
Conflict Resolution of Chinese Chess Endgame

Knowledge Base

Bo-Nian Chen1,?, Pangfang Liu2, Shun-Chin Hsu3, and Tsan-sheng Hsu4,?,??

1 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan. r92025@csie.ntu.edu.tw

2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan. pangfeng@csie.ntu.edu.tw

3 Department of Information Management, Chang Jung Christian University,
Tainan, Taiwan. schsu@mail.cjcu.edu.tw

4 Institute of Information Science, Academia Sinica, Taipei, Taiwan.
tshsu@iis.sinica.edu.tw

Abstract. Endgame heuristics are often incorperated as part of the
evaluation function used in Chinese chess programs. In our program,
Contemplation, we have proposed an automatic strategy to construct a
large set of endgame heuristics. In this paper, we propose a conflict reso-
lution strategy to eliminate the conflicts among the constructed heuristic
database, which is called endgame knowledge base. In our experiment, the
correctness of the obtained constructed endgame knowledge base is high
enough for practical usage.

Keywords: Computer Chinese chess, Endgame Knowledge Base, Conflict Reduc-
tion

1 Introduction

A game of Chinese chess, like chess, can be divided into three phases: 1) opening
game, 2) middle game, and 3) endgame. Opening game is the first phase of a
game that almost all pieces are on the board. After about 20 plies, both two
players have moved their pieces to their important places and the game becomes
middle game. After exchanging some pieces, the game goes into endgame phase.

The most popular technique used to solve the opening game problem is con-
structing opening databases that stores all possible choices in previous games
[1]. In the middle game, people often use a nega-scout algorithm with a good
evaluation function and a nice move ordering scheme to obtain a good solution
[2]. There are also strategies in artificial intelligence that automatically generate
middle game evaluation functions [3]. In the endgame phase, the performance of

? Supported in part by National Science Council (Taiwan) Grants 97-2221-E-001-011-
MY3.

?? Corresponding author.



today’s Chinese chess program is still not satisfiable compared to human experts.
People often solve relatively small endgames by using retrograde algorithms [4].

Endgame databases constructed by retrograde analysis algorithms are perfect
in the sense that the game-theoretical values of all positions matched in the
database are available. However, there are two drawbacks in endgame databases:
1) it needs too many memory, and 2) practical endgames contain too many pieces
for current retrograde algorithms to handle. Hence, the search algorithm still
needs heuristic information about endgames. The problem then relies in how
to generate effective heuristics in endgame. Although heuristics are not perfect,
they can be applied to practical endgames and are useful in tournaments.

Our intuition is as follows. Each endgame is assigned with a heuristic, namely
a level of advantage, disadvantage according to the material combination of the
two sides. This assigned value reflects the heuristic a Chinese chess master usu-
ally understand whether the endgame is advantageous or not without considering
positions of the pieces. The heuristics of two endgames may be obtained using
different methods, such as from text books or human annotation. These heuris-
tics, though have a high level of accuracy, may still contain errors. We observe
that if the material combinations of two endgames differ by a small number of
pieces, then the heuristic values of the two endgames are not independent. For
example, knowing an endgame usually is advantage to the Red side, then after
the endgame heuristic value of adding a RED piece cannot be worse than the
original one. Assume an endgame A is related to many other endgames and fur-
ther assume a large portion of the heuristics obtained so far is corrected, then
A must be consistent with most of the related endgames. If this is not the case,
then there is a high chance that the heuristic value of A is incorrect. Using this
high level idea, we build an expert system to self-correct a large set of annotated
heuristics.

In our previous work, we have designed a method to automatically generate a
large number of heuristics of material combinations [5]. However, there are some
conflicts in our endgame knowledge base. A small number of conflicts are enough
to harm search algorithms. Hence, we propose an important conflict reduction
algorithm that increases the consistency in endgame knowledge base.

In our paper, we will discuss about the following important issue relative
to endgame problems: piece exchange when transform from middle game to
endgame. In Chinese chess, using solely material values computed from summing
all piece values to choose good exchanges may be incorrect in some cases. Our
solution is to use a lot of heuristics of material combinations, called endgame
knowledge base, to guide our program when piece exchange is needed.

