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1 Introduction

In general a grammar describes a (possibly infinite) set of sentences with a finite
structural description. Computational Grammar Induction (CGI) deals with the cre-
ation of computational models for identification of these infinite sets on the basis of
a finite set of examples. CGI is a field in its own right, with its own internal research
questions, many of which have no direct impact on the study of human language.
Yet it is clear that computational models created by the CGI community might be
of interest to the linguistic community because human language after all appears to
be an infinite set, the description of which is learned efficiently in a relative short
time. There are various domains in which learnability of a language might be inter-
esting for linguists: e.g., first language acquisition, second language acquisition, or
the automatic extraction of grammars from corpora.

In this article we will focus on first language acquisition with some suggestions for
extensions to other areas.1 with some suggestions for extensions to other areas. Up till
now there has been surprisingly little cross-fertilization between the field of linguistics
and that of Computational Grammar Induction. There are various reasons for this
situation, for example, there is a strong interest in the descriptive study of language
in linguistics on the one hand and a strong focus on abstract language models in the
CGI community on the other hand.

A factor that has certainly contributed this lack of cross-fertilization is the famous
conjecture of Chomsky that the efficiency of human language acquisition can only be
explained on the basis of an innate Universal Grammar (UG). The UG discussion,
which is in fact a revival of the ancient philosophical debate of rationalism (Descartes)

1There is some discussion about the complexity of human languages, but the general consensus
is that they are at least context-free and with high probability context-sensitive [Huybrechts, 1984;
Shieber, 1985]. In this article we will therefore mainly focus on learning context-free languages as a
sort of first approximation of human languages. There has been little research into the learnability
of context-sensitive languages. It is also unlikely that the full power of the context-sensitive class of
languages is necessary for the description of natural language. Context sensitive constructions seem
to exist but but in rather isolated cases and with theoretically infinite, but in practice rather shallow
forms of recursion.
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versus empiricism (Hume), has attracted a lot of attention with surprisingly little
tangible results.

At this stage of writing it has become clear that the study of human language
acquisition requires a huge interdisciplinary effort. Co-operation between linguists,
psychologists, audiologists, neuro-physiologists, cognitive scientists, and computer sci-
entists will be necessary to create better models of language acquisition. There will be
also a huge empirical effort involved. For example, the creation of elementary anno-
tated video sequences to study the language development of children is an investment
that easily amounts to several hundreds of person-years. In order to set up an exper-
iment that allows conclusions with any statistical significance one needs of a group of
20 children (a target group of 10, a control group of 10), 1 hour of video per child per
week, duration of three years, plus annotation: behavioral and dialogical interaction
between mother and child, phonetic and orthographic transcription, further linguistic
analysis. This is a total effort of ca. 150 person-years. Multiply this by the number
of languages and number of target groups (hearing impaired children, bi-lingual chil-
dren, etc.) one would like to analyze. Add the costs of measuring brain activity, using
ERP and fMRI scans. Then observe that some experts think that 1 hour of video per
week is insufficient to capture the sudden spurts of increase in linguistic capability
that children sometimes display in a couple of days. These examples illustrate that
the analysis of human language acquisition is a huge effort that requires international
and interdisciplinary co-operation.

It is clear that the understanding of language acquisition is not a matter that can
simply be decided in terms of rough philosophical schemes like tabula rasa versus
innate ideas. For the moment the only sensible thing to do is postpone the debate
until more empirical evidence is available. It is perfectly possible to start to chart a
river without knowing where its source lies. Instead of trying to come up with one
grand scheme, one should analyze local transformations. Current research focuses
on a good understanding of the various stages of language acquisition and tries to
understand the complexity of transformations between different stages. In the rest of
this article we will first give a birds eye view of Grammar Induction research, then
give a sketch of the problems that are encountered when analyzing children’s language
acquisition and finally discuss the application of CGI techniques to these problems.

2 A birds eye view of CGI

Grammar Induction can be seen as the identification of an infinite structure with
a finite structural description on the basis of a finite number of examples. As was
already observed by Hume [1909] in the 17th century, such a form of induction cannot
be made deductively valid. It is in general not possible to derive a universal rule on
the basis of a finite set of examples. The codification of this principle in terms of
Grammar Induction is found in the work of Gold [1967].

