, to test the hypothesis that prosody offers concrete correlates
with problems. Second, we discuss the results on the same tasks using all non-
prosodic features from the ASR wordgraph and the system questions. Third, we
review the results obtained with combinations of both typesof features.

4.1 Prosodic features in the error detection task

As indicated in the introductory section, some studies claim that prosody offers
strong clues in automatic error detection. We tested this claim for our Dutch data
by creating a matrix of combinations of prosodic features asinput to the CTP and
PTP tasks. The results of our experiments show no clear-cut differences between
performance of prosodic features in isolation or in combinations. For the CTP
task, no features or combinations could even outperform thecombined-majority-
class baseline, as can be seen in the left half of Table 4. Thistable illustrates the
performance (in terms of accuracy and F-score) of only thoseprosodic features that
outperform the baseline for the PTP task (right column). We see that for the PTP
task at least some prosodic features show a significant improvement: more than
20% error-reduction in terms of F-score for duration and theset of all prosodic
features produces a fair result.

It is worth noting that duration has proven to be an overall well-performing fea-
ture in the course of the experiments, isolated as well as in combination with other
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Current Turn / CTP Previous Turn / PTP

feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + F0 mean 64.7�1.4 60.6�2.6 82.4�2.0 76.5�2.9
Qt + F0 minpos 63.9�2.1 60.5�2.3 84.7�1.9 79.7�2.9
Qt + RMS maxpos 63.9�1.9 59.4�2.9 84.3�2.2 79.4�3.1
Qt + RMS mean 64.1�2.3 57.9�3.6 83.3�1.8 78.5�3.0
Qt + Duration 64.2�1.4 58.4�4.6 85.2�1.6 81.1�2.5
Qt + Tempo 64.8�2.4 59.0�3.5 84.2�1.6 78.4�3.0
Qt + All Prosodic 64.1�2.2 57.3�2.2 84.7�2.2 80.8�2.8

Table 4: Most prominent test performances in terms of accuracy and F-score trained on
detecting miscommunication originating from the current or the previous turn, based on
prosodic features

prosodic features. This corresponds to reports of (Batliner et al., 2001; Hirschberg,
Litman, and Swerts, 1999). In the latter study duration performs with an error rate
of 17.1% (corresponding to 82.9% accuracy), which is comparable to the 85.2%
accuracy that our classifier gives.

4.2 Non-prosodic features in the error detection task

Table 5 lists the accuracies and F-scores of both error detection tasks based on
(combinations of) non-prosodic features, viz. those features extracted from the
word graph that outperform the “system-knows” baseline (confidence, branching
factor, bag-of-words vector, most confident string), and the system history (the five
previously asked question types, 5Q).

The CTP task is performed only slightly above baseline by thehistory of five
before-previous questions, as well as by the combination ofall non-prosodic fea-
tures; recall that none of the prosodic features helped to reach the baseline (cf.
Table 4). The baseline for the PTP task, however, is beaten byalmost all the non-
prosodic features; only slightly by the wordgraph confidence and branching factor
features, but largely beaten by the bag-of-words vector andall other tested combi-
nations of non-prosodic features that include the bag-of-words vector, all leading
to an accuracy of about 91% and an F-score of about 89%.

It is worth paying attention to the lexical features, namelyto the two sets of
bag-of-words (BoW) and the most confident string in the word graph (ASR string).
Other studies (Hirschberg, Litman, and Swerts, 1999; Litman, Walker, and Kearns,
1999) reported that the ASR string is highly relevant in predicting recognition er-
rors (which partly corresponds to our CTP task). In the studyof (Hirschberg,
Litman, and Swerts, 1999) the recognized string was the bestperforming isolated
feature, yielding an error rate of 14.4% (85.6% accuracy). This score is much
higher than the result that we get (65.3% accuracy),thus we cannot regard the
most confident ASR string as a well-performing feature for our goal. Note that
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Current Turn / CTP Previous Turn / PTP
feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + Confidence 63.9�1.8 58.0�4.0 84.9�2.0 80.5�2.8
Qt + BF 66.3�3.1 58.9�5.1 84.8�1.8 81.2�2.9
Qt + ASR string 65.3�1.8 62.2�2.2 83.6�1.5 77.0�1.9
Qt + BoW 66.3�1.9 61.7�3.1 90.8�1.8 88.7�2.2
Qt + 5Q 66.9�3.5 64.3�4.9 83.6�1.4 76.9�2.7
Qt + 5Q + BoW 67.7�1.6 63.2�3.1 91.1�1.1 89.4�1.3
Qt + 5Q + BoW + BF 69.1�2.5 64.0�3.2 90.8�1.2 89.0�1.2
Qt + BoW + BF 66.9�2.6 60.8�3.6 90.9�1.1 89.1�1.3
Qt + All Nonprosodic 69.3�2.8 65.0�3.9 91.0�0.9 89.2�1.3

