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Abstract

We describe a novel approach to example-
based machine translation that makes use
of marker-based chunks, in which the de-
coder is a memory-based classifier. The
classifier is trained to map trigrams of
source-language chunks onto trigrams of
target-language chunks; then, in a sec-
ond decoding step, the predicted trigrams
are rearranged according to their overlap.
We present the first results of this method
on a Dutch-to-English translation system
using Europarl data. Sparseness of the
class space causes the results to lag be-
hind a baseline phrase-based SMT sys-
tem. In a further comparison, we also
apply the method to a word-aligned ver-
sion of the same data, and report a smaller
difference with a word-based SMT sys-
tem. We explore the scaling abilities of the
memory-based approach, and observe lin-
ear scaling behavior in training and classi-
fication speed and memory costs, and log-
linear BLEU improvements in the amount
of training examples.

1 Introduction

The decodingstep in machine translation is typi-
cally seen as an information-theoretic, Bayesian,
stochastic process; the term refers directly to
this. A natural alternative to stochastic decoding
is discrete decoding. Knowledge-based methods
could be characterized as such, but also inductive
methods that learn to classify into discrete output
spaces. Most of these methods, such as rule learn-
ers, decision tree learners, andk-nearest neighbor
classifiers, do offer means to include non-discrete

statistical weighting metrics reflecting the likeli-
hood of events, but the essential difference with
stochastic methods is that they produce discrete
predictions, not probability distributions.

The search space induced by stochastic methods
is usually too big to be completely explored; this
space is typically reduced using approximative
search strategies (such as beam search), while dis-
crete methods in principle have no such require-
ment since they can directly produce the eventual
discrete output, the translation. This would ap-
pear to be a reason to use discrete methods for
decoding in machine translation. However, an im-
mediate objection to that is the prohibitively large
output space in which to distinguish the few cor-
rect outputs among the possibly hundreds of thou-
sands to millions of possible outcomes. Even if
the task is decomposed into the individual pre-
diction of word-by-word translations, which obvi-
ously yields sub-standard results, the output space
contains as many individual outcomes as there are
words.

This vast output space rules out the applica-
tion of machine learning algorithms such as sup-
port vector machines (Cortes and Vapnik, 1995)
in their standard definition, in which they are re-
stricted to binary classification problems. Solu-
tions exist for more than two classes (e.g. Cram-
mer and Singer (2002)), but these solutions tend
to scale badly to very large amounts of classes.
Rule learning algorithms such as Ripper (Cohen,
1995) and decision tree learners such as C4.5
(Quinlan, 1993) can deal with output spaces with
many outcomes, but their scaling abilities with re-
spect to numbers of classes are also limited. The
one exception is thek-nearest neighbor classifier
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Figure 1: Examples of aligned chunks in context.

(Cover and Hart, 1967; Dasarathy, 1991; Aha et
al., 1991), which is insensitive to the number of
classes in the output space. On the downside,
thek-nearest neighbor classifier’s scaling behavior
with respect to the number of examples is notori-
ous; compared to the aforementioned algorithms
it is almost always slower in classification. Then
again, fast approximations of thek-nearest neigh-
bor classifier exist, such as IGTREE (Daelemans
et al., 1997), a decision-tree approximation, which
tends to trade some generalization performance
against substantial speed gains in classification.

In this paper we explore the application of
IGTREE to decoding in machine translation. Our
explorations focus on Dutch-to-English transla-
tion, using EuroParl data (Koehn, 2005). We adopt
a method which generates trigrams of output ele-
ments, and a post-processing method that searches
the space of overlapping trigrams for the most
likely translation. We train a word-based and a
chunk-based system (the latter based on marker-
based chunking), and compare these systems to a
word-based and a phrase-based statistical machine
translation system, respectively.

2 Example-based machine translation

Within the field of corpus-based machine transla-
tion, phrase-based statistical machine translation
(SMT) is currently the dominant paradigm, yet
much relevant research continues to be carried out
in EBMT (Carl and Way, 2003). As with SMT,
EBMT makes use of a corpus of source–target
sententially-aligned examples to automatically ex-
tract translation resources. During translation, an
EBMT system

1. searches the source side of the corpus for
“close” matches and their equivalent target
language translations;

2. identifies useful source–target fragments
contained in those retrieved examples;

3. and recombines relevant target language frag-
ments to derive the final translation of the in-
put sentence.

