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Abstract

The present paper evaluates the role selected featuresatodef combinations play for er-
ror detection in spoken dialogue systems. We investigaedlevance of various, readily
available features extracted from a corpus of dialogueb witrain timetable information
system, using RPER a rule-inducing machine learning algorithm. The learrtagk con-
sists of the identification of communication problems agsin either the previous turn or
the current turn of the dialogue. Previous experiments withcorpus have shown that
combining dialogue history and word-graph features is fieiaé for detecting errors (in
particular in the previous turn). Other researchers hagerted that combining prosodic
and ASR characteristics is helpful (primarily in the cutramn). In this paper, we inves-
tigate the usefulness of large-scale combinations of tfesgtares for the above two tasks.
We show that we are unable to reproduce the benefits of pteatures for learning prob-
lematic situations, even though the overall prosodic tsenaur corpus are similar to those
earlier reported on. Moreover, the best results are oldaisig just minimal combinations
of two sources of information.

1 Introduction

There is increasing interest in using machine learning (Kélc)automatic error
detection in spoken dialogue systems (SDS). Such studidsaigely varied with
respect to their definitions of the problem detection takk, learning methods
applied, and the attributes employed in the learning meth®ddvide spectrum
of features is exploited in such experiments, depending loat wources of infor-
mation are regarded to be relevant in the underlying taslatures are selected
on grounds of their supposed predictive power towards problduring the in-
teraction between the system and its user. The employedrésatange from
primitive attributes representing entities such as confidescores output by the
automatic speech recognition (ASR) module of the systems{@#berg, Litman,
and Swerts, 1999; Litman, Walker, and Kearns, 1999), léxiagput of the ASR
module of a SDS (Hirschberg, Litman, and Swerts, 1999; VanRigsch, Krah-
mer, and Swerts, 2001), experimental parameters and fidatitn of the under-
lying ASR grammar (Hirschberg, Litman, and Swerts, 1998&miain, Walker, and
Kearns, 1999), aspects of dialogue efficiency and qualitym@n, Walker, and
Kearns, 1999), presence or absence of default assumptimamount of slots
filled (Krahmer et al., 1999) or the system adaptivity (HimMserg, Litman, and
Swerts, 1999), to highly complicated features, involvingaaiety of semantics-
based attributes of the user input (Hirschberg, Litman, Swdrts, 1999; Litman,
Walker, and Kearns, 1999; Walker, Wright, and LangkildeD@0Q and aspects of
syntax in the user answer (Krahmer et al., 1999). As oppas#tktprimitive at-
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tributes, the latter types of features cannot be straightadly extracted from a
SDS, which forms an obstacle for automatic, on-line erréect®on and recovery.

Recently there is an emerging trend to incorporate prostefined as the set
of suprasegmental speech features, such as intonatioec{speelody), tempo,
pausing and loudness, into the modules of automatic speeciymition and un-
derstanding of diverse applications. The various taskadtecthe attempted use of
prosodic structures as a pre- or a postprocessor, e.grattkre-best lists of recog-
nition hypotheses (Veilleux and Ostendorf, 1994; Hiro®95); to run separate
models for words that are or are not accented (Greenberd)2@0automatically
punctuate transcribed spoken texts; to chunk a continuneans of speech into
smaller parts before it is fed into the recognition moduld tmclassify speaker
turns in terms of a set of dialogue acts to run act-specifigdage models (Tay-
lor et al., 1996). More recently, people have started to aeplvhether prosody
may also be useful as a resource for error detection. CudBBt still make lots
of errors when they have to recognize spoken input from usershe dialogue
manager (DM) of such systems needs a principled strateggdinlel when it can
‘believe’ a certain recognized string. Traditional rellap measures, including
acoustic and semantic confidence scores, are still noteffienough. The reason
to investigate prosody for the purpose of error detectigraitly motivated by the
fact that it functions eminently well as a cue to problemsumian-human inter-
actions, e.g. (Shimojima et al., 1998). However, resutisnfprevious studies on
prosodically based error detection tools in SDS are a bdriolusive, since they
appear to work well for some systems (Hirschberg, Litmad,&werts, 1999), but
are far less successful for others (Lendvai et al., 2002)it Aslargely unknown
why there is so much variance in performance of these diffdomls, the current
study aims to gain further insight into the relative impada of prosody for error
detection on the basis of a series of experiments.

In addition, from a machine learning perspective, it isiesting to learn how
prosodic features that are essentially continuous in eattwmbine with more
discrete, categorical (symbolic) features, such as a waphgoutput by the ASR
or various aspects of the dialogue system, which have alen bwestigated in
terms of their usefulness for error detection. It is stillapen empirical question
what machine learning approach is best capable of integyatultiple features of
widely different nature.

