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Abstract 

Cross-linguistic influence (CLI) is one of the key phenomena in bilingual and second language learning. We propose 

a method for quantifying CLI in the use of linguistic constructions with the help of a computational model, which 

acquires constructions in two languages from bilingual input. We focus on the acquisition of case-marking cues in 

Russian and German and simulate two experiments that employ a picture-choice task tapping into the mechanisms 

of sentence interpretation. Our model yields behavioral patterns similar to human, and these patterns can be 

explained by the amount of CLI: the negative CLI in high amounts leads to the misinterpretation of participant roles 

in Russian and German object-verb-subject sentences. Finally, we make two novel predictions about the acquisition 

of case-marking cues in Russian and German. Most importantly, our simulations suggest that the high degree of 

positive CLI may facilitate the interpretation of object-verb-subject sentences. 
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1. Introduction 

1.1. Quantifying cross-linguistic influence 

The phenomenon of cross-linguistic influence (CLI) is central to our understanding of bilingual and 

second language (L2) learning. Languages interact in the bilingual mind, and studies of CLI intend to 

describe various types of such interaction.1 One challenging issue that has long interested scholars is 

measuring the amount of CLI – that is, quantifying the extent to which linguistic representations from one 

language affect the use of the other language(s). Weinreich (1968) suggested that “no easy way of 

measuring or characterizing the total impact of one language on another in the speech of bilinguals has 

been, or probably can be, devised” (p. 63). Measuring the amount of CLI is important to understand to 



 

 

 

what extent the knowledge of one language is beneficial (in case of positive CLI) or damaging (in case of 

negative CLI) for the acquisition of other languages. 

One common method to measure CLI is through the so-called error analysis: look at the frequency of 

linguistic errors in a group of learners with a particular first language (L1) background and estimate the 

contribution of negative CLI to the non-native L2 use (Born, 1985; Grauberg, 1971; see Palmberg, 1976 

for a relevant bibliography). At the same time, CLI is not the only source of non-native language use: 

other factors such as overgeneralization may play a role, and the non-native use is often caused by a 

combination of factors (Jordens, 1977). This is why the exact methodology for identifying CLI is not 

straightforward: it has been argued that one needs to show that the learners within a particular group make 

similar mistakes, that the mistakes are different across the L1 groups, and that the mistakes have their 

linguistic equivalents in the learners’ L1 (Jarvis, 2000). Given the multitude of interfering variables (e.g., 

proficiency, learning history, aptitude), it is difficult to identify with confidence all cases of the CLI 

influence, and to measure the amount of CLI using this method. The same problem persists in more 

controlled experimental settings, which employ linguistic tasks related to language production or 

comprehension by bilingual learners (Grosjean, 1998). The number of interfering variables can be 

reduced in research on multilingual speakers: studying learners’ third language use allows for identifying 

the instances of L1 and L2 influence at individual level (e.g., De Angelis & Selinker, 2001), similar to a 

within-subject design in experimental studies, but this “individual” approach makes it difficult to 

generalize over the group of learners. 

Another issue related to the described methodologies is that the resulting CLI measures are grounded in 

language use. This may constitute a methodological challenge whenever such measures are used to 

predict the learner’s language use, leading to circular reasoning. 

These limitations can be overcome in cognitive computational models of bilingual language learning and 

use, which allow researchers to look inside the “black box” of linguistic representations. While no 

computational modeling studies focused on measuring CLI, some of such studies in the field of 

bilingualism employed quantitative measures that reflected the amount of CLI in the respective models. 

In particular, Zhao and Li (2010) simulated bilingual acquisition of Chinese and English words using a 

self-organizing neural network model. The learning process in each simulation yielded a spatial 

representation (map) of the bilingual lexicon. To explain how their computational model arrived at a 

particular type of map, the authors computed the average Euclidean distance between lexical translation 

equivalents in multiple pairs: that is, how far an English word (e.g., star) was located from its Chinese 



 

 

 

equivalent (星星 ‘star’) on the map. A shorter average distance means that many translation equivalents 

are located next to each other, which is the evidence of high CLI: the location of L1 lexemes has 

influenced the placement of the corresponding L2 lexemes. Vice versa: a longer average distance 

corresponds to smaller amount of CLI, because the location of L1 lexemes has not played the determining 

role in the placement of their L2 equivalents. 

In a similar type of model, Shook and Marian (2013) studied bilingual speech comprehension in English 

and Spanish. They employed an online measure, so-called language activation score. This measure 

showed how strongly the lexical representations from a particular language (e.g., Spanish) were activated 

on average, when the model was given a word in either the same or a different language (English). One 

can argue that the activation score for the non-target language reflects the amount of CLI. 