Gold presents a game theoretical definition of learnability called identification
in the limit. There are two parties: a Challenger and a Learner. At the start of
the process both parties agree on a class of languages. The Challenger selects a
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language from this class and presents an enumeration of structures to the Learner. If
the Challenger only presents sentences of the language then we speak about learning
from positive information, if the Learner also gets negative information we are learning
from complete information. The Learner produces an infinite number of guesses. If in
the limit the guesses of the Learner stabilize at the right guess then there is a winning
strategy for the learner and the language is learnable. It is not surprising that from
a linguistic point of view in this deductive paradigm of learnability, no interesting
classes of languages are learnable from positive information only.2

The crucial theorem is:

Theorem 1 (Gold) A class G of grammars is not learnable from positive informa-
tion if G contains all finite languages and at least one infinite language.

Such a class of languages has what is called infinite elasticity : there is an infinite
sequence of real inclusions of languages. At any point of the learning process the
Learner has an infinite number of options left. One can prove that finite elasticity
is a sufficient characteristic of classes of languages that are identifiable in the limit.
If one combines the fact that all reasonable formal models of the class of natural
languages have infinite elasticity with the general view that children do not get neg-
ative information from their parents, (however, see [Sokolov and Snow, 1994] for a
discussion.) then this seems to give a weak argument in favor of the existence of a
Universal Grammar. Without help of innate structures children would not be able to
cope with the complexity of the task of learning their language at all. However, as
we have argued above, it is too early to decide on the scientific merit of this view.

One could argue that identification in the limit is not really an inductive approach.
The Learner simply waits until there is enough information to deduce the nature of
the grammar from the data. Also, the mode of presentation of the examples by the
Challenger is completely free except for the constraint that any structure has to occur
at least once in the limit. In the case of human communication, the dialogue partners
are probably more co-operative. Under representative probability distributions, the
class of learnable languages is considerably larger. An important task in the context
of the application of formal results from the CGI community to natural languages
is to come up with a set of probability distributions that properly reflect the bias
of sentence production in various communicative systems: dialogues between mother
and child, rational dialogues between researchers, dialogues between teachers and
pupils.

A larger part of the empirical content of a theory of the learnability of natural
languages will consist of a better understanding of the universal bias that governs the
probability distributions of human communication. Such a theory of universal bias
could serve as a counterpart of the notion of a universal grammar.

2Gold’s results are represented in the following table:
Complete Information Positive Information

Recursively Enumerable Sets Not learnable Not learnable
Decidable Rewriting Systems Learnable Not learnable
Super Finite Set Learnable Not learnable
Finite Sets Learnable Learnable
Finite Class of Finite Sets Learnable Learnable
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An initial estimate of relevant probability distributions and alternative learning
models can be formulated with the help of algorithmic complexity theory. One of
the bigger intellectual achievements of computer science in the 20th century is the
formulation of an adequate theory of induction based on a deep analysis of the relation
between the notion of the computational complexity of an object and its a priori
probability. The basic insight is that objects that are easier to compute have a higher
probability. This idea is relevant for language learning because it helps us to formulate
a first approximation of co-operative linguistic behavior: if one wants to teach a
language, it appears reasonable to select examples that are easy to analyze first. Using
algorithmic complexity theory one can give adequate answers to questions like: Given
a text T and two grammars G1 and G2 are we able to approximate which grammar
has the highest probability of generating T , i.e., argmax(P (G1|T ), P (G2|T ))?

Building on related ideas of Solomonoff, Horning [1969] proved that so-called prob-
abilistic context-free grammars3 can be learned from positive data only. This result
removes the sting of the strict unlearnability results of Gold.

Based on these early findings one can identify three research lines that extend
more or less to the present with regrettably little mutual exchange of ideas.

The first line is the extension of the recursion theoretic approach of Gold. Im-
portant results in this area are Angluin’s work on tell-tale sets [Angluin, 1980],4 her
work on identification with the help of more powerful clues [Angluin et al., 1997]
like membership queries5 and equivalence queries.6 Even equivalence queries do not
guarantee exact identification of context-free grammars in polynomial time. An im-
portant negative result is given by Pitt and Warmuth [1988] who prove that (modulo
a polynomial time transformation) context-free grammars are as hard to predict as
certain cryptographic predicates are to compute.

Given these quite disappointing negative results, the recursion theoretic line of
research has focused on learning subclasses of context-free grammars. We mention
a few: k-bounded context-free grammars [Angluin, 1987], (k)-reversible languages
[Angluin, 1982; Sakakibara, 1992] and simple deterministic languages [Yokomori, 2003;
Ishiszaka, 1990]. None of these subclasses can claim to have any specific linguistic
importance. This is less true of the interesting results of Kanazawa [1995] concerning
learnability of certain classes of categorial grammars.