Table 5: Most prominent test performances (accuracy and F-score) trained on the CTP and
PTP tasks, based on non-prosodic features. BF stands for branching factor; BoW stands for
bag-of-words vector; 5Q stands for the five before-previoussystem question types.

(Hirschberg, Litman, and Swerts, 1999) are dubious about the potential benefits
of using the ASR string in error detection, questioning whether the model learned
training on this feature can generalize across systems or tasks. Our experiments
have indeed shown this discrepancy.

(Litman, Walker, and Kearns, 1999) employ the ASR text feature as a set-
valued lexical feature in RIPPERwhere it also turns out to be the most predictive
feature in isolation (72% accuracy) for detecting poor speech recognition. It is
noteworthy that for our task the ASR string feature is less beneficial. However, a
feature of the same type, the set of bag-of-words is undoubtedly the ultimate win-
ner in our experiment matrix. An interesting question arising from this is whether
this gain in favor of the BoW feature originates in the encoding differences (set-
valued versus binary representation) or the fact that the BoW vector tends to con-
tain at least parts of what the user actually said (along withall misrecognised
alternatives), whereas the ASR string can be completely incorrect.

4.3 Combination of prosodic and non-prosodic feature types

Table 6 shows the most prominent outcomes measured in the matrix of feature
combination experiments with prosodic and non-prosodic features. The upper
section of the table illustrates the BoW vector combined with certain prosodic
attributes. The middle section depicts the BoW vector combined with the dia-
logue history and certain prosodic attributes. The lower section lists results for
sets where either the dialogue history is combined with a selection of prosodic and
non-prosodic features, or all the non-prosodic features are combined with one or
all prosodic features.

For the CTP task the baseline appears to be (slightly) beatenexclusively in
those cases when the five before-previous system question types are used as fea-
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Current Turn / CTP Previous Turn / PTP

feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + BoW + All Prosodic 65.0�2.0 58.7�2.4 90.8�0.9 89.0�0.9
Qt + BoW + Ipause 65.8�2.2 61.2�2.8 91.0�1.1 89.1�1.1
Qt + BoW + Tempo 67.1�2.6 62.0�2.6 90.9�1.0 89.1�1.1
Qt + BoW + Duration 66.8�2.2 60.6�3.3 91.1�1.6 89.4�2.0
Qt + BoW + 5Q + Ipause 67.8�2.5 63.5�3.0 91.0�1.0 89.2�1.1
Qt + BoW + 5Q + Tempo 68.6�2.7 63.6�4.2 90.8�1.3 89.0�1.3
Qt + BoW + 5Q + Duration 69.5�3.0 64.3�4.3 91.1�1.3 89.4�1.5
Qt + All Nonpros + Dur 68.7�2.3 64.3�3.3 90.9�0.7 89.0�1.0
Qt + All features 68.9�2.5 64.4�4.4 90.6�0.9 88.7� 1.5
Qt + 5Q + BoW + All Pros 68.2�3.1 63.1�4.4 90.8�1.2 89.0�1.5
Qt + 5Q + All Pros 67.6�2.8 63.8�3.4 85.8�1.8 82.5�2.6
Qt + 5Q + BF + Dur 69.2�3.0 64.0�5.2 86.4�1.8 83.5�3.3

Table 6: Most prominent test performances in terms of accuracy and F-score trained on
detecting miscommunication, based on feature type combination sets.

tures. These cases correspond to the set of Qt + 5Q and the other sets below it in
Table 5, as well as to the sets in the two lower sections of Table 6. Taken alone
or combined with any other feature, the F-score of these setson the CTP task is
around 64%. The best F-score of 65.0%, obtained by combiningall non-prosodic
features, is listed in Table 5, but all the other experimentson feature sets that in-
clude the six system questions (Qt + 5Q) perform non-significantly better or worse
when tested in one-tailedt-tests. Likewise, combinations of prosodic and non-
prosodic features for the PTP task are not significantly different from the apparent
ceiling score of 91% accuracy and 89% F-score using non-prosodic features only
(cf. the relevant feature sets in Table 5 and Table 6), provided that the combination
includes the bag-of-words vector.