The described measures and the respective models, however, do not go beyond the lexeme level, while 

there are no computational modeling studies of CLI at the level of abstract constructions. To address this 

gap in the literature, in this article we use a computational model of learning argument structure 

constructions from bilingual input. We choose this model, because it has been used for simulating 

bilingual learning of argument structure constructions (Matusevych, Alishahi, & Backus, 2016b, 2017), 

and it allows for measuring the amount of CLI in this domain. Our goal in the present study is to 

demonstrate how the amount of CLI can be measured in the learning and use of such constructions, and 

how a CLI measure can be employed to explain the patterns of language use observed in the model. More 

specifically, we study the acquisition and interpretation of case-marking cues in Russian and German 

transitive sentences: as we show below, this is one of the aspects discussed in the literature, and the 

relevant experimental results from human participants are available. 

1.2. Interpretation of transitive sentences 

In some languages, such as English, French, Hebrew, and many others, transitive sentences are 

characterized by a fixed subject-verb-object (SVO) word order – see example (1) from Yoshimura and 

MacWhinney (2010). In other languages, the word order is more flexible: German transitive sentences 

can have SVO (2) as well as OVS word order (3). 

(1) The dog chases the bear. 

(2) Der   Hund-⌀  jägt   den   Bär-en. 

ART.M.NOM.SG dog-M.NOM  chase:3SG ART.M.ACC.SG  bear-M.ACC 

‘The dog chases the bear.’ 



 

 

 

(3) Den   Bär-en  jägt  der  Hund-⌀. 

ART.M.ACC.SG bear-M.ACC  chase:3SG ART.M.NOM.SG dog-M.NOM 

‘The dog chases the bear.’ 

To correctly interpret OVS sentences, speakers rely on other cues than the word order: morphological 

case marking, as in (3), but also animacy, noun–verb agreement, and others. However, learners of a 

language allowing for OVS sentences may rely on the word order cue and misinterpret participant roles in 

such sentences; this happens both in adult L2 learners (e.g., Isabelli, 2008; Kempe & MacWhinney, 1998; 

VanPatten, 1996) and in monolingual children learning various languages (e.g., Kim, O’Grady, & Cho, 

1995; Schaner-Wolles, 1989; Smolík, 2015). Speaking of young monolingual German children, it has 

been suggested that they start by acquiring the more prototypical and more frequent SVO form first 

(Dittmar, Abbot-Smith, Lieven, & Tomasello, 2008). The situation with bilingual and L2 learners is more 

complex, because CLI may be at play. There are two general views on the role of CLI in the 

misinterpretation of transitive sentences. 

The first view is represented by the First-Noun Principle (e.g., VanPatten, 1996, 2012). According to this 

principle, learners universally tend to assign the agent role to the first noun or pronoun in a given 

sentence, while the effect of CLI is negligible. Existing studies have argued that the First-Noun Principle 

can explain data from L2 learners of various languages: English, French, German, and others (see an 

overview by Lee & Malovrh, 2009). 

The alternative view explains the misinterpretation of OVS sentences by CLI from learners’ L1. Under 

this view, L2 learners adhere to the interpretation strategy which is standard in their L1: if learners do not 

encounter OVS sentences in their L1, they will misinterpret such L2 sentences as SVO. This general view 

is compatible with multiple acquisition theories (see an overview by Hanson, Aroline, & Carlson, 2014), 

but the two accounts mentioned most frequently in this respect are the Unified Competition Model 

(MacWhinney, 2012) and the L1 Transfer Principle (VanPatten, 2015b). 

 According to the Competition Model (Gass, 1987; Kempe & MacWhinney, 1998; Kilborn & Cooreman, 

1987; McDonald, 1987; Mimica, Sullivan, & Smith, 1994; Morett & MacWhinney, 2013, etc.), learners 

of both L1 and L2 attend to multiple cues in the input, such as word order, case marking, animacy, and 

others. Importantly, languages differ in the relative importance of various cues (e.g., case marking plays 

little role in English), and L1 speakers learn to attend to some cues more than to others. These attentional 

preferences, or cue strengths, are acquired based on the validity of the cues. Validity can be calculated 

using a linguistic corpus, as a product of two other values: cue availability and reliability. A cue is 



 

 

 

available whenever it is present as a marker of a particular function: for example, the nominal case 

marking of the subject may help discriminating between this subject and the object in the sentence. A cue 

is reliable whenever its presence ensures the right choice of the function: for example, the nominal case 

marking of the object would make the cue unreliable for this sentence. The acquired cue strengths are 

initially transferred to an L2. As a result, when L1 speakers of a language with fixed SVO word order 

(e.g., English) start learning an L2 in which OVS sentences are allowed (e.g., German), they fail to attend 

to case marking and misinterpret OVS sentences as SVO. 