The second line of attack is taken by a group of researchers that simply try to
develop efficient learning algorithms that work more or less successfully on real life
corpora. An early exponent of this approach is [Wolff, 1977, 2003] with the SP frame-
work, based on information compression and ideas of Solomonoff [1997] and Rissanen.
The work of Adriaans [1992] who developed the EMILE framework at the end of the

3The class of probabilistic grammars specifies for each structure a probability which indicates in
how far it belongs to the language. An idea that seems to be quite close to the notion of grammat-
icality in natural languages: almost any structure can be made ‘grammatical’ in the right context.
See the discussion of bootstrapping phenomena below.

4Finite subsets of a language that prevent overgeneralization.
5Queries that allow the Learner to check whether a certain sentence is in the target language.
6Queries that allow the Learner to check whether the current hypothesis concerning the target

grammar is correct and return a sentence in the symmetric difference of the hypothesis and the target
grammar if this is not the case.
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eighties, has culminated in the EMILE 4.1 implementation by Adriaans and Vervoort
[2002]. A methodology related to the SP framework, is presented by van Zaanen
[2002]: Alignment-Based Learning. Recently van Zaanen and Adriaans [2001] have
developed a methodology to compare the efficiency of implementations of Grammar
Induction systems using annotated corpora like the Penn-tree bank and the ATIS
corpus. Also in this category we find the extensive research effort to come up with
efficient algorithms for regular languages that takes place in the ICGI community.7

This body of work has lead to algorithms that can learn rather complex Deterministic
Finite Automata (DFA) with several hundreds of internal states. A good example of
state of the art is the so-called blue fringe algorithm [Lang et al., 1998].

A third, and theoretically promising, line of attack of the Grammar Induction
problem is the probabilistic approach [Charniak, 1993]. Probabilistic context-free
grammars are the only linguistically relevant class of languages that are known to
be identifiable in the limit. The algorithm presented by Horning is too complicated
to be of any empirical relevance but it suggests interesting further research. Part of
these developments took place in the wider context of computational learning theory.
Valiant [1984] introduced a completely new learning concept that since then has been
named “probably approximately correct” (PAC) learning.

Definition 1 Let F be a concept class, δ (0 ≤ δ ≤ 1) a confidence parameter, ε
(0 ≤ ε ≤ 1) an error parameter. A concept class F is PAC learnable if for all
targets f ∈ F and all probability distributions P on the sample space U∗ the learning
algorithm A outputs a concept g ∈ F such that with probability (1 − δ) it holds that
we have a chance on an error with P (f∆g) ≤ ε, where f∆g = (f − g) ∪ (g − f).

The basic idea of PAC learning is that we can minimize the chance of learning some-
thing that is wrong without being completely sure that we are right. Valiant applied
his theory to Boolean concept learning. Subsequent investigations showed that this
technique actually has a much broader field of application [Li and Vitányi, 1991].

Unfortunately PAC learning in its pure distribution free form does not help Gram-
mar Induction much. No linguistically interesting classes of languages are known to
be distribution free PAC learnable. This is in itself not very alarming since learning
under any distribution is certainly too strong a demand for any form of linguistically
relevant form of Grammar Induction. Yet there is more bad news. From empirical
observations we know that the distributions that govern human communication are
invariably heavy tailed: there is at any stage of the sampling process a considerable
probability mass in the set of unseen examples.8 This is particularly harmful for PAC
convergence.

7The International Grammar Induction Community, which organizes a two year conference on
the subject as well as several Grammar Induction competitions: Abbadingo, Gowachin, and recently,
Omphalos.

8The distributions of word frequencies in almost all texts seems to follow the so-called Zipf power
law: the size of the word frequency class with frequency n is cn−1.5, where c is a constant depending
on the size of the sample. In recent years our understanding of these dimensionless distributions
has increased considerably [Faloutsos et al., 1999], but the exact reason why they occur with such
regularity in linguistic structures is ill-understood, as is the meaning of the −1.5 exponent.
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A better understanding of the distributions that govern human communication
is necessary. Promising insights can be found in algorithmic complexity theory that
allows us to formulate the notion of a priori probability of strings as well as a class of
so-called simple distributions that might serve as a first approximation of distributions
that govern human communication. This has lead to the notion of PAC-s learning:
PAC learning under simple distributions [Li and Vitányi, 1991]. A central result is
the so-called coding theorem from Levin:

Theorem 2 (Levin)

− logm(x) = − logPU (x) + O(1) = K(x) + O(1)

Here m(x) is a universal semi measure,9 PU (x) is the universal a priori probability
of a binary string x,10 and K(x) is the prefix Kolmogorov complexity of the string
x, i.e., the length of the shortest prefix-free program that generates x on a universal
Turing machine.11

The importance for a theory of learning is apparent from the following complete-
ness result of Li and Vitányi [1991]:

Theorem 3 A concept class C is learnable under m(x) iff C is also learnable under
any arbitrary simple distribution12 P (x) provided the samples are taken according to
m(x).