The current study explicitly investigates the feasibibiyd the usefulness of
combining different knowledge sources for error detectasks. In doing such
a multi-feature error detection exercise, we will treastbiassification problem
not as one general task applied to a full set of recorded giigs, but rather run
experiments that take into account what the specific di@aguation is in which a
problem has occurred. That is, while different investigasi have brought to light
that prosodic behaviour in relation to dialogue problentg weuch depends on the
specific situation at hand (Litman and Pan, 1999; Swertmaiit, and Hirschberg,
2000), this fact has not yet fully been exploited in erroredéibn tasks. We will
propose to do this by looking at the type of question the diadéosystem has posed
to the user most recently in the course of the interaction.
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The paper’s structure is the following. In Section 2 we firssaibe the dia-
logue data used for our study and the schema used for amgptatimmunication
problems. Subsequently, we describe the collection otifeathypothesized to
be predictive in detecting communication problems. In Bec8, the learning
tasks and the learning method are described. Experimezgalts on the differ-
ent feature types are treated in Section 4, after which ouclagions are given in
Section 5.

2 Data
2.1  Corpus and labeling

The corpus used in the present study consists of 441 fulbgieds, broken down
into 3738 pairs of system questions and user answers that seenpled from a
range of telephone calls of users with a Dutch human-madhaire information
system. Virtually all dialogues involve a different speakéhe SDS prompts the
user for information needed to perform a train timetabledase query. It gives
feedback on what it has understood from the user input vi¢igihpr explicit ver-
ification, thus the user will always become aware of eventuialinderstandings
from the following system question. The percentage of uosssful conversations
in our corpus is 47.6%. Problems emerge primarily becaupeafspeech recog-
nition and ineffective dialogue management, and secolydscause of erroneous
user inputs or false default assumptions by the system. ifbesavere annotated
by three persons. All data were annotated by at least twoenfttand differences
in annotation were resolved through discussion. Labeliagawhether or not the
user’s input gave rise to communication problems in thes®aof the conversation.
This feature is the one to be predicted by the machine leaFuether annotation
of the dialogues concerns the type of prompt the system hasmacently given.
The types of system question are the following: Open queg@), Explicit veri-
fication (E), Implicit verification (1), Yes/no question (YMeta-question (M), and
eXceptional behavior (X), if necessary in combination witie suffix Repetition
(R) which indicates that the current system prompt is a iépetof the previous
prompt.

To illustrate the labeling task, consider Figure 1 contairthe first three pairs
of system questions and user answers in a running dialoguerew'S” denotes
a system question, and “U” the user answer. Apparently, teedser utterance
is not recognised correctly; the second system questidmostahe departure and
arrival stations, which the user has just given. Howeveg, uhsolicited infor-
mation about the day of travel is correctly understood fromuser input and is
verified implicitly in the prompt. Thus, our labeling marksetfirst user turn as
“PROBLEM’, meaning that processing this utterance caused some caivation
problem in the dialogue.
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Turn# S/U  Utterance Annotation
1 S Goedenavond(.). Van welk station naar welk (@)
station wilt u reizen3Good evening. Fromwhich
station to which station do you want to travel ?)
U Ik moet volgende week dinsdag van Schiphol naar PROBLEM
Nijmegen. ( need to go from Schiphol to Nijme-
gen on Tuesday next week.)
2 S Van waar naar waar wilt u op dinsdag twaalf de-
cember reizen?From where to where would you
like to travel on Tuesday twelve December?)
U  Van Schiphol naar Nijmegen.F{om Schiphol to NO PROBLEM
Nijmegen.)
3 S Hoe laat wilt u vanuit Schiphol naar Nijmegen I
reizen? At what time do you want to travel from
Schiphol to Nijmegen?)
U Rond kwart over elf 's avonds.Afound quarter PROBLEM
past eleven in the evening.)

Figure 1: The first three turns of an example dialogue.

2.2  Feature representations

The primary hypothesis underlying our study is that comroatidn problems have
concrete correlates in what the user is saying at a certaim @ithe dialogue. The
relevant attributes should be selected, and training datald be represented ac-
cording to these features in order to train a ML algorithmlegroblem detection
task. We designed a conversion step of the SDS data to imstawbere one in-
stance represents a “current” state in the dialogue sysiéra.selected features
that make up these representations are deliberately les¥-lmoreover, they can
all be automatically extracted in real time from the onligstem, of which the in-
ternal states were available to us in logs and audio filesleThhsts the dialogue
characteristics used. We distilled features both from th&e f the system and
from what is recognised from the user’s reply.