2 Theoretical Foundations

In this section, we describe theoretical concepts about lattice used by our method
and discuss the problem in our automatic generated endgame knowledge base.



2.1 Using Lattice to Represent the Material Structure

There are seven types of pieces in Chinese chess: king (K), guard (G), minister
(M), rook (R), knight (N), cannon (C), and pawn (P). A material combination is
defined as the set of pieces in a position, e.g., KCMKRP is a material combination
that the red player has the king, a cannon and a minister; the black player
has the king, a rook and a pawn. A material combination is attached with a
score that describes its advantage without position information. Each material
combination has exactly an mirrored material combination such that the red
pieces and the black pieces are swapped. The material structure consists of a set
of material combinations. In our discussion, the material structure represents all
of the material combinations in our endgame knowledge base. Invariable nodes

are those modified or verified by our human expert and cannot be changed by
our conflict reduction algorithm.

The material combination structure can be viewed as a lattice. A lattice is a
partially ordered set(poset) that all non-empty subsets have a join and a meet
in mathematical order theory. A join is the least upper bound of an element or a
subset; a meet is the greatest lower bound of an element or a subset. All material
combinations in Chinese chess follow the piece additive rule that for a material
combination, adding pieces to a player cannot make him be disadvantageous if
we only consider material combination, not specific positions. The piece additive
rule also claims that removing a piece from a material combination cannot be
better than the original material combination. By applying piece additive rule,
the material structure can be transformed into a lattice which is a directed graph.
The node in the lattice represents a material combination. The edge connects
two material combinations that differ only one piece. We define x → y as two
adjacent nodes and the directed edge represents that the red player is at least as
advantageous in x as in y. In lattice, x → y means that x and y are comparable
and the meet of x is y.

2.2 Construction Strategy of Material Structure

In the lattice, the least element is KK. We always expand the material structure
by adding either a red piece or a black piece. The number of possible piece types
on one side is 35 × 6 = 1, 458. Totally, there are 1, 4582 = 2, 125, 764 possible
material combinations in Chinese chess. An example of material structure is
shown in Fig. 1. A lattice can be divided into several levels. Each level contains
material combinations of the same piece number. In Chinese chess, there are at
most 32 pieces and at least 2 pieces, two kings, on a position. Hence, there are
totally 31 possible levels in our lattice.

It is not always correct to give a score to the material combinations on each
side. For example, KPPKGG and KPPKMM are generally red-win endgames
when pawns are not yet move to the palace of the opposite side in the starting
position of these endgame, but KPPKGM is generally a draw endgame. Thus, we
may conclude that KGM is better than KGG and KMM for defense. However,
KHPKGM and KHPKGG are generally red-win endgames but KHPKMM is a



draw endgame when the pawn stands in the last line of the palace of the opposite
side. The conclusion that KMM is better than KGG and KGM is inconsistent
with the last case.

The score value of a node is in the range of [0 − 9]. The values 0 (win), 1
(most win), 2 (advantage), 3 (slight advantage) represents the score that the red
side is in advantage, 4 represents that any one player has a chance to win, 5
means almost draw, 6 is oppsite to 3, 7 is opposite to 2, 8 is opposite to 1, and
9 is opposite to 0.

Fig. 1. An example of lattice structure for endgame.

In our automatically endgame knowledge base construction, we first created
a basic endgame knowledge base manually. A probablistic method is used to
evaluate the score value of generated material combinations. By using a system-
atic generating algorithm, we have constructed a large endgame knowledge base.
The endgame knowledge base is used by middle game search algorithm to find
paths to enter advantageous endgames by exchanging pieces.

Inconsistency is defined as the case that score values of adjacent nodes violate
the piece additive rule. The two nodes are called inconsistent node, the corre-
sponding edge is called inconsistent edge and the corresponding connected node
is called the Inconsistent neighbor. Inconsistent percentage of a node indicates
the number of inconsistent neighbors divided by the number of its neighbors.