Motivated by these ideas Adriaans [2001] formulated the conjecture that natu-
ral languages are shallow,13 i.e., they can be learned from a relatively small set of
examples14 the length of which is logarithmic in the Kolmogorov complexity of the
grammar:

Definition 2 A language G is called shallow if it has a tell-tale set C ⊆ G for which
∀s ∈ C(|s| ≤ c log K(G))

The relevance of shallowness for efficient language learning is clear from the following
theorem:

9A recursively enumerable semi-measure µ is called universal if it recursively dominates every
other enumerable semi-measure µ′, i.e., µ(x) ≥ cµ′(x) for a fixed constant c independent of x. Levin
proved that there is a universal enumerable semi-measure. We fix a universal semi-measure m(x).
The semi-measure m(x) converges to 0 slower than any positive enumerable function which converges
to 0. Of course, m(x) itself is not recursive.

10Defined as : PU (x) =
∑

U(p)=x 2−|p|.
11The descriptive complexity of a string x relative to a Turing machine T and a binary string

y is defined as the shortest program that gives output x on input y: KT (x|y) = min{|p| : p ∈
{0, 1}∗, T (p, y) = x}. There is a universal Turing machine U , such that for each Turing machine T
there is a constant cT , such that for all x and y, we have KU (x|y) ≤ KT (x|y) + cT . This definition
is invariant up to a constant with respect to different universal Turing machines. Hence we fix a
reference universal Turing machine U , and drop the subscript U by setting K(x|y) = KU (x|y). We
define: The Kolmogorov complexity of a binary string x is K(x) = K(x|ε).

12A distribution is simple if it is dominated by a recursively enumerable distribution.
13Shallowness predicts some interesting aspects of natural language: the existence of a relatively

small number of word classes, some of which are very large. See remarks on open and closed word
classes below.

14It is currently not known what the exact size of the set of examples should be.
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Theorem 4 Under m, sentences from shallow languages can be generated/sampled
in polynomial time.

If m is a good approximation of co-operative linguistic behavior then the possi-
bility that an arbitrary speaker selects a certain binary string decreases exponentially
with the complexity of this string and if a language is shallow this increases the
probability that the language can be learned efficiently.

Subsequent investigations using the EMILE tool has lead to the surprising insight
that existing text corpora are by nature unsuitable for syntactic induction because
they are semantically biased. Since nouns can be substituted for other nouns, one
would expect that it would be easy to learn from a text on biology that ‘whale’ and
‘shark’ are both nouns. However, this is not the case, since the distributional evidence
that they can be substituted for each other salva beneformatione is not supported by
the text. Based on the semantic bias, one might learn that a whale is a mammal
and that a shark is a fish, which indicates that this approach can be deployed for the
induction of semantic structures, i.e., ontologies.

At the current state of research there is no good synthesis between these ap-
proaches available. Interesting problems are a better understanding of the exact
nature of the language classes that are learned by existing Grammar Induction imple-
mentations and a better merge of PAC and PAC-s learnability approaches with the
recursive models of the researchers working in the Gold paradigm.

3 An initial empirical model

The efficiency of human language acquisition is ill-understood at this moment. For
example, there is much debate amongst linguists about the nature of universal
linguistic categories and there is almost no agreement on general principles. Even the
universality of the distinction between nouns and verbs has been doubted.15 Also the
value of negative results concerning the formal unlearnability of important classes
of languages [Gold, 1967; Angluin, 1988; Pitt and Warmuth, 1988] as providing
proof of unsurmountable barriers for natural language acquisition from scratch
is very debatable. There is an early result by Horning [1969] that probabilistic
variants of context-free grammars can be identified in the limit. Recent research
has come up with Grammar Induction algorithms that perform reasonably well on
real life corpora for linguistically interesting classes of grammars ([Seginer, 2003],
EMILE: [Vervoort, 2000], Alignment-Based Learning: [van Zaanen, 2002], Evidence
based State Merging: [Lang et al., 1998]). There is a large body of research on
constraints, probability distributions and bias that make linguistically relevant classes
of languages learnable. [Osherson et al., 1997; de la Higuera et al., 2003] A work-
ing hypothesis is that human language must be explained in terms of a structure that:

• facilitates efficient on-line interpretation,

• has adequate descriptive power,

15See http://linguistics.arizona.edu/˜carnie/papers/V1Volume/Gil.pdf
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• satisfies certain physical and biological constraints.