The L1 Transfer Principle complements the First-Noun Principle mentioned above. Given the 

combination of the two, learners still tend to interpret the first noun as the agent of a sentence, yet this 

general strategy is modulated by their L1 knowledge. As an example, Isabelli (2008) demonstrated that 

L1 Italian students learning L2 Spanish could interpret Spanish OVS sentences better than their L1 

English peers. This is because OVS sentences are common in Italian and Spanish, but not in English.2 At 

the same time, L1 Italian speakers still performed lower on OVS sentences than on SVO sentences, which 

the authors considered as evidence for the First-Noun Principle. The data collected from Italian speakers 

with less exposure to Spanish could potentially clarify the exact role of each principle. 

To summarize, we still need to learn the exact contribution of CLI to the interpretation of transitive 

sentences, as well as the role of cue competition in this task. To investigate these issues, we simulate an 

experimental task employed in the two target studies described below, and quantify the impact of CLI in 

our model’s language use with a novel quantitative measure. 

The rest of the article is organized as follows. First, we briefly introduce two studies on which we focus in 

our simulations. These studies investigate the interpretation of transitive sentences with case-marking 

cues by learners whose L1 does not employ such cues. This is followed by the presentation of our 

computational model, where we also explain how it allows for quantifying CLI. Next, in two sets of 

simulations we demonstrate that the model’s linguistic behavior in the target task is similar to that 

observed in human learners. The findings are explained in terms of the amount of CLI. Finally, we make 

two novel predictions on how the model would perform on the same task when trained on different 

language pairs, and run two additional sets of simulations to see whether our model supports these 

predictions. Overall, this gives four sets of simulations:  

1. Interpretation of German sentences by bilingual learners whose other language has no case 

marking (Janssen, Meir, Baker, & Armon-Lotem, 2015, 2016). 



 

 

 

2. Interpretation of German and Russian sentences by L2 learners whose L1 has no case marking 

(Kempe & MacWhinney, 1998). 

3. Interpretation of German sentences by Russian–German bilingual learners (novel). 

4. Interpretation of Russian sentences by bilingual learners with various additional languages 

(novel). 

2. Target studies on case-marking comprehension 

Studies on the interpretation of case-marking cues in transitive sentences have mainly focused on adult L2 

acquisition (Kempe & MacWhinney, 1998; McDonald, 1987; Mimica et al., 1994; Morett & 

MacWhinney, 2013, etc.), while similar studies with early bilinguals have been rare (but see Janssen et 

al., 2015; O’Shannessy, 2011). We focus on one study from each population: a study with bilingual and 

monolingual Russian children by Janssen et al. (2015), and a study with adult learners of Russian and 

German (Kempe & MacWhinney, 1998). In the following sections we explain why we choose these two 

studies. First, however, we describe a picture-choice task employed in both of them. 

2.1. Picture-choice task 

In this task, participants hear a sentence and see two pictures containing alternative interpretations of the 

sentence. The participants have to choose the picture which in their opinion corresponds to the correct 

interpretation of the sentence. In the two target studies, the picture-choice task is employed to study the 

comprehension of competing cues, in particular case marking and word order. The target sentences 

include two nouns (nominative and accusative/dative) and a verb, and the two pictures depict the same 

event, but the participant roles are swapped in one of the pictures. An example from Janssen et al. (2015): 

(4) Петух-⌀ трогает  зме-ю. 

petuh-⌀  trogaet  zmey-u 

rooster-M.NOM touch:3sɢ snake-F.ACC 

‘The rooster touches the snake.’ 

The sentence (4) is accompanied by two pictures (Figure 1), depicting either a rooster touching a snake, 

or a snake touching a rooster. 



 

 

 

 

Figure 1: Accompanying pictures in the study of Janssen et al. (2015). Reprinted from “On-line 

comprehension of Russian case cues in monolingual Russian and bilingual Russian-Dutch and Russian-

Hebrew children”, 2015, by B. Janssen, N. Meir, A. Baker, and S. Armon-Lotem. In E. Grillo & K. 

Jepson (Eds.), Proceedings of the 39th Annual Boston University Conference on Language Development, 

p. 272. Copyright 2015 by B. Janssen. Reprinted with permission. 