The nature of the examples used in the first
place may include using placeables as indica-
tors of chunk boundaries (Brown, 1999), align-
ing phrase-structure (sub-)trees (Hearne and Way,
2006) or dependency trees (Watanabe et al., 2003).

In this work, we rely on a two-step ap-
proach. First, aligned sentences are segmented
into chunks, which are then also aligned. The
chunking and chunk alignment strategies we use
are described in more detail in Section 3. This step
provides us with a database of aligned chunks “in
context”. Some examples of such alignments are
displayed in Figure 1.

Second, this database is given to a memory-
based classifier, which stores the complete
database in memory. When translating a new sen-
tence, this sentence is itself segmented into chunks
and matched against the database of aligned
chunks. The matching and the recombination pro-
cesses are described in Section 4.

3 Chunking and chunk alignment

In this Section, we describe the chunking and
chunk alignments components of our system,
which are used during the first step of our ap-
proach, i.e. when building the database of aligned
chunks in context.

3.1 Marker-based chunking

One method for the extraction of chunks, used
in the creation of the example database, is based
on the Marker Hypothesis (Green, 1979), a psy-
cholinguistic constraint which posits that all lan-
guages are marked for surface syntax by a specific



closed set of lexemes or morphemes which signify
context. Using a set of closed-class (or “marker”)
words, such as determiners, conjunctions, prepo-
sitions, possessive and personal pronouns, aligned
source-target sentences are segmented into chunks
(Gough and Way, 2004) during a pre-processing
step. A chunk is created at each new occurrence of
a marker word, with the restriction that each chunk
must contain at least one content (or non-marker)
word. An example of such a chunking is given in
Figure 2.

3.2 Chunk alignment

In order to align the chunks obtained by the chunk-
ing procedures described in Section 3.1, we used a
simple greedy algorithm in which a source chunk
is aligned to the “closest” target chunk.

In the following, a denotes an alignment be-
tween a target sequencee and a source sequence
f , with I = |e| and J = |f |. An alignment is
a set of links between source positions and target
positions:

a = {(t1, s1), (t2, s2), . . . , (tn, sn)}, (1)

with ∀k ∈ [1 . . . n], tk ∈ [1 . . . I] and sk ∈
[1 . . . J .

For each source chunk, we are looking for the
“closest” target chunk, where the notion of prox-
imity is based on conditional probabilities. In
other terms, we have:

(tk, sk) ∈ a ⇔ ∀j ∈ J, P (etk |fsk
) ≥ P (etk |fj).

(2)
Since this model is asymmetric, due to the use

of conditional probabilities, we perform the chunk
alignment in both directions, and only keep the
alignments that are found in both directions (i.e.
the intersection), in order to obtain a set of high-
quality chunk alignments. Note that it is also pos-
sible to use other alignment techniques, such as the
“edit-distance style” dynamic programming align-
ment algorithm described in (Stroppa et al., 2006).

Instead of using an Expectation-Maximization
algorithm to estimate the parameters, as com-
monly done when performing word alignment
(Brown et al., 1993; Och, 2003), we directly com-
pute these parameters by relying on the informa-
tion contained within the chunks. The conditional
probability P (etk |fsk

) can be computed in sev-
eral ways. In our experiments, we have considered

one main source of knowledge, based on word-to-
word translation probabilities.

Word-to-word probabilities As a criterion to
relate chunks, we use word-to-word probabilities,
which are estimated using various statistical mod-
els and the EM algorithm (Och and Ney, 2003).
Note that we are using the EM algorithm only to
estimate word-to-word probabilities; the chunk-
to-chunk probabilities described above do not re-
quire the use of this algorithm. Relationships be-
tween chunks are then computed through the fol-
lowing model, similar to IBM model 1 (Brown et
al., 1993):

P (ei, fj) =
∏

k

∑

l

P (eil |fjk
). (3)

This model is often used in SMT as a feature
of a log-linear model; in this context, it is called a
word-based lexicon model (Zens and Ney, 2004).

