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Abstract

The syntactic bootstrapping hypothesis suggests that
children’s verb learning is guided by the structural cues
that the linguistic context provides. However, the onset
of syntactic bootstrapping in word learning is not well
studied. To investigate the impact of linguistic infor-
mation on word learning during early stages of language
acquisition, we use a computational model of learning
syntactic constructions from usage data, and adapt it to
the task of identifying target words in novel situations.
Our results show that having access to linguistic infor-
mation significantly improves performance in identifying
verbs (but not nouns) in later stages of learning, yet no
such effect can be observed in earlier stages.

Introduction

Learning verbs is a challenging task for young children:
their early vocabulary contains many more nouns than
verbs, and they learn new nouns easier than new verbs
of the same frequency (e.g., Imai et al., 2005; Waxman,
2006). The acquisition of nouns is mainly attributed to
cross-situational evidence, or regularities across different
situations in which a noun is used (Quine, 1960). In con-
trast, learning verbs seems to depend on the syntactic
frames that they appear in. It has been suggested that
children draw on syntactic cues that the linguistic context
provides in verb learning, a hypothesis known as syntactic
bootstrapping (Gleitman, 1990). According to this view,
verbs are learned with a delay because the linguistic in-
formation that supports their acquisition is not available
during the early stages of language acquisition.

To investigate the impact of linguistic and extralinguis-
tic cues in identifying words, Gillette et al. (1999) pro-
posed the Human Simulation Paradigm (HSP): adult par-
ticipants watch videos of caregivers interacting with their
toddlers, and are asked to identify target words marked
by a beep. Videos are displayed without sound, and sub-
jects are provided with different degrees of information
about the linguistic context of the target verbs. Various
HSP studies have shown that having access to linguis-
tic and structural cues significantly improves the perfor-
mance of adults in identifying verbs. Piccin & Waxman
(2007) adopted the HSP paradigm for testing school-age
children, and showed that children also rely on linguistic
information for identifying verbs, but their performance
is inferior to adults. These findings hint at a gradual de-
velopment of syntactic bootstrapping, but it is uncertain
whether the same effect can be observed in much younger
children who have not mastered the syntactic structure of
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their language yet. A continuous picture of the develop-
mental path of word learning is lacking.

In this paper, we propose a novel approach to studying
this problem. We use an existing computational model of
early verb learning which incrementally learns syntactic
constructions of language from usage data. We adapt this
model to the task of identifying target words in novel sit-
uations given different sets of (perceptual and linguistic)
cues. Our results show that having access to linguistic in-
formation significantly facilitates identifying verbs in later
stages of learning, but no such effect is observed at the
earlier stages. For identifying nouns, additional linguistic
information does not affect performance at all.

Time Course of Syntactic Bootstrapping

Several preferential-looking studies have shown that chil-
dren are sensitive to the structural regularities of lan-
guage from a very young age, and that they use these
structural cues to find the referent of a novel word (e.g.,
Naigles & Hoff-Ginsberg, 1995; Gertner et al., 2006). In a
typical setup, children are given more than one interpreta-
tion for an utterance (e.g., different activities displayed on
parallel screens), and their looking behaviour reveals their
preferred interpretation. However, these studies cannot
compare the impact of different cues in word learning,
since the same type of input is available to subjects in
different conditions.

In contrast, HSP studies manipulate the number and
type of cues that subjects receive for performing a task
across conditions, and thus evaluate the impact of each
set of cues. In their influential study, Gillette et al. (1999)
provided their adult subjects with various combinations
of visual cues (videos), a list of co-occurring words, the
syntactic pattern of the sentence, and the full transcript
of the narration. Their findings and those of later studies
have consistently shown that the more linguistic infor-
mation adult subjects receive, the more accurately they
identify missing verbs.