2.2. Bilingual and monolingual Russian children 

Janssen et al. (2015) work with Russian monolingual children, as well as with Russian–Dutch and 

Russian–Hebrew bilingual children. While Russian is characterized by a free word order and systematic 

case marking of nouns, the opposite holds for Dutch and Hebrew: these two languages have much stricter 

word orders and no morphological cases on nouns. The case-marking cue is important in Russian: it 

marks the thematic roles of the nouns. At the same time, in Dutch and Hebrew the word order is often the 

only cue that allows for distinguishing between SVO and OVS sentences. 

In this study, the picture-choice task is employed to investigate whether this difference between Russian 

and Dutch/Hebrew leads to any differences in sentence interpretation by Russian monolingual and 

Russian–Dutch or Russian–Hebrew bilingual children. Some of the presented sentences had SVO order, 

where the word order cue and the case-marking cue supported and complemented each other (the 

converging cue condition), as in (4) above. Other sentences had OVS word order with the conflicting cues 

(the conflicting cue condition), such as (5): 

(5) Жираф-а видит  петух-⌀. 

zhiraf-a  vidit  petuh-⌀ 

giraffe-M.ACC see:3SG  rooster-M.NOM 

‘The rooster sees the giraffe.’ 



 

 

 

In addition to SVO and OVS sentences with a subject and a direct object, noun-verb-noun sentences with 

an indirect dative object were used, such as (6): 

(6) Зме-е  улыбается жираф-⌀. 

zmey-e  ulybaetsya zhiraf-⌀ 

snake-F.DAT smile.at:3SG giraffe-M.NOM 

‘The giraffe smiles at the snake.’ 

There were 40 stimuli overall: 20 SVO sentences and 20 OVS sentences, the test verbs included four 

transitive verbs: любить ‘love’, трогать ‘touch’, целовать ‘kiss’, and видеть ‘see’, as well as two 

intransitive verbs allowing for an indirect dative object (addressee): улыбаться ‘smile’ and звонить 

‘call’. 

Both monolingual and bilingual children were expected to perform high in the comprehension of the SVO 

sentences, but the bilingual children in the conflicting cue condition were predicted to demonstrate lower 

accuracy rate and longer reaction time than in the converging cue condition, and than the monolingual 

children in the conflicting cue condition. This is because the bilingual children may transfer the strength 

of the word order cue from Dutch or Hebrew into Russian, leading to the misinterpretation of the Russian 

OVS sentences as SVO. These predictions were met in terms of both accuracy and reaction time. 

Interestingly, no differences between the two bilingual groups were observed, despite the high variation 

reported for home language use: 61% in the Hebrew group and 17% in the Dutch group. 

For us, this study presents an interesting case: first, the authors mention that their results are compatible 

with both the First-Noun Principle and the Competition Model. Second, this is one of the only two studies 

on the interpretation of case-marking cues focusing on early bilingual learning. The other one 

(O’Shannessy, 2011) dealt with rare languages, Lajamanu Warlpiri and Light Warlpiri, for which it was 

difficult to obtain the data necessary for computational simulations. 

2.3. Adult L2 learners of Russian and German 

Kempe and MacWhinney (1998) worked with native English adult learners of L2 Russian and L2 

German, who had been exposed to the target languages in classroom for 25–26 months. The picture-

choice task with transitive sentences was used. Both in Russian and in German, all the sentences had the 

verb look for/find as the predicate: искать in Russian, suchen in German. The picture-choice task was 

slightly different in this experiment: the alternative pictures did not depict the full event, but only the two 



 

 

 

participants instead, and the learners had to decide which participant was the agent, defined as “who or 

what did the looking or finding” (Kempe & MacWhinney, 1998, p. 557). The 32 Russian and German test 

sentences were mutual translations of each other: 12 SVO sentences with case marking, 12 OVS 

sentences with case marking, and 8 SVO sentences fully neutralized in terms of their case-marking cues: 

these contained two nouns whose nominative and accusative cases were marked with the same 

morpheme, as in (7). 

(7) Die   Tochter-⌀  sucht  die   Mutter-
⌀. 

ART.F.SG.NOM/ACC daughter-SG.NOM/ACC look.for:3SG ART.F.SG.NOM/ACC mother-
SG.NOM/ACC  

‘The daughter looks for the mother.’ 