From the user, we use both the output of the ASR module ancatheudio.
The ASR output of this particular system produced a word lgr&pm which we
stripped all recognised words, encoding these in total &9abit binary bag-of-
words vector. The 759 bits represent all words that occurrexdir corpus. This
bag-of-words representation originates from the vectacepnodel for document
representation, used in information retrieval (Saltor89)9 Further user features
extracted from the word graph are the duration of the injpialise, the speech
tempo, and the degree of branching in the word graph. Andéxéal attribute
used is the most confidently recognized string in the worglyra

The initial pause in the utterance (the length of the silethed precedes the
utterance) is assumed to indicate the degree of hesitdtitie aser in responding,
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Aspect Feature

DM: prompt six previous question types

ASR: confidence | summed confidence score of most confident path
ASR: branching | branching factor in the word graph of current and previous|ut

terance

ASR: lexical bag-of-words of previous and current user turn; most confide
recognized string

Prosody: pitch maximum and minimum FO; position of maximum and mini-

mum; mean FO and standard deviation
Prosody: energy | maximum energy (RMS); position of maximum; mean RMS
and standard deviation

Prosody: duration length of utterance in seconds; length of initial pause amfes
Prosody: tempo | number of syllables per second

Table 1: Overview of the employed features

cf. (Krahmer et al., 2001). The speech tempo of the utterancesponds to
the number of uttered syllables per second. To compute theauof syllables
in an utterance, we used a memory-based syllabifier for D{idetelemans and
van den Bosch, 1992). The branching factor in the ASR worglgrsas also
calculated both for the current and the preceding utterariaeacterizing a degree
of confusion in the graph; a lot of branching in the word graph be an indicator
of system uncertainty, or noisy user input. The confidencasmements of the
ASR were also converted into a feature: we used the total demfe, summed
over nodes, of the overall most confident path.

From the audio we automatically extracted FO (fundamenggjufency) mea-
surements, RMS (energy, amplitude) measurements andatucdtthe utterance
from initial silence to final silence, using the GIPOS softevgpackage. The
method used to determine FO is Hermes’ method of subharnsanmimation (Her-
mes, 1988) combined with dynamic programming to smooth thedatour and
remove any possible pitch measuring errors.

To conclude our feature selection, we selected the sequenbe six most
recent system question types as a superficial representdtibe dialogue so far.
The number of six is arbitrarily chosen; the assumption & #ome patterns in
the sequences of questions may mark typically problemétiat®ns at the next
utterance (such as two or more repetitions of the same questpe), but it is
unlikely that essential parts of these patterns will orégénin the questions asked
five or more turns before.

2.3  Descriptive Statistics

A statistical description of the prosodic properties of data is given in tables
2 and 3 that show the mean values of prosodic features ctdduiieom all non-
problematic and all problematic utterances in the corpus.pétformed a paired
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Q=E Qt=1 Qt=0 Q=Y

Feature —Pr Py —Pr Py —Pr Py —Pr P
FO max(Hz) | 217.8 224.2 236.0 237.6 241.6 238.8 213.3 207.6
FO meanHz) | 144.4 148.4 159.9 161.7Y 160.7 163.8 147.5 150.7
RMS max |5507.2  5421.8683.7 ** 5540.77325.9 ** 6091.05173.7 ** 4290.(
RMS mean | 241.8 264.9 378.3 ** 330.5 447.2* 379.6 248.1 240.8
Duration(s) 19* 26 27* 29 36* 34 18* 2.0
Tempo(syll/s) 1.0 14 20 21 24 ~* 25 1.0* 1.3

Table 2: Prosodic means of unproblemati®¢) and problematic (Pr) current turns for four
system question types (1Q. “*” denotes statistical differences between the two mea
a pairedt-test withp < .05 significance; “**” denoteg < .01 significance.

t-test on these pairs of means to check whether the diffesdretsveen them are
of statistical significance. The utterances are, furtheemngrouped according to
their co-occurence with the four most common types of systeampts during the
dialogue, characterizing the utterances per prompt tygpliét verification, Im-
plicit verification, Open question, and Yes/no questiomyufes for the remaining
prompt types are not included in the table; they occur lesgufently and produce
fewer statistically significant outcomes. Figures are ¢y for all prosodic at-
tributes, but typically the other FO and RMS measurement®lzie statistically,
as calculated in a Pearson'’s correlation test, thus for pl@ahigh FO maximum
often is accompanied by a high FO mean measurement.

If we compare the actual values of the means for problematitstaccording
to the most recently asked system question)(@e find that these vary across
prompt types: for example, the mean length of problematswans following a
Yes/no question is generally much shorter than the meartHevfgproblematic
answers following an Explicit verification question (cf.bla 2). Table 3 reveals
such subtilities that a user’'s answer following an Impli@tification of a mis-
understood information does not tend to be spoken loudesnasvould expect
(Hirschberg, Litman, and Swerts, 2000; Oviatt, McEachanal, Levow, 1998) as a
consequence of hyperarticulation. Judged by the outcofrthe t-test, character-
istics of some of the prosodic attributes are in accordariitefimdings concerning
hyperarticulate speech, but others are clearly not, wheimduishing according to
the actual prompt type. Furthermore, thtest reveals that the scales of the differ-
ences between means of problematic and unproblematicdepend on whether
the communication problem occurs in the current turn (Tapler in the previous
turn (Table 3) of the dialogue. What follows from Tables 2 &rid that it may be
useful to decompose the error detection task into two tashkd,that the type of
system prompt just given may hold predictive power towametecting problems.
The importance of the system question type was exploitediimachine learning
method, as set out in the following subsection.
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Qt=E Qt=1 Qt=0 Q=Y