Piccin & Waxman (2007) used HSP for studying seven-
year-olds as well as adults. Subjects in each age group
were randomly assigned to either ‘no linguistic informa-
tion’ (-LI) or ‘full linguistic information’ (+LI) condition.
In the -LI condition, participants heard no audio other
than beeps indicating the target words. In the 4+LI con-
dition, participants heard all the surrounding speech as
well as the beeps. After watching each clip, subjects were
asked to guess the target word (a noun or a verb). Their



results show a similar pattern of behaviour for adults
and children: In the -LI condition, all subjects identified
nouns more successfully than verbs. In the 4+LI condition,
linguistic information significantly improved the identifi-
cation of verbs (but not nouns) by children as well as
adults. The performance of both age groups was compa-
rable in the -LI condition, but adults significantly outper-
formed 7-year-olds in the +LI condition. That is, adult
subjects were more successful in incorporating linguistic
information in the task of identifying verbs.

Due to the nature of the word guessing task, HSP is not
suitable for very young children. Therefore, it is yet un-
known whether linguistic information can facilitate word
learning in the very early stages when the acquisition of
syntax is still in progress. Computational modeling is
an appropriate tool for tackling this problem: it allows
us to examine the time course of word learning and the
contribution of linguistic input from the very beginning.

Existing Computational Models

Many computational models have demonstrated that
cross-situational learning is a powerful mechanism for
mapping words to their correct meanings and explain-
ing several behavioural patterns in children (e.g., Siskind,
1996; Fazly et al., 2010). These models ignore the syn-
tactic properties of utterances and treat them as unstruc-
tured bags of words. Probabilistic models of Yu (2006)
and Alishahi & Fazly (2010) integrate syntactic categories
of words into a model of cross-situational learning and
show that this type of information can improve the over-
all performance. In these models, perfect categories are
assumed to be formed prior to cross-situational learning.
There are only a few computational models that explic-
itly study the role of syntax in word learning. Maurits et
al. (2009) investigate the joint acquisition of word mean-
ing and word order using a batch model. This model is
tested on an artificial language with a simple relational
structure of word meaning, and limited built-in possi-
bilities for word order. The Bayesian model of Niyogi
(2002) simulates the syntactic and semantic bootstrap-
ping effects in verb learning (i.e. drawing on syntax for
inducing the semantics of a verb, and using semantics for
narrowing down possible syntactic forms in which a verb
can be expressed). This model relies on extensive prior
knowledge about the associations between syntactic and
semantic features, and is tested on a toy language with
very limited vocabulary and syntax. None of these mod-
els investigate the time course of syntactic bootstrapping
and the differences between learning verbs and nouns.

Overview of our Computational Model

In a typical language learning scenario, a child observes
an event which involves a number of participants, and
at the same time hears a natural language utterance de-
scribing the observed scene. Such scene-utterance pair-
ings are the main source of input for the acquisition of

word-concept mappings as well as for learning syntactic
constructions. Ideally, we need a computational model of
syntactic bootstrapping to draw on such usage-based in-
formation in order to acquire form-meaning associations
at word and sentence levels.

We investigate the time course of using syntax in
word learning through computational simulation, using
the construction learning model of Alishahi & Stevenson
(2010). The model uses Bayesian clustering for learn-
ing the allowable frames for each verb, and their group-
ing across verbs into constructions. Each frame includes
the conceptual properties of an event and its participants
(the cross-situational evidence), and the linguistic prop-
erties of the utterance that accompanies the observed
event. A construction is a grouping of frames which share
form-meaning associations; these groupings typically cor-
respond to general constructions in the language such as
intransitive, transitive, and ditransitive.

By detecting similar frames and clustering them into
constructions, the model forms probabilistic associations
between syntactic positions of arguments with respect to
the verb, and the conceptual properties of the verb and
the arguments. These associations can be used in vari-
ous language tasks where the most probable value for a
missing feature must be predicted based on the available
features. We simulate HSP in this fashion, where the
most probable values for a missing head predicate (verb)
or an argument (noun) are predicted based on the (per-
ceptual and linguistic) information cues available in the
current scene, using the acquired constructions.

The following sections review the model and describe
the simulation of the word identification task.