Although most of the score values in our endgame knowledge base are accu-
rate, only a little conflict is sufficient to let the search algorithm to select wrong
moves. To resolve the problem, we propose a conflict reduction algorithm that
reduces the number of inconsistent nodes. When our algorithm cannot progress
further, we ask the help of a Chinese chess expert to do a small amount of mod-
ification. Then we rerun our self-correcting algorithm. After some iterations of
modification, we can obtain a zero-conflict endgame knowledge base. To further



increase correctness, we ask our Chinese chess expert to verify a randomly se-
lected sample to evaluate the percentage of errors and do further modifications.

3 Basic Conflict Reduction Algorithms

In our automatically-generated endgame knowledge base [5], there are some in-
consistent material combinations that causes the search algorithm to exchange
piece incorrectly. For example, consider there are two adjacent material combi-
nations, as shown in Fig. 2. To illustrate the concept of conflicts, we can find that
the central node, KCCKHCPGG, has a score value 3, and the leftmost node, KC-
CKHPGG, has a score value 6. There is a conflict because the black side is more
advantageous when a black cannon is taken. The first material combination has
four inconsistent edges, inconsistent percentage is 80% and the second material
combination has only one inconsistent edge, inconsistent percentage is 9.09%. In
this example, the first material combination is more likely to be incorrect and
should be modified first.

Fig. 2. Examples of two adjacent inconsistent nodes. The number in each node
is its score value. The edge with a cross means an inconsistent edge.

We need a standard endgame knowledge base that is considered as “correct”
for the conflict reduction algorithm. The algorithm discovers and modifies the
nodes in automatically-generated endgame knowledge base that are inconsistent
with some nodes in the standard endgame knowledge base.

3.1 Conflict Computation

If there is a conflict in a lattice, there must be some nodes having inconsistent
neighbors. Conflict computation procedure computes the number of inconsistent
neighbors of each nodes. When finishing the computation, information that we



actually want to know is the inconsitent number and information of the inconsis-
tency level. The level of inconsistency is relative to the inconsistent percentage
of the node. We define 10 levels of inconsistency, from level 0, level 1, ... , to level
9. Level 0 represents the inconsistent percentage in (0%−10%], level 1 represents
(10% − 20%], etc. Information of the number of nodes is in each inconsistency
level. It simplifies the process of reducing conflicts.

Our idea is a greedy method that always modifies a node of the highest
inconsistency level. We use inconsistent edge checking to find conflicts between
nodes. Inconsistent edge checking algorithm has two targets: 1) two neighbor
nodes, and 2) two mirrored material combinations. We implement the piece
additive rule which is defined in Section 2.1 for the first target. The second target,
a mirrored material combination pair in our lattice is virtually considered as the
same material combination. Inconsistent edge checking algorithm can ensure the
consistency of mirrored material combinations.

The algorithm of computing conflicts simply uses inconsistent edge checking
to summary the inconsistency neighbors for each node. Computing conflicts of
the whole lattice can be done in O(MN) time, where M is the maximum number
of the neighbors of a node, and N is the number of nodes.

3.2 Conflict Reduction Algorithm

The conflict reduction algorithm, shown in Algorithm 3.2 finds inconsistent nodes
in our lattice and modifies the score values of some nodes to reduce the number
of inconsistent nodes. It takes four steps to finish the work: 1) conflict compu-
tation, 2) candidate selection, 3) score value selection, and 4) modification. Our
algorithm repeats the four steps until no more candidate can be selected. The
first step, conflict computation, is described in Section 3.1. The next three steps
are described as follows.

procedure ConflictReduction()
do loop

err_num = ConflictComputation();
ResetUpdated(); // set the updated flag as not updated
if(err_num = 0 or no any modification)

break;
do loop

node = CandidateSelection();
if(no valid node)

break;
score = ScoreValueSelection(node);
Modify(node, score); // change the score value of a node

end loop
end loop

end procedure

Algorithm 3.2. Conflict reduction algorithm.

The first step, candidate selection, chooses the node with the highest con-
flict rank to be modified. Score value selection then tries all possible values and



computes the inconsistent percentage after modification. The value with the
minimum inconsistent percentage is selected. If two scores of a node have the
same minimum inconsistent percentage, we ask the help of our human expert.
The detail discussion is in Section 4.3. During modification, we need to simulta-
neously update the mirrored material combinations when modifying a node to
ensure their consistency.