Feature -Pr Pr  —Pr Py —Pr P -Pr P
FO max(Hz) | 209.8 ** 236.5 234.4 240.8 236.6 ** 272.7 211.8 * 263.8
FO meanHz) | 142.1 * 151.3 159.2 163.6 161.4 * 175.1 147.7 * 181.7

RMS max |5050.6 * 6253.%133.3 5910.6637.5 5936.5010.0 5189.3
RMS mean | 206.9 * 320.3 348.7  356.5411.3 * 353.7 2464 2952
Duration(s) 18* 27| 26* 31 35 33 18* 26
Tempo(syll/s|  0.9* 1.4/ 2.0 21 25* 19 10* 16

Table 3: Prosodic means of the current turn, depending orthehéhe previous turn was
unproblematic {Pr) or problematic (Pr), given for four system question &/(€t"). “*”
denotes statistical differences between the two meansaireds-test withp < .05 signif-
icance; “**” denotesp < .01 significance.

3 Machine Learning applied to automatic error detection
3.1  Task specification

Drawing on the statistical characteristics of our corpumredetection is carried
out by means of two different series of experiments: (1) jgted) miscommunica-
tion in the current user utterance versus (2) detecting eamsunication problem
in the previous user utterance given the most recent queatiswer pair. Predict-
ing whether the current user utterance will cause probléraedeforth: current-
turn-problem, CTP) has been reported being more difficidh(¥¥en Bosch, Krah-
mer, and Swerts, 2001; Lendvai et al., 2002), since this hasknot only to deal
with problems that are due to cognitive misunderstandiregg&d&en the two par-
ties, such as assumptions and presuppositions, but aletofit technical factors
that pose problems to the given dialogue system itself, agats inability to cope
with hyperarticulation or with noisy input.

The second task, aimed at identifying problems that emeirgéte previous
turn of the dialogue (henceforth: previous-turn-problBP), consists of spotting
turns signaling that the processing of the previous usertiwent wrong. The clas-
sifier of the PTP task can thus draw additional informatiamfrthe subsequent,
aware turn of the user; cf. (Litman, Hirschberg, and Sw&®1), where peo-
ple give feedback about the progress of the communicationégns of prosody
(Hirschberg, Litman, and Swerts, 2000) and by means of uit@ihd explicit lex-
ical cues (Van den Bosch, Krahmer, and Swerts, 2001; Kraketadr, 1999).

It is important to distinguish between these two tasks beeau this way we
have a two-fold approach to error detection in SDS. Note tiabthere can be
different labels assigned to the same feature values atre$ao tasks, as certain
utterances are unproblematic in the current turn (CTP taskhat the same time
reflect awareness of problems that occurred in the previousdf the dialogue
(PTP task). By differentiating between the two tasks, thaming separate clas-
sifiers on the tasks, we reuse the data in a unified, but stibbl#eperspective way
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of error detection, enabling classification of subtle peses within one utterance.

For illustration, compare again the respective values ief2 and Table 3
for discovering the dissimilarity between actual featuadues in the two tasks.
The figures in the tables are rather different not only withie dialogue attribute
(across a row), but also with respect to the same attributsathe two tasks. For
example, in the learning task of the CTP, the classifier migletthe information
that problematic utterances tend to be produced with arfagzch tempo after an
Open question, whereas utterances that signal a miscoratiomi in the preced-
ing turn (the PTP task) are produced with a slower tempo thamunhproblematic
ones.

3.2  Learning method

In a previous study (Lendvai et al., 2002) we employed a midliction method
with domain knowledge incorporated as enforced conditigron the induced
rules, the knowledge being the type of question the systesrableed in its most
recent prompt. In other words, all induced rules conditibfeast on a question
type value, in combination with zero or more conditions omeotfeatures. This
approach enhanced learner performance on all attributélse iprevious-turn-task
it resulted in an average 25% improvement of learning acyuraidentifying er-
rors, indeed indicating that the scale of difference betwtbe prosodic means is
correlated with the type of system question to which usesgard.

In the current study we uselRPER (Cohen, 1995) to automatically perform
error detection, based on the above methodkPRRis a fast rule induction al-
gorithm that induces a ruleset based on the training exanptdirst separates
the training set in two, then on the basis of one part it inducdées, heuristically
maximizing coverage and accuracy for each rule, with p@koverfitting. When
the induced rules classify instances in the other part baloartain threshold, they
are not stored. Rules are induced per class, ordered frorfrémumency classes to
high-frequency ones, leaving the most frequent class addfaailt rule, which is
generally beneficial for the size of the rule setPRERwas used with its standard
settings.