Input and Frame Extraction

The input to the learning process is a set of scene-
utterance pairs that link a relevant aspect of an observed
scene (what the child perceives) to the utterance that de-
scribes it (what the child hears). From each input pair,
our model extracts a frame, containing the following form
and meaning features:

e Head words for the main predicate (i.e., verb) and its
arguments (i.e., nouns or pronouns).

e Syntactic pattern, or the word order of the utterance.

e Number of arguments that appear in the utterance.

e Basic (conceptual) characteristics of the event (or
verb), e.g., {cause,change,rotate,... }.

e Conceptual properties of the arguments which are in-
dependent of the event that the argument participates
in, e.g., {woman,adult,person,... }.

e Event-based properties that each argument takes on
in virtue of how it participates in the event, e.g.,
{moving,volitional,...}.

In the Experimental Results section, we explain the se-
lection of semantic properties in our simulations.



Learning Constructions

Each extracted frame is input to an incremental Bayesian
clustering process that groups the new frame together
with an existing group of frames—a construction—that
probabilistically has the most similar properties to it. If
none of the existing constructions has sufficiently high
probability for the new frame, then a new construction is
created, containing only that frame.

Adding a frame F' to construction k is formulated as
finding the k£ with the maximum probability given F':

BestConstruction(F) = argmax P(k|F) (1)
k

where k ranges over the indices of all constructions, with
index 0 representing recognition of a new construction.
Using Bayes rule, and dropping P(F') which is constant

for all k: P(k)P(Fk)
P(F)
The prior probability P(k) indicates the degree of en-
trenchment of construction &, and is given by the relative
frequency of its frames over all observed frames. The pos-
terior probability of a frame F' is expressed in terms of
the individual probabilities of its features, which we as-
sume are independent, thus yielding a simple product of
feature probabilities:

P(FIk) = ]

i€ Features(F')

P(KIF) = ~P(R)P(FI)  (2)

Pi(jlk) 3)

where j is the value of the i*" feature of F, and P;(j|k) is
the probability of displaying value j on feature 7 within
construction k. This probability is estimated using a
smoothed version of this maximum likelihood formula:

(4)

where ny is the number of frames participating in con-
struction k, and count;(j, k) is the number of those with
value j for feature .

For single-valued features (head words, number of ar-
guments, syntactic pattern), count,(j, k) is calculated by
simply counting those members of construction k& whose
value for feature i exactly matches j. However, for fea-
tures with a set value (semantic properties of the verb and
the arguments), counting the number of exact matches
between the sets is too strict, since even highly similar
words very rarely have the exact same set of properties.
We instead assume that the members of a set feature are
independent of each other, and calculate the probability
of displaying a set s; on feature ¢ in construction k as

Psk) = g IL PG < TT R )
JESs; JES(i)—s;

P;(jlk) and P;(—jlk) are estimated as in Eqn. (4) by

counting members of construction k whose value for fea-

ture ¢ does or does not contains j. The product is rescaled

by the length of S(i), which is the superset of all the val-

ues that feature ¢ can take.

. count; (7, k
Pi(jlk) = #

Identifying Nouns and Verbs

In our model, language use is a prediction process in
which unobserved features in a frame are set to the most
probable values given the observed features. For exam-
ple, sentence production predicts the most likely syntactic
pattern for expressing an intended meaning, which may
include semantic properties of the arguments and/or the
predicate. In comprehension, semantic elements may be
inferred from a word sequence.

The probability of an unobserved feature ¢ displaying
value j given other feature values in a partial frame F is
estimated as

Pi(G|F) =Y Pi(jlk)P(k|F) (6)
k

=" Pi(jlk)P(k)P(F|k)
k

The conditional probabilities P(F|k) and P;(j|k) are de-
termined as in the learning module. Ranging over the
possible values j of feature ¢, the value of an unobserved
feature can be predicted by maximizing P;(j|F):

BestValue; (F') = argmax P;(j|F) (7)
J

Identifying a target verb as in HSP can be simulated
as finding the head verb j with the highest Py, (j]F), or
estimating BestValueye, (F). Here F' is a partial frame
which can include only the semantic features, or addi-
tional linguistic and syntactic features. Similarly, identi-
fying a target noun which corresponds to an argument 4
in a scene is modeled as estimating BestValuepoun, (F).