Using the methodology commonly adopted in Competition Model studies, Kempe and MacWhinney 

(1998) compute the availability of a cue as the number of sentences in which the cue is present divided by 

the total number of transitive sentences. To compute the reliability of a cue, they divide the number of 

sentences in which the cue correctly indicates the agent by the total number of sentences in which this cue 

is present. Based on their calculations, Kempe and MacWhinney (1998) show that the case-marking cue 

in Russian has a higher validity than in German, and this is why Russian L2 learners are more successful 

in the acquisition of case marking than German L2 learners: they perform the task faster (in terms of 

decision latencies) and more accurately than German L2 learners. 

We choose this study because of its similarity to the study of Janssen et al. (2015): both employ the 

picture-choice task, and both focus on the comprehension of case marking in Russian. These similarities 

will help us to make some informed predictions about the interpretation of case-marking cues, and pre-

test these predictions using computational simulations. The main difference between the two experiments 

is the age of the subjects, which we can also take into account in our computational simulations by 

manipulating the overall amount of input the model is exposed to. 

3. Computational model 

3.1. Model overview 

In this section, we provide a brief conceptual introduction of the model, while a more complete formal 

description is given in the subsequent sections. The computational model we employ here learns 

argument structure constructions from the input data. Technically speaking, it uses unsupervised Bayesian 



 

 

 

clustering to group incoming instances into constructions in an iterative manner. The idea comes from the 

study of Anderson (1991), who implemented the model of human category learning. Alishahi and 

Stevenson (2008, 2010) were the first to simulate the learning of argument structure constructions using 

the same algorithm, while Matusevych et al. (2016b, 2017) adapted the model for bilingual learning. In all 

the mentioned studies, the model was demonstrated to replicate certain types of human behavior in the 

respective domain. In the present study, the learning mechanism is updated to suit the acquisition of 

languages with free word order. Note that this model is not intended to simulate human construction 

learning in all its complexity; rather, it only employs the mechanism of bottom-up statistical learning. 

The idea behind the model comes from Goldberg’s construction grammar. It has been proposed that the 

learning of argument structure constructions can be seen as a categorization process (Goldberg, 1995; 

Goldberg, Casenhiser, & Sethuraman, 2004): abstract constructions emerge as a result of generalizing 

over individual instances. Similarly, our computational model is exposed to a number of individual verb 

usages, and categorizes them based on their similarity and the size (or the degree of entrenchment: see, 

e.g., Schmid, 2016) of the existing clusters. 

L1 and L2 verb usages are not explicitly marked as such. This means that, if the model encounters an L2 

usage very similar to an existing L1 construction, it may add the L2 usage to the L1 constructions, 

making this construction “blended”. Since the blended construction already contains an L2 usage, it is 

more likely to attract additional L2 usages, so that the process is reinforced. At the same time, in some 

simulations there may be very few or no blended clusters, depending on the exact input usages and the 

order of their presentation. This approach follows the theories which suggest that abstract constructions 

may be shared between L1 and L2 (e.g., Bernolet, Hartsuiker, & Pickering, 2013). This idea is supported 

by existing data on cross-linguistic structural priming (e.g., Bernolet, Hartsuiker, & Pickering, 2013) and 

on the use of L2 constructions to comprehend L1 sentences (Higby et al., 2016).3 

Speaking of the input to our model, individual verb usages consist of multiple features, representing an 

utterance and its perceptual context. Importantly for this study, while the information about the animacy 

of the linguistic referents is provided within one of the features (animate is one of the existing argument  

role properties, see section 3.2.2 below), the animacy cue does not have a status of an independent feature 

in the model, following the existing implementations. This makes it difficult to provide clear predictions 

regarding the impact of animacy on sentence interpretation, as in Kempe and MacWhinney (1998), and 

we refrain from carrying out the analysis of animacy in this study. 



 

 

 

Another important issue is how the effect of CLI is manifested in this model. Whenever the model has to 

make a decision regarding a particular instance, it examines the full repertoire of the acquired 

constructions (“the constructicon”) to collect evidence in favor of each alternative. Because the 

constructicon contains both L1 and L2 knowledge, the effect of CLI is always present, in theory. 

However, in practice, the amount of CLI varies: it can be negligibly small when L1 and L2 are very 

dissimilar and there are no blended clusters, or it can be very high when the languages are very similar 

and/or there are many blended clusters. All these issues are described in more detail in the following 

sections. 

3.2. Input to the model 

3.2.1. Input representations 

The input to the model consists of individual verb usages, which we call argument structure (AS) 

instances. Each AS instance comprises multiple independent features: lexical, semantic, and syntactic. 

Further, we make two important distinctions: between distributional features (FD) and symbolic features 

(FS), and between global (FG) and local features (FL). Consider an example instance in Table 1. 