During the experiments training and testing was done by dl®-tross-
validation, where partitioning was done with complete daies as units, thereby
ensuring that no material from the same dialogue could hsopaoth the training
and the test set. The performance of the classifier was dedlaacording to mea-
sures of predictive accuracy on deciding between probleraat unproblematic
instances, and precision, recall, and F-score of the dodegection of errors. The
latter metric combines precision and recall in a single gie employ the un-
weighted variant of F-score, which is defined2d3R /(P + R) (P = precision,R
= recall) (van Rijsbergen, 1979). In evaluating a classifiperformance in error
detection more importance should be given to values of FFestttan to predic-
tive accuracy as the given F-score characterizes the rateeoiSion and recall for

1We used RePERversion 1, release 2.4.
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the prediction of the problem class while accuracy can bejoglg biased to the
majority non-problem class.

3.3 Baselines

Because of the inherent differences in the two predictiskdatwo different base-
lines were established. For predicting miscommunicatidhé current turn of the
dialogue, a majority-class baseline is calculated.Whenddta are split accord-
ing to the last system question type, some question typefobogied by more
problematic utterances than unproblematic ones, such as gpestions (“O”),
repeated open questions (“OR”), and implicit verificatiarestions (“1”). Always
guessing the majority class given the prompt type produdessaline of 65.2%
accuracy and an F-score of 62.4%.

For the task of identifying a communication problem in theyious turn of
the conversation, we make use of the fact that the systerméadyl aware of a
lot of problems; this is signalled directly whenever thetegsrepeats its previous
prompt. Applying a strategy of always identifying a problednen the last system
promptis repeated gives a higher baseline for the secokdhasceforth referred
to as the “system knows” baseline. There are 974 of thesdique$n the corpus,
yielding 82.9% accuracy and 75.3% F-score.

4 Results

We describe the results in three steps. First, we investitpat predictive power
of prosodic features in detecting communication problemthé current and the
previous utterance, to test the hypothesis that prosodyroffoncrete correlates
with problems. Second, we discuss the results on the sarke tiaig all non-
prosodic features from the ASR wordgraph and the systentiquss Third, we
review the results obtained with combinations of both typiefeatures.

4.1 Prosodic features in the error detection task

As indicated in the introductory section, some studieswtltiat prosody offers
strong clues in automatic error detection. We tested thisncfor our Dutch data
by creating a matrix of combinations of prosodic featurempat to the CTP and
PTP tasks. The results of our experiments show no clearifetehces between
performance of prosodic features in isolation or in comtiams. For the CTP
task, no features or combinations could even outperforncdnebined-majority-
class baseline, as can be seen in the left half of Table 4. tébis illustrates the
performance (in terms of accuracy and F-score) of only tpossodic features that
outperform the baseline for the PTP task (right column). A&that for the PTP
task at least some prosodic features show a significant weprent: more than
20% error-reduction in terms of F-score for duration andgéeof all prosodic
features produces a fair result.

It is worth noting that duration has proven to be an overallyperforming fea-
ture in the course of the experiments, isolated as well agnimbination with other



10 Piroska Lendvai*, Antal van den Bosch*, Emiel Krahmer*, Marc Swertst

Current Turn/ CTP Previous Turn/ PTP

feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + FO mean 64.7+1.4 60.6:2.6 | 82.4£2.0 76.5:2.9

Qt + FO minpos 63.+2.1 60.5:2.3 | 84. 419 79.&29
Qt + RMS maxpos| 63.%1.9 59.4£2.9 | 84.3:2.2 79.43.1
Qt + RMS mean 64.1+£2.3 57.9:3.6 | 83.3t1.8 78.5:3.0
Qt + Duration 64.2+1.4 58.44.6| 85.2+1.6 81.H25
Qt + Tempo 64.8£2.4 59.0t3.5| 84.2+1.6 78.4:3.0
Qt + All Prosodic | 64.1+42.2 57.3t2.2 | 84.7+£2.2 80.8:2.8

Table 4: Most prominent test performances in terms of acyueamd F-score trained on
detecting miscommunication originating from the currentl® previous turn, based on
prosodic features

prosodic features. This corresponds to reports of (Batéhal., 2001; Hirschberg,
Litman, and Swerts, 1999). In the latter study durationgrent with an error rate
of 17.1% (corresponding to 82.9% accuracy), which is comipiarto the 85.2%
accuracy that our classifier gives.

4.2 Non-prosodic features in the error detection task

Table 5 lists the accuracies and F-scores of both error tittetasks based on
(combinations of) non-prosodic features, viz. those festextracted from the
word graph that outperform the “system-knows” baselinanficience, branching
factor, bag-of-words vector, most confident string), aredsysstem history (the five
previously asked question types, 5Q).