Experimental Results

We use our computational model to investigate the role
of linguistic input in learning verbs and nouns. Following
Piccin & Waxman (2007), we pursue three main goals in
our experiments. First, to simulate the task of identifying
a target word in the presence of visual stimuli, and to
study the impact of linguistic input on performance.
Second, to investigate whether verbs benefit more than
nouns from linguistic cues. Third, to examine the role of
linguistic input in identifying verbs versus nouns in early
stages of learning.

Factors and conditions. We model different factors in
the study of Piccin & Waxman (2007) as follows:

e Word category: we simulate the identification of
a target verb and a target noun as estimating
BestValueyeb (F) and BestValuepoun, (F) respectively,
based on Eqn. (7).

e No (-LI) vs. full (+LI) linguistic information: the in-
formation cues available to subjects are reflected by the
included features in partial frame F' in equations (6)
and (7). In the -LI condition, included features are the
properties of the event and the conceptual and event-
based properties of the arguments (observable from a



muted clip). In the +LI condition, the following fea-
tures are also included: number of arguments, the head
words of the main verb and the arguments (except for
the target word), and the syntactic pattern (available
from the narration of the clip).

o Age groups: we train our model on a set of scene-
utterance pairs before evaluating it on a word iden-
tification task. The age of the model is determined by
its exposure to input data prior to performing the task.
We simulate different age groups by varying the size of
the training data.

Evaluation. In evaluating the model when identifying
target words in a test set, we use the following criteria:

e Absolute accuracy: the number of test items for which
BestValue; (F') in Eqn. (7) returns the correct value for
the target word i.

e Probabilistic accuracy: the sum of the probabilities
P;(target|F') for each target (the correct answer) in the
test set, where i is the focus feature and P;(target|F)
is calculated using Eqn. (6). This probability reflects
the confidence of the model in predicting target.

e Improvement: the gain achieved by using our pre-
diction model instead of a simple frequency baseline:
(P;(target|F) — baseline(target))/P;(target|F').  The
baseline only relies on the relative frequency of each
head word (freq(w)/ >~ freq(w’), where freq(w) is the
frequency of w in the input).

Data. We used the Brown corpus of the CHILDES
database (MacWhinney, 2000) for constructing the input
to our model. We extracted the 20 most frequent verbs
in mother’s speech to each of Adam, Eve, and Sarah,
and selected 13 verbs from those in common across these
three lists. We constructed an input-generation lexicon
based on these 13 verbs, including their total frequency
among the three children. We also assigned each verb a
set of possible argument structure frames and their rel-
ative frequencies, which were manually compiled by the
examination of 100 randomly sampled uses of a verb from
all conversations of the same three children. Finally, from
the sample verb usages, we extracted a list of head words
(total 259) that appeared in each argument position of
each frame, and added these to the lexicon.

For each noun in the lexicon, we extracted a set of lex-
ical properties from WordNet (Miller, 1990) as follows.
We extracted all the hypernyms for the first sense of each
word, and added one member from each hypernym synset
to the list of its properties. For each verb frame, we man-
ually compiled a set of semantic primitives for the event
as well as a set of event-based properties for each of the
arguments. We chose these properties from what we as-
sumed to be known to the child at the stage of learning
being modeled.

Due to the limited lexicon, the scale of the learning
problem in our experiments is much smaller than the real-

world experience of children. However, our dataset has
the same statistical characteristics as the input data that
children receive, and therefore we hope that the general
patterns observed in our experiments are representative
of the developmental patterns in children.

Linguistic Input and Identifying Words

In the experiments reported below, we simulate the iden-
tification of nouns and verbs in the -LI and +LI condi-
tions across different simulations, where each simulation
represents a subject. For each simulation, we randomly
generate a set of 500 training items and 30 test items,
using the input generation lexicon discussed above. We
monitor the performance of the model in intervals: af-
ter processing every 10 training items, we independently
predict the head verb and a randomly selected argument
noun for each of the test items, and evaluate the predic-
tions using the evaluation measures mentioned above.