In our algorithm, updated flag is used to avoid repeat selection of the same
candidate in one iteration. Invariable flag identifies whether a node is modified
by our 4-Dan expert and should be skipped by candidate selection procedure.

4 Refinements

In this section, we introduce the diffusing algorithm and other enhancing tech-
niques. We also discuss the verification issue of a consistent lattice.

4.1 Diffusing Algorithm

Diffusing algorithm, as shown in Algorithm 4.1, is a recursive procedure that
searches the neighbor nodes for the nodes with only one consistent possible value,
which is the value not inconsistent with any invariable nodes. These nodes are
trivial and should be modified first.

procedure Diffusing(n)
// variable n represents the node to be diffused
// variable nn represents a neighbor node of variable n
if(n is updated before)

return;
for each nn of n do

// compute possible values of nn that do not violate n
// variable count records the number of possible values
// variable score records which scores are possible values
(count, score) = ComputeRelativePossibleValue(nn, n);
// update if only one possible value
if(count = 1)

Modify(nn, score);
Diffusing(nn);

end if
end for

end procedure

Algorithm 4.1. Diffusing algorithm.

By performing diffusing algorithm, all nodes with only one possible value are
modified first and our algorithm reduces more conflicts.



4.2 Ranking and Scoring Strategies

We rank nodes in the lattice to indicate its degree of errors, called conflict rank.
Our algorithm picks one with the highest rank to update its value. In the basic
conflict reduction algorithm, we use inconsistent percentage as its conflict rank.
Here we define a better conflict rank:

V = Ni × Nn

In the above formula, V represents conflict rank, Ni represents the number of
inconsistent neighbors, and Nn represents the number of neighbors. Instead of
dividing Nn, the new conflict rank multiplying Nn to emphasize the importance
of the number of neighbors.

In the step of score value selection, we use corrected score to measure the
whole level of inconsistency. Our conflict reduction algorithm always selects the
score value that minimizes the corrected score. In basic method, we use the
number of inconsistent nodes as the corrected score. Here we have developed a
new corrected score that favors small inconsistency levels as follows:

Vc =

9∑

i=0

2i
× Ii

In the formula, the value Vc means corrected score, Ii represents the information
of inconsistency level i (see Section 3.1).

By using the new corrected scores, nodes with large inconsistent percentages
are usually reduced to smaller percentages. The new corrected score improves
the ability of identify better score values and thus decreases the probability of
fall into local minimum.

4.3 Final Verification

Now consider that we have obtained a consistent endgame knowledge base. Un-
fortunately, there may be two types of errors in the lattice: 1) an isolated subset
of the lattice are all incorrect; and 2) there are errors in some nodes that do not
influence the consistency.

Checking by random sampling verification is a way to obtain the approx-
imation of the correctness of the lattice. We selects a small number of nodes
with a percentage p in the lattice randomly such that the distance of any two
selected nodes is at least k. The selected material combinations are verified by
the human expert. If n error nodes is reported, the approximated value of whole
error nodes is n/p. The modified data can also be used to reduce the errors of
the whole knowledge base.

5 Experimental Results

In this section, we use the practical endgame knowledge base in Contemplation
as our test data. Then we show the reduction ability of the conflict reduction



algorithms, the correctness analysis by random sampling verification, and the
comparison of the consistent endgame knowledge base with its original version.

5.1 Experiment Design

Our test data is the endgame knowledge base used by our program, Contempla-
tion. There are three manually constructed endgame knowledge bases: END65,
END60, and END50. The number of nodes in END65, END60, and END50 are
17,038, 422, and 1,499, respectively. The data to be tested is our automatic gen-
erated endgame knowledge base: END64, END59, END49 using methods in [5].
A extended endgame knowledge base is named as the number of the original
knowledge base decreased by 1, i.e., END64, which is generated by extending
END65, contains the neighbors of the nodes in END65. The number of nodes in
extended knowledge bases END64, END59, and END49 are 47,621, 2,722, and
3,938, respectively. Our practical endgame knowledge base, ENDALL, combines
six endgame knowledge bases, containing 69,595 nodes.