The CTP task is performed only slightly above baseline byhiktory of five
before-previous questions, as well as by the combinatiall efon-prosodic fea-
tures; recall that none of the prosodic features helpedadotr¢he baseline (cf.
Table 4). The baseline for the PTP task, however, is beatatrbgst all the non-
prosodic features; only slightly by the wordgraph confideand branching factor
features, but largely beaten by the bag-of-words vectordirather tested combi-
nations of non-prosodic features that include the bag-afde vector, all leading
to an accuracy of about 91% and an F-score of about 89%.

It is worth paying attention to the lexical features, nantelthe two sets of
bag-of-words (BoW) and the most confident string in the woepb (ASR string).
Other studies (Hirschberg, Litman, and Swerts, 1999; Litnvdalker, and Kearns,
1999) reported that the ASR string is highly relevant in jot#lg recognition er-
rors (which partly corresponds to our CTP task). In the staflyHirschberg,
Litman, and Swerts, 1999) the recognized string was thegmfdrming isolated
feature, yielding an error rate of 14.4% (85.6% accuracyiis Bcore is much
higher than the result that we get (65.3% accuracy),thus amaat regard the
most confident ASR string as a well-performing feature for goal. Note that
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Current Turn/ CTP Previous Turn/ PTP
feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + Confidence 63.9+1.8 58.0t4.0 | 84.9:2.0 80.5:2.8
Qt + BF 66.3+3.1 58.9:5.1 | 84.8£1.8 81.2£2.9
Qt + ASR string 65.3+1.8 62.22.2 | 83.6:1.5 77.0:1.9
Qt + Bow 66.3+1.9 61.A43.1| 90.8£1.8 88.A2.2
Qt +5Q 66.9+-3.5 64.3:4.9 | 83.6:1.4 76.9:2.7
Qt +5Q + Bow 67.4+1.6 63.2:3.1| 91.1+1.1 89.4:1.3
Qt +5Q +BoW + BF | 69.1+2.5 64.6t3.2 | 90.8:1.2 89.0t1.2
Qt + BowW + BF 66.9+2.6 60.8:3.6 | 90.9+1.1 89.1H1.3
Qt + All Nonprosodic | 69.3t2.8 65.6:3.9 | 91.0+£0.9 89.2:1.3

Table 5: Most prominent test performances (accuracy antbFeltrained on the CTP and
PTP tasks, based on non-prosodic features. BF stands farting factor; Bow stands for
bag-of-words vector; 5Q stands for the five before-previeystem question types.

(Hirschberg, Litman, and Swerts, 1999) are dubious abauptitential benefits
of using the ASR string in error detection, questioning wieethe model learned
training on this feature can generalize across systemssks.taOur experiments
have indeed shown this discrepancy.

(Litman, Walker, and Kearns, 1999) employ the ASR text featas a set-
valued lexical feature in RPERwhere it also turns out to be the most predictive
feature in isolation (72% accuracy) for detecting poor she&cognition. It is
noteworthy that for our task the ASR string feature is lessefieial. However, a
feature of the same type, the set of bag-of-words is unddiyptiee ultimate win-
ner in our experiment matrix. An interesting question agdirom this is whether
this gain in favor of the BoW feature originates in the enogdilifferences (set-
valued versus binary representation) or the fact that th& Bector tends to con-
tain at least parts of what the user actually said (along waithmisrecognised
alternatives), whereas the ASR string can be completetyriact.

4.3  Combination of prosodic and non-prosodic feature types

Table 6 shows the most prominent outcomes measured in thixro&feature
combination experiments with prosodic and non-prosodituies. The upper
section of the table illustrates the BoW vector combinedhveiértain prosodic
attributes. The middle section depicts the BoW vector comdiwith the dia-
logue history and certain prosodic attributes. The lowetise lists results for
sets where either the dialogue history is combined withecsein of prosodic and
non-prosodic features, or all the non-prosodic featurecambined with one or
all prosodic features.

For the CTP task the baseline appears to be (slightly) beatelusively in
those cases when the five before-previous system quespies dre used as fea-
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Current Turn/ CTP Previous Turn/ PTP

feature set acc. F acc. F
Baseline 65.2 62.4 82.9 75.3
Qt + BoW + All Prosodic 65.0+:2.0 58.A42.4 | 90.8£0.9 89.G:0.9
Qt + BoW + Ipause 65.8+2.2 61.2:2.8 | 91.0+1.1 89.H1.1
Qt + BoW + Tempo 67.1+2.6 62.0t2.6 | 90.9£1.0 89.H1.1
Qt + BoW + Duration 66.8+2.2 60.6:3.3 | 91.1+1.6 89.4:2.0