A simple linear model of probabilistic accuracy with
input type and age as predictors reached a significant
interaction between the predictors for both nouns
(F = 3.983, p = 0.003) and verbs (F = 7.375, p = 0.000).
The same was observed in the improvement data (nouns:
F = 6.376, p = 0.000 ; verbs: F' = 10.249, p = 0.000). That
is, different age groups behave differently when process-
ing linguistic input. In order to further examine the
effect of linguistic information throughout development,
we conducted separate analyses for each word category
across all age groups, as reported below.!

Verbs. Figure 1 shows the absolute accuracy and im-
provement of identifying verbs for 30 test items, in in-
tervals of 10 over a total of 500 input items, averaged
over 50 simulations. (The improvement and probabilis-
tic accuracy plots show a very similar trend.) As can be
seen from the top panel, a target verb can be identified
more accurately when the model has access to linguistic
information about the co-occurring words and syntactic
pattern of the utterance. The bottom panel shows the
same pattern, and further emphasizes the benefit of using
perceptual and linguistic features in our model compared
to predicting verbs based on their frequency of observa-
tion in the input data. Performance is boosted as early
as processing 100 training items (A100), a stage at which
relatively robust constructions are formed by the model.
The gap between the accuracy and improvement curves

!The probabilistic accuracy and improvement were ana-
lyzed with linear mixed models with the condition (+LI, -LI)
as a fixed factor and subjects and items as a crossed-random
factor in order to allow by-subject and by-item variation in one
model. Estimates (Est) report the regression coefficients for
the fixed effect, and p-values for estimates were obtained us-
ing Markov-Chain Monte Carlo (MCMC) sampling with 10000
replications. The absolute accuracy was analyzed with a lo-
gistic mixed model with the condition as a fixed factor and
subjects and items as a crossed-random factor. P-values for
estimates were obtained from z-statistics.
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Figure 1: Absolute accuracy and improvement of identi-

fying verbs, averaged over 50 simulations.

in the -LI and +LI conditions widens slowly but consis-
tently as the model processes more input items; that is,
the model can use linguistic input more efficiently as it
ages. In both age groups, the probabilistic accuracy was
positively affected by the presence of linguistic context
(A100: Est = 0.041, pmcmc = 0.0001; A500: Est = 0.053,
pmomc = 0.0001). Same effect was also found in improve-
ment measurements (A100: Est = 0.041, pmemc = 0.000;
A500: Est = 0.053, pmcmc = 0.0001). The effect on abso-
lute accuracy was significant only in the last age group
(Est = 0.157, p = 0.040) and marginally significant for age
group A200 (Est = 0.108, p = 0.161).

The behaviour of the model at the A100 stage is
similar to that of the 7-year-old subject group in
Piccin & Waxman (2007), whereas the A500 stage is
more similar to their adult subject group. Note that
due to the small number of verbs in our lexicon and
their relatively restricted syntactic behaviour, our model
learns much more efficiently from a small training corpus.

Nouns. Figure 2 shows the absolute accuracy and im-
provement of identifying nouns, averaged over (the same)
50 simulations. These results show a different pattern
than those of verbs: the model outperforms the fre-
quency baseline, but there is no clear advantage of us-
ing linguistic input. In the oldest age group (A500),
neither probabilistic accuracy nor improvement were af-
fected by +LI and -LI manipulation (p > 0.2). Inter-
estingly, in the age group A100, both probabilistic ac-
curacy (Est = —0.019, pmcemc = 0.0294) and improvement
(Est = —0.011, pmcmc = 0.040) were negatively affected by
the linguistic context. The absolute accuracy showed no
effects for the oldest age group (p > 0.6) and a marginal
effect in A100 (Est = —0.151, p = 0.054).

Our results are in line with the findings of Piccin &
Waxman (2007): older subjects (A500) perform better
than younger ones (A100) in identifying verbs and nouns.
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Figure 2: Absolute accuracy and improvement of identi-

fying nouns, averaged over 50 simulations.