In sum, Table 6 confirms the findings of Tables 4 and 5 that –the prompt type
condition imposed on the rule induction– (i) no (combination of) prosodic features
plays an essential positive role in attaining top scores on either task; (ii) the com-
bination of Qt and the five before-previous system question types is essential and
sufficient for attaining an above-baseline score on the CTP task; and (iii) the com-
bination of Qt and the bag-of-words vectors is essential and sufficient forreaching
a ceiling score on the PTP task.

5 Discussion

In this paper we studied the usefulness of a wide range of features for machine-
learning-based error detection in spoken dialogue systems. The features come
from various sources, representing the dialogue history (the six most recent sys-
tem question types), output of the ASR (recognized bag-of-words, acoustic con-
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1. if Q (t) = R, then Pr. (977/0)
2. if Q (t) = I ^ “naar” 2 BoW(t-1)̂ “naar” 2 BoW(t) ^ “uur” 62

BoW(t) then Pr.
(131/12)

3. if Q (t) = I ^ “naar’2 BoW(t-1)^ “vanuit” 2 BoW(t) then Pr. (39/6)
4. if Q(t) = I ^ “uur” 2 BoW(t-1)^ “om” 2 BoW(t-1) then Pr. (44/7)
5. if Q(t) = I ^ “van” 2 BoW(t) ^ “den” 2 BoW(t) then Pr. (13/5)
6. if Q (t) = I ^ “uur” 62 BoW(t) ^ “ik” 2 BoW(t) ^ “niet” 2 BoW(t)

then Pr.
(11/2)

7. if Q (t) = E^ “nee” 2 BoW(t) ^ “ja” 62 BoW(t)then Pr. (88/9)
8. if Q (t) = E^ “uur” 2 BoW(t-1) ^ “morgenochtend”2 BoW(t-1)

then Pr.
(10/2)

9. if Q (t) = E^ “uur” 2 BoW(t) then Pr. (16/5)
10. if Q (t) = O^ “naar”2 BoW(t-1) then Pr. (38/9)
11. if Q (t) = O^ “wil” 2 BoW(t-1) then Pr. (6/1)
12. if Q (t) = O^ “naar” 62 BoW(t) ^ “februari” 2 BoW(t) then Pr. (3/0)
13. if Q (t) = M ^ “klopt” 2 BoW(t-1) then Pr. (4/0)
14. if Q (t) = M ^ “’s avonds”2 BoW(t-1) then Pr. (4/0)
15. if Q (t) = M ^ “ik” 2 BoW(t-1) then Pr. (8/2)
16. if Q (t) = Y ^ “twee” 2 BoW(t-1)^ “niet” 2 BoW(t) then Pr. (2/0)
17. else:Pr. (2064/220)

Figure 2: TheRIPPERrule set for the PTP task, on the basis of the most recent system ques-
tion (Qt) plus the word graph of the current (BoWt) and the previous user input(BoWt�1).
For translations of lexical items see the text. The (n/m) numbers at the end of each line in-
dicate the number of instances the rule covers (n) and the number of false predictions (m).

fidence score, branching factor and amount of initial pause in the word graph)
and various prosodic characteristics (pitch, loudness, tempo, duration). Two tasks
were distinguished: predicting whether the current user utterance will cause com-
munication problems (CTP) and identifying whether the previous user utterance
caused communication problems (PTP). The CTP task is more difficult than the
PTP task, since for predicting whether the previous user utterance caused prob-
lems the classifier can use the properties of the current userutterance, which may
contain various cues indicating that something went wrong.