4 Memory-based decoding

The procedure of translating a new sentence is di-
vided into a local phase in which memory-based
classification takes place, and a global phase in
which a translation of a sentence is assembled
from the local predictions. The local phase op-
erates at the chunk level, while the global phase
operates at the sentence level. We describe both
phases in more detail.

4.1 Local classification

When a new sentence in the source language is
presented as input, it is chunked, as described
in Section 3. Subsequently, a sliding window
is moved over the chunks to generate trigrams
of chunks, where the first trigram of the sen-
tence contains an empty left element, and the last
trigram contains an empty right element. Fig-
ure 3 shows the trigrams generated for the chunked
sentence[de rapporteur] [heeft ook zeer terecht
gezegd] [dat het parlement] [niet tijdig] [over de
voorschriften] [is gehoord], to be translated asthe
rapporteur has also quite rightly stated that par-
liament was not heard in time regarding the guide-
lines.

To generate likely English translations, each
Dutch chunk trigram is matched against the Dutch
part of all aligned Dutch-English trigrams stored
in the instance base of chunk trigrams derived



Dutch: [de rapporteur] [heeft ook zeer terecht gezegd] [dathet parlement] [niettijdig] [over de
voorschriften] [isgehoord]

English: [the rapporteur] [has also quite rightly stated] [thatparliament was not heard] [intime]
[regarding the guidelines]

Figure 2: A pair of Dutch and English sentences, with marker-based chunking. Marker words are under-
lined.

right contextleft context focus

de rapporteur heeft ook zeer terecht gezegd

de rapporteur heeft ook zeer terecht gezegd dat het parlement

heeft ook zeer terecht gezegd dat het parlement niet tijdig

niet tijdigdat het parlement over de voorschriften

over de voorschriftenniet tijdig is gehoord

is gehoordover de voorschriften

Figure 3: An example sentence converted into six
overlapping chunk trigrams.

from sentences in the training material (as dis-
played in Figure 1). Matching takes the form of a
search in the decision-tree structure generated by
IGTREE.

IGTREE1 (Daelemans et al., 1997) is an algo-
rithm for the top-down induction of decision trees.
It compresses a database of labeled examples into
a lossless-compression decision-tree structure that
preserves the labeling information of all examples,
and technically should be named atrie according
to (Knuth, 1973). A labeled example is a feature-
value vector, where features represent some in-
put (here, a Dutch chunk trigram), associated with
a symbolic class label representing some output
(here, the aligned English chunk trigram). After
the construction of the tree, it can be used to clas-
sify new examples not in the original database. A
typical trie is composed of nodes that each repre-
sent a partition of the original example database,
and the most frequent class of that partition. The
root node of the trie thus represents the entire
example database and carries the most frequent
value as class label, while end nodes (leafs) rep-
resent ahomogeneouspartition of the database in
which all examples have the same class label. A
node is either a leaf, or is a non-ending node that
branches out to nodes at a deeper level of the trie.
Each branch represents a test on a feature value;
branches fanning out of one node test on values of
the same feature.

1http://ilk.uvt.nl/timbl

Classification in IGTREE is a straightforward
traversal of the trie from the root node down,
where a step is triggered by an exact match be-
tween a feature of the new example and an arc fan-
ning out of the current node. When the next step
ends in a leaf node, the homogeneous class at that
node is returned; when no match is found with an
arc fanning out of the current node, the most likely
class stored at that node is returned.

To attain high compression levels, IGTREE

adopts the same heuristic that most other decision-
tree induction algorithms adopt, such asC4.5
(Quinlan, 1993), which is to create trees from
a starting root node and branch out to test on
the most informative, or most class-discriminative
features first. LikeC4.5, IGTREE uses infor-
mation gain (IG) to estimate the discriminative
power of features. The key difference between
IGTREE and C4.5 is that IGTREE computes the
IG of all features once on the full database of train-
ing examples, makes a feature ordering once on
these computed IG values, and uses this ordering
throughout the whole trie. Another difference with
C4.5 is that IGTREE does not prune its produced
trie, so that it performs a lossless compression of
the labeling information of the original example
database. As long as the database does not con-
tain fully ambiguous examples (with the same fea-
tures, but different class labels), the trie produced
by IGTREE is able to reproduce the classifications
of all examples in the original example database
perfectly.