Using insights from algorithmic information theory, complexity theory and
statistics some very general features of human languages can already be predicted (cf.
the shallowness constraint proposed by Adriaans [1992, 2001]). A working hypothesis
in this case is that the learning process:

• is phased,

• is hybrid, in the sense that different learning strategies might be invoked in
different phases,

• is cumulative, in the sense that structures learned in phase n can be used to
bootstrap structures in phase n + 1.16

Various forms of bootstrapping (prosodic, syntactic, semantic) seem to come in
play in language acquisition [van Kampen, 2004]. The algorithmic aspects of these
bootstrapping processes are ill-understood at the moment, although some of the
Grammar Induction algorithms implicitly use them (EMILE, ABL).

An important observation in this context is the existence of open and closed word
classes in natural languages. Open classes are N nouns, V verbs and Adj adjectives.
Closed classes or functional categories are P prepositions, D determiners and Aux
auxiliaries. Open classes can be extended without changing the character of the lan-
guages and they can be paraphrased (i.e., a cow is a mammal about the size of a horse
with hooves and horns). This is not possible for closed classes (try to paraphrase the
meaning of the words ‘in’ or ‘the’). The closed classes are limited in size (about
a dozen each) and changing them affects the structure of the language. Languages
vary considerably in terms of functional categories. Parallels and differences between
human languages are due to the differences and parallels between these functional
categories. For example, in some languages the role of functional categories is partly
taken over by morphology (e.g., Latin). The main problem of learning a language
seems to be finding out how a language uses functional categories and by what order
and speed these can be learned. Although every language seems to have an unlimited
bootstrapping capability for the introduction of members of open classes, functional
categories can not be learned easily in this way. A working hypothesis for first lan-
guage acquisition could be that the functional categories are learned on the basis
of samples taken from limited sets of open classes. Initial studies by Pinker [1999]
(semantic bootstrapping) and van Kampen (syntactic bootstrapping) look promising,
but more empirical research is necessary.

There is no evidence that phases of linguistic development are universal for all
languages or even that subjects that learn the same language will take the same
learning route. On the contrary, there is reason to suppose that, for example, in the
case of hearing impaired subjects some bootstrapping clues are missed because of
deficiencies in the input signal. This data together with the circumstance that other

16Note that this model does not necessarily imply that linguistic performance itself is growing in
a monotone way. Structures that are left unanalyzed in phase n can be overfitted (overtrained) in
phase n + 1.
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communicative systems, like sign language, might have been acquired, leads to the
hypothesis that these subjects follow non-standard learning routes. A better insight
in these phenomena will be the basis for better diagnostic techniques for deficiencies
in language development. A rough initial sketch of the various stages in children’s
language acquisition together with a proposal for their algorithmic structure is
[Clark, 2002]:

Period Description Model Learning strategy
0–9
months

Linking acoustics and
events babbling

DFA evidence-based state
merging, prosodic
bootstrapping

9–24
months

Children categorize
words into word classes
and show evidence of
early sensitivity to
syntax word classes

complex inter-
action between
deixis and bab-
bling

syntactic and semantic
bootstrapping

2-3,5
years

Language meaning and
syntax structure is ac-
quired, emergence of
recursive rules

context-free
grammar in-
duction as first
approximation

Seginer, EMILE, ABL

Cognitive neuroscience has identified interesting ERP phenomena such as the N400
effect that is associated with semantic processing and the P600/SPS effect that has
a relation with the syntactic analysis in the human brain. In recent years various
neurocomputational models of syntactic processing have been proposed. Hagoort
[2003] presents a neurocomputational model of syntactic processing based on a com-
putational model of parsing due to Vosse and Kempen [2000]. These proposals for
a solution of the so-called binding problem for language also have consequences of
the study of human language acquisition: can the grammatical model underlying the
binding solution be learned and, if so, in which way does it develop in the brain?

4 Conclusion

In this article, we gave an overview of different approaches to Computational Gram-
mar Induction (CGI), concentrating on the field of linguistics. This includes research
on the learnability of grammar classes, learning from real life linguistic data, and
probabilistic approaches to Grammar Induction. We argued that researchers working
on these closely related fields have been working mostly in isolation, without much
interaction between the fields.

Overseeing all the developments one can not but conclude that the time for an
integrative effort concerning language acquisition seems right. A cross-fertilization
between linguistics, theory of computation and cognitive neuroscience might lead to
breakthroughs in one or more of these fields.
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