Concerning the CTP task, we see that none of the prosodic features yield
above-baseline scores with our learning method. The best overall result for this
task is obtained by training on all non-prosodic features (with an accuracy of
69.3% and an F-score of 65%). However, the improvement is only a few points
above the baseline, and this implies thata priori prediction of problems is all but
impossible for the current system. Earlier work, e.g., (Hirschberg, Litman, and
Swerts, 2000; Hirschberg, Litman, and Swerts, 1999) has shown that prosody can
help for both tasks, arguing that utterances which are produced with a marked into-
nation have a higher chance of being misrecognized and, moreover, if users speak
with marked prosody this is also often an indication of problems in the previous
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turn. The descriptive statistics for our prosodic data do show that problematic and
unproblematic utterances are significantly different fromeach other, but the learn-
ing algorithm fails to profit from these differences to the same extent as it does
from other sources of information. A potential cause for nothaving been able to
demonstrate the alleged added value of prosody is that our corpus consists of rela-
tively short dialogues (2-10 turns) from more than 400 different speakers, whereas
the corpus analysed by Hirschberg and co-workers consist oflonger dialogues with
20 speakers. It might well be that prosody is more helpful when dialogues are
longer, so that the system is better able to distinguish a person’s regular speaking
style from his/her problem-signalling speaking style.

The classifier does much better on the PTP task. We see that various prosodic
features in isolation perform above baseline, and when training on all prosodic
features we obtain 84.7% accuracy and 80.8% F-score. So it appears that using
prosody is beneficial for this task. However, the benefits of prosody are relatively
small when compared to those of other features. In particular, the combination
of the dialogue history and the bags-of-words obtains 91.1%accuracy and 89.4%
F-score. Combined with the only the most recent prompt type,the bag-of-words
feature is able to capture situational patterns which otherwise had to be represented
by high-level features. We appliedRIPPERto the complete data in order to illus-
trate the rules learnt when training on the bag-of-words feature, cf. Figure 2.

Rule 2 captures situations when the user corrects the systemin reply to its Im-
plicit verification question: the lexical item “naar” (’toprep:’) is present both
in the current and in the previous word graph, whereas the lexical item “uur”
(’o’clock’) is not in the current word graph. Presumably thesystem made an im-
plicit verification of the user’s previous input on the arrival station, at the same
time prompting for the time of travel, which the user is not giving in this situation,
as s/he is concentrating on correcting the system. Rule 3 characterizes the user
repeating his/her input in reply to an Implicit verification(of departure and arrival
station) with a marked lexical usage: “vanuit” (’from’) in the full form is present
in the current word graph, whereas “naar” was present in the previous utterance’s
graph. Rule 6 points out problematic situations where the personal pronoun “ik”
(’I’) suggests that the user formulates the input with a full-fledged syntactic struc-
ture, a usage that is characteristic of problematic situations (Krahmer et al., 1999),
as well as the parallel presence of the explicit disconfirmation marker “nee” (’no’)
and absence of the explicit confirmation marker “ja”(’yes’)in rule 7.

Rule 10 sheds light on problematic turn sequentions where, in reply to a Yes/No
question ‘Do you want information about another connection?’ users often re-
spond ‘Yes, from X to Y’, however, the system is unable to recognize the station
names unsolicitedly given in the context of the Yes/No question –although it is
clear from the rule that ’toprep:’ (“naar”) was in the word graph–, reacting with
the usual Open question-prompt in the next turn: ‘From whereto where do you
want to travel?’. Once in the Open question context, the ASR often fails to recog-
nize the lexical item “naar”, which is thus absent in the wordgraph (even though
most probably the user did provide an answer for this slot), but traces of other,
unsolicited information are present in the graph (for example the intended day of
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the travel, Rule 12).
We assume that the BoW set implicitly contains a wide spectrum of cues in-

dicating problems, such as context shifts reflected by the differences between the
current and the previous word graph, semantic diversity, syntactic structure, repe-
titions, omissions, corrections, and whether or not the system has recognized the
necessary slot-filling item.

Our general result is that given the imposed-first-rule induction method, we
can reach the level of the best results using varied sets of features, but these should
at least include (1) the five before-previous prompt types for the CTP tasks, and
(2) the two sets of bag-of-words for the PTP task. It is not possible to get a
significantly higher F-score than obtained with these feature sets. On the other
hand, performing no active selection but simply gather a large, assumed-to-be-
comprehensive set of features did not produce significantlydifferent results (cf.
(Batliner et al., 1999) for a similar finding in a multi-feature prosody task). From
a performance perspective, feature selection with RIPPERon the studied tasks has
not been necessary. From an explanatory data analysis perspective, however, in-
specting rules induced from selected features can pinpointthe most salient infor-
mation that qualifies best to be related back to developers ofSDS.
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