Due to the fact that IGTREE computes the IG
of all features once, it is functionally equivalent
to IB1-IG (Daelemans and Van den Bosch, 1992;
Daelemans et al., 1999), ak-nearest neighbor clas-
sifier for symbolic features, withk = 1 and us-
ing a particular feature weighting in the similar-
ity function in which the weight of each feature
is larger than the sum of all weights of features
with a lower weight (e.g. as in the exponential se-
quence1, 2, 4, 8, . . . where2 > 1, 4 > (1 + 2),
8 > (1 + 2 + 4), . . .). Both algorithms base their



Rank Chunk Position IG
1 middle final 11.44
2 left final 10.00
3 middle penultimate 8.69
4 right final 7.70
5 left penultimate 7.17
6 middle first 5.90
7 left first 5.83
8 right penultimate 5.50
9 right first 5.50

Table 1: The nine positional word features with
the highest IG in the chunk trigram prediction task.

classification on the example that matches on most
features, ordered by their IG, and guess a major-
ity class of the set of examples represented at the
level of mismatching. IGTREE, therefore, can be
seen as an approximation ofIB1-IG with k = 1,
having favorable asymptotic complexities as com-
pared toIB1-IG. IGTREE’s computational bottle-
neck is the trie construction process, which has an
asymptotic complexity ofO(n lg(v) f) of CPU,
where n is the number of training examples,v
is the average branching factor of IGTREE (how
many branches fan out of a node, on average), and
f is the number of features. Storing the trie, on
the other hand, costsO(n) in memory (for which
we will provide empirical back-up evidence later),
which is less than theO(n f) of IB1-IG. Classi-
fication in IGTREE takes an efficientO(f lg(v))
of CPU, versus the cumbersomeO(n f) of IB1-
IG, given that in the typical casen is much higher
thanf or v (Van den Bosch, 1997).

There is a considerable experimental freedom in
choosing the actual feature encoding of the chunk
trigrams. A natural first choice would be to have
three features, namely the three chunks making up
the trigram, but these features have many values
that will occur only rarely, and thus will carry not
too much discriminatory power. We therefore also
considered individual positions as features, such
as the final word of the middle chunk, the first
word of the right chunk, the last word of the left
chunk, etc.

After computing the IG of all possible posi-
tional features, we limited the number of features
to the nine features with the highest IG values,
listed in Table 1. The limit of nine was imposed on
the basis of exploratory experiments on the devel-
opment data, which showed no improvements be-

yond this selection of features. As the table shows,
the most discriminative positional features are the
final (rightmost) words of the middle chunk and
the left chunk.

4.2 Global search

Translating one Dutch sentence involves the clas-
sification of all of its chunks in trigram context,
to English chunk trigrams. To convert the set of
overlapping trigrams into a single translation, the
overlap between the predicted trigrams is used in
such a way that the order of aligned chunks can in
principle be altered in the English sentence. Fig-
ure 4 illustrates a perfect case of a resolution of the
overlap. The first predicted chunk trigram signals
by its empty left chunk that the middle chunk (la-
beled ‘A’) is indeed the first chunk of the English
sentence. Also, the first chunk overlaps in two
chunks with the fourth predicted chunk trigram.
From this, the method concludes that the middle
chunk of the fourth predicted (labeled ‘B’) is the
second chunk to be concatenated; subsequently,
the middle chunks of the third and the second pre-
diction are concatenated.

A B

C D _

B C D

BA

_

C

1

2

3

4

Figure 4: Producing a global solution by resolv-
ing the overlap between four trigrams. The left
number indicates the resulting order in which the
middle chunks are concatenated.

In the ideal case, the overlap between two chunk
trigrams is a double exact match of the two over-
lapping chunks. In our current system, overlap is
established if it involves an exact match of either
of the two. If no exact match is found, the sys-
tem backs off to simply retaining the order of the
predicted chunks, and taking the middle chunk of
each predicted chunk trigram.