Symbolic features carry values expressed by a single symbol (e.g., head predicate: touch; number of 

arguments: 2). In contrast, each value of a distributional feature is a set of elements (e.g., head properties: 

{ACTION, CAUSAL, MANIPULATE, PHYSICAL}). As for the global vs. local features, the former relate to the 

utterance or the described event as a whole (e.g., the head predicate), while the latter are tied to a 

particular participant of the event (e.g., an argument or its lexical meaning). 

As we demonstrate in the next section, these two distinctions are important in the formal model. In 

particular, introducing the notion of local features helps us to simulate the learning of free word order 

languages in a more naturalistic manner. First, however, we briefly describe how the data sets for the 

model were obtained. 

3.2.2. Data collection 

In this study, we use a part of the available corpus described in Matusevych, Alishahi, and Backus 

(2016a). Specifically, we employ four small data sets of child-directed speech: Russian, German, English, 

and French. The sentences in these data sets were extracted from the respective corpora in CHILDES data 

base (MacWhinney, 2000),4 and approximately 500 verb usages in each language were manually 



 

 

 

annotated with the features listed in Table 1. The lexical meanings of noun arguments were automatically 

extracted from a lexical database WordNet (G. A. Miller, 1995). 

 

Table 1: An AS instance for the Russian equivalent of the sentence The snake touches the rooster.5 

Feature Type Value 

Head predicate Global, symbolic touch 

Head properties Global, distributional {ACTION, CAUSAL, MANIPULATE, 
PHYSICAL} 

Head position Global, symbolic 2 

Number of arguments Global, symbolic 2 

Arg.1 Local, symbolic snake 

Arg.2 Local, symbolic rooster 

Arg.1 case Local, distributional {NOM} 

Arg.2 case Local, distributional {GEN, ACC} 

Arg.1 lexical meaning Local, distributional {DIAPSIDE, REPTILE, …, CAUSAL 
AGENT} 

Arg.2 lexical meaning Local, distributional {CHICKEN, DOMESTIC FOWL, …, 
CAUSAL AGENT} 

Arg.1 role properties Local, distributional {ACTING, ANIMATE, …, VOLITIONAL} 

Arg.2 role properties Local, distributional {ANIMATE, CONCRETE, …, TOUCHED} 

Arg.1 preposition Local, symbolic N/A 

Arg.2 preposition Local, symbolic N/A 

Arg.1 position Local, symbolic 1 

Arg.2 position Local, symbolic 2 

 

 

 

 



 

 

 

3.3. Learning process 

3.3.1. Key components 

During the learning, the model receives input instances one by one, and the learning consists in grouping 

them into clusters, which potentially correspond to argument structure constructions. The initial state of 

the model’s knowledge is a single empty cluster. While the first instance is always placed into such an 

empty cluster, for any subsequent instance I each existing cluster C is considered, including an empty 

one. The goal is to find the “best” (most probable) cluster bestC for the encountered instance I. 

)|(maxarg)( ICPIC
C

best =      (1) 

The conditional probability in (1), )|( ICP , cannot be estimated directly; therefore, the Bayes rule is 

applied: 

( ) ( ) ( )
( )IP

C|IPCP=I|CP      (2) 

The denominator in (2), which is the probability of the (given) instance, has the same value for all clusters 

and does not affect the decision. This is why it can be excluded from the computation: 

( ) ( ) ( )C|IPCPI|CP ∝      (3) 

Equation (3) has two components: the prior probability of a cluster, )(CP , and the conditional 

probability of the instance given the cluster, )|( CIP . 

The prior is set to be proportional to the number of AS instances previously put into this cluster, C , 

which is normalized by the total number of instances encountered so far ( )1+N , see equation (4). The 

idea is that frequent categories (clusters) are more entrenched than non-frequent ones: the learner can 

access frequent clusters easier, and is more likely to add the new instance into such clusters. 

( ) | |
1+N

C=CP        (4) 

An empty cluster is also considered for each incoming AS instance, with potentially one member: the 

current instance. 



 

 

 

The conditional probability in (3), )|( CIP , accounts for the degree of similarity between the new 

instance and each cluster. The main difference of the present model from its earlier versions relates to 

how such similarity is computed, which we explain in the next section. 

3.3.2. Interpreting instances 

In the existing studies with this model, the similarity between an instance and a cluster was compared in 

terms of each feature independently: how similar are the verb meanings in the instance and the cluster, the 

first arguments, the second arguments, and so on. This general approach is preserved in this study. 