5.2 Results and Discussions

In the first experiment, we try our methods on endgame knowledge bases END64,
END59, END49, and ENDALL. There are two methods to be compared: 1) ba-
sic conflict reduction algorithm, called BA, and 2) the algorithm with all refine-
ments, called RA. The results are shown in Table 1. The number of iterations
means the iterations needed for convergence. An iteration indicates handling all
inconsistent nodes once in the lattice. To test the convergency, we need an extra
iteration to ensure that no modifications is done in an iteration.

Table 1. Comparison of the reduction ability of the basic algorithm and the
refined algorithm. The error after BA and the error after RA columns show
the number of inconsistent nodes after performing the basic algorithm and the
refined algorithm, respectively.

DB size org error error after BA iterations error after RA iterations

END64 47621 14616 9786 6 970 3
END59 2722 1786 1330 3 166 2
END49 3938 1362 438 6 45 3

ENDALL 69595 16488 11108 6 585 4

By using all refinement techniques, we obtain the knowledge bases with much
less conflicts in less number of iterations. This reduces the work of the human
expert to verify and modify the endgame knowledge base.



In the second experiment, we show the correctness of our endgame knowledge
base after we performed random sampling verification. We have done three ran-
dom sampling experiments. In each experiment, we use an algorithm described in
Section 4.3 to generate different 695 nodes with parameters k = 4, p = 1%. After
the sampled nodes have been verified and modified, we performed our conflict
reduction algorithm with all refinement techniques on the ENDALL knowledge
base. We define the error distance as the difference between the score value of
the consistent endgame knowledge base and the score value verified by our hu-
man expert. Because the score values 4 and 5 represent very similar class of
advantage, the error distance between them is set to zero. In addition, the error
distance between any score value and 4 is consider equal to the error distance
between that score value and 5. We recorded the error distances of the modified
data and checked whether it is inverted. An inverted result is a result that is
wrong in the side who has advantage. For example, a node that the red side is
in advantage and is marked as black win is an inverted result. The result of this
experiment is shown in Table 2.

Table 2. The statistical analysis of the correctness in the zero-conflict endgame
knowledge base ENDALL. IR means inverted results. D represents error distance.

ErrNum D ≥ 4 D = 3 D = 2 D = 1 D = 0 IR

Sample1 92 0 2 15 75 0 1
Sample2 127 0 2 9 116 0 1
Sample3 99 0 2 16 80 1 0

Average 106.0 0.0 2.0 13.33 90.33 0.33 0.66
n/P 10600 0 200 1333 9033 33 66
% 15.23 0 0.28 1.91 12.97 0.00 0.00

Confidence 1533 0 200 1333 0 0 66
% 2.20 0 0.28 1.91 0.00 0.00 0.00

The probability of having error distance more than one is 2.20%. Note that
a node with a score value 4 or 5 cannot be inverted. Hence, inverted results
only happen when score values are less than 4 or more than 5. In other words,
inverted results happen when the distance is more than or equal to one. They
are also counted in the column of the distance is more than or equal to one. Al-
though the absolute correctness is 85.77%, which is acceptable, the correctness
with confidence is 97.70% ignoring one level difference. Evaluation of a material
combination as “win” or “win in most cases” is a subjective choice. Even hu-
man master or grandmaster may have subjective judgement in many practical
positions. Hence, we assume a difference of 1 level is tolerable.

In Table 3, we show the statistical comparison of the consistent endgame
knowledge bases after verification and their original versions. Since different



original endgame knowledge bases may contain identical material combinations,
we have filtered them when merging endgame knowledge bases. The score val-
ues of identical material combinations is set as the material combinations that
first appear in the merging process. Hence, some material combinations may be
counted more than once. They may even contain different original score values.
For example, in END65, there are two errors with zero error distance, which
are KHHMKHHG and KHHGKHHM. There are also two errors with zero error
distance in END59, which are KCCGKCC and KCCKCCG. During merging op-
eration, they are set as correct score values by chance, and the number of errors
with zero error distance in ENDALL becomes two.

Totally, we have modified 24,486 material combinations in the final consistent
endgame knowledge base. In the original endgame knowledge base, there are
1,652 errors of distance more than or equal to four, 2,392 errors at distance
three, 2,286 errors at distance two, 18,154 errors at distance one, two errors
between score value 4 and 5, and 1,064 inverted results.