4.3 Word-level memory-based decoding

As a natural comparison to the marker-based
chunking approach, we also implemented a word-
level memory-based decoder which operates on



words rather than chunks (the word alignments
can be obtained using the GIZA ++ software2, Och
and Ney (2003).) Word trigrams are predicted by
IGTREE, and overlap among predicted word tri-
grams determines the final ordering of the words
in the generated English translation. We adopted
a sliding window of three left neighboring words
and three right neighboring words, on the basis of
exploratory experiments on the development data,
which showed no improvements beyond this con-
text width.

5 Data preparation

The experiments were carried out using the En-
glish and Dutch sections of the Europarl datasets
(Koehn, 2005). This corpus is extracted from
the Proceedings of the European Parliament, from
1996 to 2003. Europarl contains approximately 28
million words for each language, and is aligned at
the sentence level. In these experiments, we fo-
cused on the Dutch to English translation task.

From this corpus of 1,012,671 aligned sen-
tences, we randomly extracted 1,500 aligned sen-
tences for development and 1,500 for testing, the
rest (1,009,671 aligned sentences) being used for
training. In order to get a more confident set
of aligned sentences for training, we performed
some filtering based on the lengths and the relative
lengths of the sentences, ending up with a training
set of 728,339 aligned sentences. Note that the
system was trained using only these datasets; we
did not include any kind of external data.

As a pre-processing step, the English sen-
tences were tokenized using the Maximum-
Entropy based tokenizer of the OpenNLP toolkit3.
This tokenizer was also used for Dutch, as we
found that it was properly dealing with almost all
punctuation marks. We additionally used a set of
regular expressions specific to Dutch, for exam-
ple to deal with the construction of plural forms of
nouns ending with vowels (’s), or compound ex-
pressions with the infix-en-. Finally, case infor-
mation was removed.

As there are about four chunks in the average
Dutch sentence, the memory-based classifier is
confronted with a training set of 2,894,153 exam-
ples. In this training set 2,768,551 different En-
glish chunk trigrams occur as classes, indicating,
not surprisingly, that there are only very few chunk

2http://www.fjoch.com/GIZA++.html
3http://opennlp.sourceforge.net/

trigrams occurring more than once.

6 Results

The system output is evaluated with respect to
the BLEU (Papineni et al., 2002), Word-Error-
Rate (WER), and Precision-independent-Error-
Rate (PER) evaluation metrics. Since we extracted
the testing data from the aligned corpus, these met-
rics are computed using only one reference. We
did not take case information into account during
the evaluation process.

6.1 Baselines

We compared our approach to two other systems:
a word-based and a phrase-based SMT system.
Both systems make use of word alignments ex-
tracted from the training data, using the GIZA ++
software (Och and Ney, 2003). This software im-
plements the IBM alignment models (Brown et al.,
1993) as well as the HMM alignment model (Vo-
gel et al., 1996); the parameters of the models are
estimated using the EM algorithm. Word align-
ment is performed in both directions and we fol-
lowed the “refined” method of (Koehn et al., 2003)
to extract a set of high-quality word alignments
from the original uni-directional alignment sets.
For the phrase-based system, we apply the tech-
nique described in (Koehn et al., 2003) to build
a database of aligned phrases consistent with the
word alignments. In both cases, decoding is per-
formed using the phrase-based decoder PHARAOH

(Koehn, 2004), with standard parameters. Dur-
ing decoding, a (target) language model is also
needed: we use a simple3-gram language model
trained on the English portion of the training data,
using the SRI Language Modeling Toolkit4 (Stol-
cke, 2002), with modified Kneser-Ney smooth-
ing (Chen and Goodman, 1996). We developed
a phrase-based SMT system that can back-off to
the word unigram level (as is the standard), but
for comparison purposes with our chunk-level de-
coder which does not back off to the unigram level,
we have also developed a phrase-based SMT sys-
tem that only makes use of phrases. The results
obtained on the Dutch to English translation task
using these systems are reported in Table 2.

As expected, the phrase-based SMT system that
can back off to the word level outperforms the
word-based system, according to all of the metrics.

4http://www.speech.sri.com/projects/
srilm/



BLEU WER PER
Word-based SMT 0.2041 75.38 52.07
PB SMT with words 0.2572 68.48 48.08
PB SMT without words 0.2171 71.60 52.81

Table 2: Baseline scores: BLEU, WER and
PER for the word-level SMT and two variants of
phrase-based SMT, with and without words.