Qt + BoW +5Q + Ipause | 67.8+2.5 63.5:3.0 | 91.0+£1.0 89.2:1.1
Qt + BowW +5Q + Tempo | 68.6£2.7 63.6:4.2 | 90.8t£1.3 89.@t1.3
Qt + BoW + 5Q + Duration| 69.5+3.0 64.3t4.3 | 91.14+1.3 89.4:1.5
Qt + All Nonpros + Dur 68.742.3 64.3:3.3 | 90.9:0.7 89.G:1.0

Qt + All features 68.9+2.5 64.4:4.4| 90.6:0.9 88.A 15
Qt +5Q + BoW + All Pros | 68.2+3.1 63.14.4 | 90.8t1.2 89.Gt1.5
Qt +5Q + All Pros 67.6£2.8 63.8:3.4 | 85.8+1.8 82.5:2.6
Qt +5Q + BF + Dur 69.2+3.0 64.6£5.2 | 86.4+1.8 83.5:3.3

Table 6: Most prominent test performances in terms of acyueamd F-score trained on
detecting miscommunication, based on feature type cortibmaets.

tures. These cases correspond to the set of Qt + 5Q and thesethdelow it in
Table 5, as well as to the sets in the two lower sections ofeTéblTaken alone
or combined with any other feature, the F-score of thesemsethe CTP task is
around 64%. The best F-score of 65.0%, obtained by combalinmgn-prosodic
features, is listed in Table 5, but all the other experiment$eature sets that in-
clude the six system questions (Qt + 5Q) perform non-sigaifly better or worse
when tested in one-tailetitests. Likewise, combinations of prosodic and non-
prosodic features for the PTP task are not significantledfit from the apparent
ceiling score of 91% accuracy and 89% F-score using nonedio$eatures only
(cf. the relevant feature sets in Table 5 and Table 6), peaitat the combination
includes the bag-of-words vector.

In sum, Table 6 confirms the findings of Tables 4 and 5 that —tbmpt type
condition imposed on the rule induction— (i) no (combinatid) prosodic features
plays an essential positive role in attaining top scoresitheletask; (ii) the com-
bination of @ and the five before-previous system question types is éakantl
sufficient for attaining an above-baseline score on the @8k, tand (iii) the com-
bination of @ and the bag-of-words vectors is essential and sufficierrefaching
a ceiling score on the PTP task.

5 Discussion

In this paper we studied the usefulness of a wide range ofifesafor machine-
learning-based error detection in spoken dialogue systehinme features come
from various sources, representing the dialogue histéry $tx most recent sys-
tem question types), output of the ASR (recognized bag-arfda, acoustic con-
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1. ifQ()=R,thenPr. (977/0)
2. if Q@) =1 A “naar” € BoW(t-1)A “naar” € BoW() A “uur” ¢ (131/12)
BoW(t) then Pr.

3. if Q@) =1A"naar € BowW(-1) A “vanuit” € BoW(t) then Pr. (39/6)

4. if Q@) =1 A “uur” € BoW(-1) A “om” € BoW(t-1) then Pr. (4417)

5. if Q@) =1A“van” € BoW(t) A “den” € BoW(¢t) then Pr. (13/5)

6. ifQ@E)=1A"uur" & Bow() A “ik” € BoW(t) A “niet” € BoW(t) (11/2)

then Pr.

7. if Q@) =EA"“nee” € BoW() A “ja” ¢ BoW(¢t)then Pr. (88/9)

8. if Q () = EA “uur” € BoW(t-1) A “morgenochtende BoW(t-1) (10/2)

then Pr.

9. if Q@) =EA"“uur” € Bow(t) then Pr. (16/5)
10. if Q ) = O A “naar” € BoW(t-1) then Pr. (38/9)
11. if Q () = OA “wil” € BoW(t-1) then Pr. (6/1)
12. if Q ¢) = O A “naar” ¢ BoW(t) A “februari” € BoW(¢) then Pr. (3/0)
13. if Q) =M A “klopt” € BoW(¢-1) then Pr. (4/0)
14. if Q ¢) =M A *“s avonds”e BoW(t-1) then Pr. (4/0)
15. ifQ @) =MA“k” € Bow(-1)thenPr. (8/2)
16. if Q@)=Y A “twee” € BoW(t-1) A “niet” € BoW(t) then Pr. (2/0)
17. else-Pr. (2064/220)

Figure 2: TheriPPERrule set for the PTP task, on the basis of the most recentreymtes-
tion (Qt) plus the word graph of the current (Bay\and the previous user input(Ba\A£ 1).
For translations of lexical items see the text. Théi) numbers at the end of each line in-
dicate the number of instances the rule covajsand the number of false predictions).

fidence score, branching factor and amount of initial pansthé word graph)
and various prosodic characteristics (pitch, loudnesspte duration). Two tasks
were distinguished: predicting whether the current useramce will cause com-
munication problems (CTP) and identifying whether the mres user utterance
caused communication problems (PTP). The CTP task is mifieudti than the
PTP task, since for predicting whether the previous userarte caused prob-
lems the classifier can use the properties of the currentuttsrance, which may
contain various cues indicating that something went wrong.