However, consider the following two sentences (8–9) and imagine that the model first encounters an 

instance based on sentence (8), places it into an appropriate cluster, and then encounters an instance based 

on sentence (9). Without an ability to “swap” the arguments for the purpose of comparing their similarity, 

the model would not be able to compare the first argument giraffe in (8) to the second argument giraffe in 

(9), and the two instances would most probably not be grouped together, despite having nearly identical 

meanings. 

(8) Жираф-а  видит  петух-⌀. 

zhiraf-a   vidit  petuh-⌀ 

giraffe-M.ACC  see:3SG  rooster-M.NOM 

‘The rooster sees the giraffe.’ 

(9) Петух-⌀  видит  жираф-а. 

petuh-⌀   vidit  zhiraf-a 

rooster-M.NOM  see:3SG  giraffe-M.ACC 

‘The rooster sees the giraffe.’ 

This is why we need to ensure that the model is able to compute the similarity not only between the local 

features of the first argument in a new instance and in each cluster C, but also between features of 

arguments with different indexes: first to second, first to third, and so on. Such a mechanism is essential 

for languages with free word order. 

Therefore, multiple possible interpretations i of the instance I are considered in the model. Each 

interpretation i carries exactly the same feature values as I, but the indexes of the local features FL in i 

may be swapped. In simple terms, whenever the model encounters an instance extracted from the 

sentence (8), it considers its original order of arguments, but also the reversed one (9). This is not to say 



 

 

 

that this mechanism simulates what human learners do at the implementational level: it is unlikely that 

humans mentally swap the arguments to consider all the alternative word orders. However, humans must 

be able to see similarities between sentences such as (8) and (9), and this is argued to be reflected in the 

resulting cognitive representations: think of the notions of alternations and allostructions in construction 

grammar (Cappelle, 2006; Perek, 2015). 

In formal terms, let us denote the value of a particular local feature in the interpretation i as i
kFL , the 

value of the respective feature in the instance I as I
kFL , and the set of all permutations for this feature 

( )I
kFLS . Then the set of all possible interpretations ℙ ( )I  can be defined as provided in (5). 

ℙ ( ) ( ){ }I
k

i
k

I
k

i
k FGFGFLSFLiI =∀∈∀= ,:     (5) 

This way, the model considers each possible argument order, and selects the one with the highest 

similarity to one of the existing clusters. This maximal similarity value is considered to be the resulting 

conditional probability, see equation (6). 

( ){( ∈= iCiPCIP :|max)|(  ℙ }))(I      (6) 

The overall similarity value between an interpretation i and a cluster C is taken to be a product of 

similarities of individual features, but the individual values for all the symbolic features FS are weighed 

by a parameter w,6 while the distributional features FD preserve their original similarity values (equation 

7). This is necessary, because otherwise the symbolic features related to the sentence form (lexical 

arguments, argument positions, etc.) dominate the clustering process, and the model’s decisions are 

informed mainly by the form of the instances, but not their meaning. 
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Finally, the independent similarities for symbolic and distributional features are computed differently, see 

(8–9). 
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In equation (8), the term | |}{ C
k

i
k

i
k FSFS|FS ∈  denotes how many times i

kFS (the value of the feature 

kFS  observed in the interpretation i) occurs in the cluster C, and the term C
kFS  (the total number of 

occurrences of the target feature in C) serves as the normalizing factor. The smoothing parameter λ is 

introduced both in the numerator and the denominator, but in the latter case it is multiplied by the total 

number of different values of the target feature in the data set. This method would not be robust for 

calculating the similarity in the distributional features, because their values consist of sets, and the set 

equality is very unlikely to hold, so that | | 0}{ =∈ C
k

i
k

i
k FSFS|FS . This is why the method given in (9) is 

used: 
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where ( )C|eP  and ( )C|eP ¬  are computed in the same way as in (8), replacing i
kFS  with the 

respective element e, see equation (10): 

( ) | |
| | | |k

C
k

C
k

i
k

i
ki

k FDλ+FD
λ+FDe|e=C|eP }{ ∈

    (10) 

3.4. Simulated picture-choice task 

At any point, the learning process can be paused, and the model is tested on the picture-choice task. The 

model receives a set of test stimuli, each of which includes a pair of alternatives (Table 2), and has to 

choose the correct one in each pair. Note that each alternative instance comprises all the features used in 

the input: lexical, syntactic, and semantic. The alternatives within each pair are identical, and the only 

difference is in the assignment of the argument roles. As it can be seen from Table 2, the role properties 

of the two arguments are swapped, to simulate what in human experiments is a pair of images with the 

participant roles reversed. 