However, when the phrase-based system is limited
to using phrases only, its performance is roughly
comparable to the word-based SMT system, illus-
trating that it is the combination that yields the
boosted performance. In general, these results
show the non-triviality of the task, since even the
better of the two phrase-based systems has a WER
of 68.48.

Chunk-level decoder The performance of the
memory-based trigram-chunk decoder, listed un-
der “Trigram chunk MB” in Table 3, is consid-
erably lower than the phrase-based SMT base-
line system (without the back-off option to the
word level). We performed two additional ex-
periments in which we simplified the memory-
based trigram-chunk decoder. First, we trained
a memory-based classifier to generate bigrams of
chunks, consisting of the focus chunk along with
its right-hand neighboring chunk. Second, we
trained a memory-based classifier to map a tri-
gram of Dutch chunks to only the middle English
chunks. In the latter case chunks cannot be re-
ordered anymore, but the decoder could still pro-
duce valid chunk translations.

BLEU WER PER
Phrase-based SMT 0.2171 71.60 52.81
Trigram chunk MB 0.0729 85.96 73.02
Bigram chunk MB 0.0921 81.40 67.45
Unigram chunk MB 0.1103 77.15 64.98

Table 3: Performance of variants of the chunk-
level memory-based decoder, compared against
the phrase-based SMT baseline (without words).

As Table 3 shows, the trigram and bigram chunk
decoders are in fact outperformed by the unigram
decoder, which in turn is still outperformed by
the phrase-based SMT system. It appears that
the massive amount of classes (about 2.7 million
classes in the trigram case) is making the class
space so sparse that the memory-based decoders
are severely affected by it.

Word-level decoder The word-level memory-
based decoders were trained and tested on the
same material, yielding the scores listed in Table 4.
As the table shows, the trigram word decoder lags
behind in BLEU score and PER, but does have a
lower WER as compared to the word-based SMT
baseline system, interestingly. The trigram word
decoder performs better than the unigram word-
level memory-based decoder in terms of BLEU
score and WER, but not in PER.

BLEU WER PER
Word-based SMT 0.2041 75.38 52.07
Trigram word MB 0.1785 71.29 56.08
Unigram word MB 0.1351 72.81 54.78

Table 4: Performance of variants of the word-
level memory-based decoder, compared against
the word-based SMT baseline.

Overall comparison It would seem logical to
explain the relatively lower performance of the
chunk-level decoders on the basis of their very
sparse class space; in 2.8 million instances, about
2.7 million chunk trigrams occur, and 1.3 million
single chunks. The majority of these classes occur
only once, and it is obvious that in new material
many of the chunks that should be predicted do
not occur in the training data at all – hence, the
memory-based decoder can never predict them.
This may partly explain their low performance,
but in the word-level trigram data, no less than
3.6 unique word trigrams occur. Still, these are
3.6 million classes in 12 million instances, the ac-
tual number of words in our training corpus. Thus,
the choice to encode examples chunk by chunk
(yielding 2.8 instances) rather than word by word
(yielding 12 million instances) appears to be an
important reason for the lower performance of the
chunk-level decoders.

Sparseness is always relative to the amount of
training material, and this amount is essentially
an experimental variable. We explored the scal-
ing properties of our four memory-based decoders
systems by training them on increasing amounts of
learning data up to the maximal available amount.
Figure 5 displays the four learning curves against
a logarithmic x axis. All four curves display an
upward trend; with more data, all four systems
would perform better still. Yet, the word unigram
curve is the one that flattens most; this simple
decoder offers the best score until about 500,000
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Figure 5: Increasing BLEU scores by the memory-
based chunk-level and word-level decoders, with
increasing amounts of learning examples. The x-
axis has a logarithmic scale.

training instances, but after this point it is over-
taken by the word trigram system that continues
with a steeper curve. With its average log-linear
increase of about 2.5% per ten-fold increase of the
amount of learning material, about ten times more
data would be needed to let the trigram word-
level decoder equal the current score of the word-
based SMT system. While the chunk-based sys-
tems show rather convincing log-linear growth in
their learning curves, they would need another one
or two orders of magnitude more training data to
reach the same level of performance.