About 9.10% of the original ENDALL knowledge base contain errors of D ≥

2; about 26.09% of them contain errors of D = 1; there are no errors of D = 0;
about 1.53% of them contain inverted results.

Table 3. The statistical comparison of the original endgame knowledge bases
and the final version of consistent endgame knowledge bases. IR means inverted
results. D represents error distance.

DB size ErrNum D ≥ 4 D = 3 D = 2 D = 1 D = 0 IR
END65 17038 1100 6 24 174 894 2 80
END60 422 48 2 6 8 32 0 8
END50 1499 222 4 16 34 168 0 10
END64 47621 20908 1056 2042 1952 15858 0 708
END59 2722 1734 594 390 142 606 2 290
END49 3938 1982 60 32 50 1840 0 50

ENDALL 69595 24486 1652 2392 2286 18154 2 1064

6 Conclusions and Future Work

A complete mastering Chinese chess endgame problem is a hard problem even
today. We construct endgame knowledge base for search algorithm to identify
which kinds of endgames are beneficial. In this paper, we propose a conflict reduc-
tion algorithm to resolve the conflicts in our automatically-generated endgame
knowledge base. The strategy is effective when handling large knowledge base
with a relatively small percentage of conflicts. The resulting endgame knowledge
base we have obtained is checked by random sampling verification and received



high accuracy. We use this modified knowledge base in our program, Contem-
plation, and find it to steadily improve it strength against its previous version.
Its correctness is high enough for practical usage.

In the future, we will enhance our conflict reduction algorithm to be more
sensible of advantage. For example, KCCKCPGG and KCCKCGG differs only
by one pawn and they have score values 5 and 8, respectively. KCCKCRGG and
KCCKCGG differ by a rook and they also have score values 5 and 8. The degrees
of conflict-free expectation of the two above cases are different. In practical
usage, if the two cases are both inconsistent, in the latter case has a more severe
degree of conflict than the formal case. Another example is KRPKGGMM and
KRPKGGM who are assigned 0 and 9 respectivly in compared with the same
material combinations who are assigned 0 and 1, respectively. Although two cases
include a conflict, the first score values is more severe because the difference of
the score values is very obvious.

Combining the two representative examples, we can define a lattice with
weighted edges. The weight is defined as follows:

w = Dm(m1,m2) × Ds(Score(m1), Score(m2))

The variable w represents the weight which indicates the degree of conflicting.
Function Dm computes the difference between the two material combinations
m1, and m2; function Ds computes the difference between the two score values
of m1, and m2. The weight value follows the order: rook > cannon = knight >
pawn > guard = minister. The weight of guards and ministers should be ad-
justed dynamically: when the player has cannons, the weight values of guards
and ministers should be bigger than the ones without. Function score retrieves
the score value of a material combination. When a conflict occurs, the node with
a larger weight value needs to be taken care of first.

References

1. J. C. Chen, and S. C. Hsu. Construction of online query system of opening database
in computer Chinese chess. The 11th Conference on Artificial Intelligence and
Applications. (2001)

2. S. J. Yen, J. C. Chen, T. N. Yang and S. C. Hsu. Computer Chinese Chess, ICGA

Journal, Vol. 27, No.1, March 2004, pp. 3-18, ISSN 1389-6911. (2004)
3. B. N. Chen, P. F. Liu, S. C. Hsu, and T. S. Hsu. Abstracting knowledge from

annotated Chinese chess game records. Computers and Games 2006, LNCS 4630,
pp. 100-111. (2006)

4. P. S. Wu, P. Y. Liu, and T. S. Hsu. An external-memory retrograde analysis al-
gorithm. In H. Jaap van den Herik, Y. Bjornsson, and N. S. Netanyahu, editors,
Lecture Notes in Computer Science 3846: Proceedings of the 4th International Con-

ference on Computers and Games , pages 145-160. (2006)
5. B. N. Chen, P. F. Liu, S. C. Hsu, and T. S. Hsu. Knowledge Inferencing on Chinese

Chess Endgames. Computers and Games 2008, LNCS 5131, pp. 180-191. (2008)