Concerning the CTP task, we see that none of the prosodiarésayield
above-baseline scores with our learning method. The besathresult for this
task is obtained by training on all non-prosodic featuregh(\an accuracy of
69.3% and an F-score of 65%). However, the improvement ig ariéw points
above the baseline, and this implies thatriori prediction of problems is all but
impossible for the current system. Earlier work, e.g., $eliberg, Litman, and
Swerts, 2000; Hirschberg, Litman, and Swerts, 1999) hawshioat prosody can
help for both tasks, arguing that utterances which are predlwith a marked into-
nation have a higher chance of being misrecognized and,averdf users speak
with marked prosody this is also often an indication of penbs in the previous
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turn. The descriptive statistics for our prosodic data dmsthat problematic and
unproblematic utterances are significantly different freech other, but the learn-
ing algorithm fails to profit from these differences to thensaextent as it does
from other sources of information. A potential cause for mating been able to
demonstrate the alleged added value of prosody is that epuseonsists of rela-
tively short dialogues (2-10 turns) from more than 400 défe speakers, whereas
the corpus analysed by Hirschberg and co-workers condishgér dialogues with
20 speakers. It might well be that prosody is more helpful whlogues are
longer, so that the system is better able to distinguish somés regular speaking
style from his/her problem-signalling speaking style.

The classifier does much better on the PTP task. We see thatiggrosodic
features in isolation perform above baseline, and whenitrgion all prosodic
features we obtain 84.7% accuracy and 80.8% F-score. S@éaap that using
prosody is beneficial for this task. However, the benefitsrofpdy are relatively
small when compared to those of other features. In parfictila combination
of the dialogue history and the bags-of-words obtains 9latétracy and 89.4%
F-score. Combined with the only the most recent prompt tthpe bag-of-words
feature is able to capture situational patterns which etlserhad to be represented
by high-level features. We appligdPPERto the complete data in order to illus-
trate the rules learnt when training on the bag-of-wordaifea cf. Figure 2.

Rule 2 captures situations when the user corrects the systeaply to its Im-
plicit verification question: the lexical item “naar” ('tprep.’) is present both
in the current and in the previous word graph, whereas thiedkeitem “uur”
('o’clock’) is not in the current word graph. Presumably #estem made an im-
plicit verification of the user’s previous input on the aalistation, at the same
time prompting for the time of travel, which the user is naftigg in this situation,
as s/he is concentrating on correcting the system. Rule factesizes the user
repeating his/her input in reply to an Implicit verificati¢of departure and arrival
station) with a marked lexical usage: “vanuit” (‘from’) ihe full form is present
in the current word graph, whereas “naar” was present in teei@us utterance’s
graph. Rule 6 points out problematic situations where thegreal pronoun “ik”
('I') suggests that the user formulates the input with a-flddged syntactic struc-
ture, a usage that is characteristic of problematic stmat{Krahmer et al., 1999),
as well as the parallel presence of the explicit disconfimnaharker “nee” ('no’)
and absence of the explicit confirmation marker “ja”('yas’yule 7.

Rule 10 sheds light on problematic turn sequentions whereply to a Yes/No
question ‘Do you want information about another conne@&ionsers often re-
spond ‘Yes, from X to Y’, however, the system is unable to gipe the station
names unsolicitedly given in the context of the Yes/No qoastalthough it is
clear from the rule that 'tprep.’ (“naar”) was in the word graph—, reacting with
the usual Open question-prompt in the next turn: ‘From wherehere do you
want to travel?’. Once in the Open question context, the A&nhdails to recog-
nize the lexical item “naar”, which is thus absent in the wgrdph (even though
most probably the user did provide an answer for this slat),ttaces of other,
unsolicited information are present in the graph (for exi@ntipe intended day of
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the travel, Rule 12).

We assume that the BoW set implicitly contains a wide spetioficues in-
dicating problems, such as context shifts reflected by tfierdnces between the
current and the previous word graph, semantic diversitytesytic structure, repe-
titions, omissions, corrections, and whether or not théesydhas recognized the
necessary slot-filling item.

Our general result is that given the imposed-first-rule atiun method, we
can reach the level of the best results using varied setatfries, but these should
at least include (1) the five before-previous prompt typesHe CTP tasks, and
(2) the two sets of bag-of-words for the PTP task. It is notsgae to get a
significantly higher F-score than obtained with these femgets. On the other
hand, performing no active selection but simply gather gdamssumed-to-be-
comprehensive set of features did not produce significatiffgrent results (cf.
(Batliner et al., 1999) for a similar finding in a multi-fea¢uprosody task). From
a performance perspective, feature selection withPlRRon the studied tasks has
not been necessary. From an explanatory data analysiseoéivep however, in-
specting rules induced from selected features can pingoéntnost salient infor-
mation that qualifies best to be related back to develope®®d&.
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