6.2 Training and decoding speed

Due to its favorable scaling abilities, IGTREEonly
tends to grow linearly in memory usage with the
amount of training examples. In our experiments5

we observed the following:

• The amount of nodes in the trie is almost
the same as the amount of training examples;
with the 2.8 million examples in the trigram
chunk-level system, the trie contains 2.9 mil-
lion nodes;

• The time it takes to build the trie is roughly
but consistantly linear in the amount of train-
ing examples – it takes 311 seconds to build
the above-mentioned 2.9 million-node trie,
and it takes about 1 second per 11 thousand
training examples;

5Experiments with the memory-based classifier were run
on AMD Opteron 3.4 Ghz CPUs; experiments with SMT
models were run on an Intel Xeon 3.2 Ghz CPU.

• With the current amounts of training ma-
terial, classification time is roughly linear
in the amount of training examples – the
maximally-sized trie classifies all 8,948 test
examples within 3 seconds, and for every
million of training examples added, testing
becomes about 1 second slower.

Since SMT systems rely on complex parameter
estimations, expensive computations are required.
We measured the processing times needed by the
word-based and phrase-based SMT systems, for
both training and decoding. They are reported
on Table 5. The results in the table indicate that
memory-based decoding with IGTREE is two or-
ders of magnitude faster than decoding in phrase-
based SMT. Clearly, the memory-based classifiers
represent a different trade-off in the quality–speed
continuum.

Training Decoding
Phrase-based SMT ± 23 h ± 30 m
Unigram chunk MB align + ± 4 m ± 1 s
Trigram chunk MB align + ± 4 m ± 3 s
Unigram word MB align + ± 21 m ± 2 s
Trigram word MB align + ± 29 m ± 7 s

Table 5: Training and decoding times for three
systems. The memory-based systems make use of
alignments (“align”) generated separately.

7 Discussion

We developed a straightforward approach to de-
coding in machine translation, based on memory-
based classification. The approach fits into the
EBMT framework; it allows the mapping of se-
quences of chunks (here, marker-based chunks)
in the source language to sequences of translated
chunks in the output language. Also, the method
allows the development of straightforward word-
level translation.

We found that at present the method is not
competitive when compared to default word-based
and phrase-based SMT systems in terms of BLEU
scores. Yet, the best memory-based decoder, the
trigram word-level system, attains a performance
that approaches the performance of the word-
based SMT system (it yields worse BLEU and
PER scores, but performs better in terms of WER).
The assumed positive effect of predicting overlap-
ping trigrams of chunks was not observed. We



reasoned that the task of predicting these trigrams
is harmed by the extreme sparseness of the class
space; only two or more orders of magnitude of
additional learning material could get these meth-
ods on a par with the SMT baseline.

On the other hand, we showed that the memory-
based classifier, IGTREE, a k-nearest neighbor
approximation, scales well to increased amounts
of learning material. Even better than theoreti-
cally predicted, within the current experiment we
observed that training and classification time and
also memory storage costs were linear in the num-
ber of training examples. Extrapolating these re-
sults (with the expectation that training times and
classification speeds will in fact grow slightly su-
perlinearly), we conclude for now that memory-
based decoders are interesting in cases where there
is a need for speedy training and/or classification,
e.g. in on-line translation engines.

In future work we plan to combine the word-
level and chunk-level memory-based decoders,
e.g. to back off to word-level predictions when
chunk-level predictions are made below a certain
confidence level, to offer a better comparison with
standard phrase-based SMT systems. More gener-
ally, we have not explored at all the use of con-
fidence in the predictions of IGTREE. Despite
the fact that IGTREE does not produce probability
distributions, it would be relevant to use the infor-
mation as to whether a prediction was made at a
leaf or a non-ending node, and at what level of the
tree. We also plan to test various other chunking
and chunk alignment method, to investigate the in-
fluence of this important preprocessing step. We
aim to look at English-to-Dutch translation, and
other language pairs. Finally, we aim to generalize
the trigram method towards the constraint satisfac-
tion inference framework introduced in (Canisius
et al., 2006), which offers a generic and powerful
search algorithm for exploiting the overlap in pre-
dictedn-grams.
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