More importantly, exploiting linguistic input significantly
facilitates identifying verbs, and older subjects can use
this information more efficiently than younger ones. How-
ever, identifying nouns does not benefit from additional
linguistic input.? The gradual improvement of verb iden-
tification in the +LI condition brings us back to our orig-
inal question: when does syntax begin to play a role in
verb identification? We address this issue next.

Onset of Syntactic Bootstrapping

In order to investigate the contribution of linguistic in-
put in identifying words in the earlier stages of learning,
we zoom in on the performance of the model during pro-
cessing the first 100 training items. Figure 3 shows the
absolute accuracy of predicting verbs and nouns for 30
test items, in intervals of 5 over the course of processing
100 input items, averaged over 50 simulations. (The im-
provement plots are not included due to lack of space.)
The curves show an interesting trend: for both verbs and
nouns, linguistic information does not help at first. For
verbs, the positive effect of +LI was absent in the earliest
age group for both probabilistic accuracy and improve-
ment (A10: p > 0.6), and for absolute accuracy as well
(p > 0.1). However, the accuracy curve in the +LI condi-
tion takes over the -LI condition around A50, and shows
significant influence of linguistic input in both probabilis-
tic accuracy (Est = 0.028, pmcmc = 0.001) and improve-
ment (Est = 0.028, pmovc = 0.0001), but not in absolute
accuracy (p > 0.6).

The results for nouns are more surprising: there is a
significant negative effect of +LI for the A10 and A50 age
groups in both probabilistic accuracy (A10: Est = —0.036,
pvmcemvc = 0.0008; A50: Est = —0.028, pmcmc = 0.0018)
and improvement (A10: Est = —0.031, pmcmc = 0.0001;
A50: Est = —0.021, pmomc = 0.0008). Absolute accuracy

2Due to the incomparable number of verbs and nouns in our
lexicon and different methods of identifying them, we cannot
directly compare performance in predicting verbs and nouns.
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and nouns in early stages of learning.

showed a significant negative effect of +LI in A10 (Est =
—0.172, p = 0.039) and a marginal effects in A50 (Est =
~0.148, p = 0.062).

Discussion

The results of our computational simulations replicate the
experimental findings of Piccin & Waxman (2007) that
syntactic information boosts the identification of verbs
by adults and young children. Our results also suggest
that the boosting effect comes into play with a delay,
and only after enough input data is processed and a
relatively stable knowledge of syntactic constructions is
formed. Our computational approach allows us to inves-
tigate word identification throughout various stages of de-
velopment, and examine syntactic bootstrapping for age
groups which cannot be easily studied in experimental
settings. Specifically, our model predicts that very young
children’s verb learning might not be modulated by lin-
guistic information, even though a significant impact can
be found in the later stages of development. This pre-
diction is in line with previous suggestions that gener-
alization of syntactic information takes time to manifest
(e.g., Gillette et al., 1999). Importantly, this prediction
is not inconsistent with findings on the sensitivity of very
young children to syntax during comprehension (see Al-
ishahi & Stevenson (2010) for simulating such effects us-
ing the same computational model).

Our results make another (somehow surprising) pre-
diction: linguistic context might have a negative effect on
identifying nouns during the early developmental stage.
The performance of our model in guessing nouns for the
younger age groups was poorer when the linguistic infor-
mation was provided, and no effect on performance by
linguistic information was observed in later age groups.
This might be due to the fact that most early nouns
refer to observable concepts, and are less dependent on
the structure of their linguistic context than verbs. Our

training corpus might also play a role: it contained many
more nouns (259) than verbs (13), and most verbs were
not restrictive. Therefore, the same nouns can appear
as arguments of different verbs, or many different nouns
can be potential candidates for a verb argument, yielding
several correct answers for a noun-guessing task.

It should be noted that the cross-situational scenario in
the setup of our model is not realistic as there is no refer-
ential uncertainty in our data (i.e., there are no referents
in the scene which are not mentioned in the utterance),
an issue we plan to address in the future. But it only
highlights our point that syntactic bootstrapping can fa-
cilitate verb learning even in low-ambiguity situations,
given that the learner has been exposed to enough input
to form a reliable knowledge of the structure of language.
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