Given the two alternatives, the model computes their probability given the acquired knowledge, which 

can be expressed as the sum of the respective probabilities over all the acquired clusters: 

( ) ( ) ( )∑
C

AA CPC|IP=IP      (11) 



 

 

 

Table 2: A pair of test instances for the Russian equivalent of The rooster touches the snake. 

Feature Alternative 1 Alternative 2 

Head predicate Touch touch 

Head properties {ACTION, CAUSAL, 
MANIPULATE, PHYSICAL} 

{ACTION, CAUSAL, 
MANIPULATE, PHYSICAL} 

Head position 2 2 

Number of arguments 2 2 

Arg.1 rooster  rooster 

Arg.2 snake snake 

Arg.1 case {NOM} {NOM} 

Arg.2 case {ACC} {ACC} 

Arg.1 lexical meaning {CHICKEN, DOMESTIC FOWL, 
…, CAUSAL AGENT} 

{CHICKEN, DOMESTIC FOWL, 
…, CAUSAL AGENT} 

Arg.2 lexical meaning {DIAPSIDE, REPTILE, …, 
CAUSAL AGENT} 

{DIAPSIDE, REPTILE, …, 
CAUSAL AGENT} 

Arg.1 role properties {ANIMATE, CONCRETE, …, 
TOUCHED} 

{ACTING, ANIMATE, …, 
VOLITIONAL} 

Arg.2 role properties {ACTING, ANIMATE, …, 
VOLITIONAL} 

{ANIMATE, CONCRETE, …, 
TOUCHED} 

Arg.1 preposition N/A N/A 

Arg.2 preposition N/A N/A 

Arg.1 position 1 1 

Arg.2 position 2 2 

 

To compute the two probabilities in (11), we use the same methods as during the learning: equation (6) 

for computing the conditional probability ( )C|IP A , and equation (4) for the cluster’s prior probability 

( )CP . After evaluating the probability of each alternative, the model selects the more probable one. As 

we mentioned earlier, CLI may be a factor affecting the model’s choice. We next propose a measure of 

CLI. 



 

 

 

3.5. Measuring the amount of CLI 

The model accumulates evidence supporting each alternative from all the acquired clusters. At the same 

time, some clusters contribute to the decision substantially more than others, either because they are 

similar to the test instance, or because they are strongly entrenched in the model’s knowledge. Besides, 

the amount of the non-target language instances in each acquired cluster differs: some clusters are based 

on the instances of a single language (L1 or L2), while others are blended – that is, based on data from 

both languages (see Figure 2). To summarize, there are two components that determine the amount of CLI 

given an instance I: the contribution of each cluster to the model’s choice, and the number of the non-

target language instances in the cluster. 

If we denote the language of an instance I as L(I), then the amount of CLI can be defined as follows: 

( ) ( ) ( ) { }
∑

≠∈

C C
ILJLCJJ

CPC|IP=ICLI
)()(,|

,   (12) 

where the fraction denotes the proportion of instances from the non-target language in the cluster C. 

 

 

Figure 2: A subset of five clusters emerged in a bilingual Russian–English simulated learner (only head 
predicates are shown, other features omitted for simplicity). 



 

 

 

In the picture-choice task, each pair has a correct alternative Icorrect, and an incorrect alternative Iincorrect. 

Using equation (12), we can compute the amount of CLI independently for each alternative. In this 

particular task the two alternatives are competing, and the support from L1 for Icorrect can be seen as 

positive CLI, while the support from L1 for Iincorrect is negative. This is why the best way to quantify the 

impact of CLI in the picture-choice task is to measure the difference in the amount of CLI between the 

two alternatives: 

( ) ( ) ( )incorrectcorrect ICLIICLI=ICLI −∆    (13) 

A positive value of ( )ICLI∆  would mean that the positive effect of CLI prevails, while a negative value 

shows that CLI is damaging for the model’s decision on a particular pair of instances. 

4. Simulations and results 

This section presents our computational simulations of the two target experiments. This is followed by 

two more simulations, which allow us to make novel predictions regarding the comprehension of case-

marking cues in additional language pairs. 

4.1. Simulation set 1 

In this experiment, we study whether our computational model performs similar to humans in the picture-

choice task. Based on Janssen et al.’s (2015) results, we expect that the model will reach higher accuracy 

in the converging cue condition than in the conflicting cue condition. We also interpret the results in 

terms of CLI. 

4.1.1. Simulation details 

The 40 Russian stimuli from Janssen et al.’s (2015) experiment were obtained from the authors and 

annotated in the same way as our input data set. We had neither Hebrew nor Dutch data to simulate the 

same language pairs as in the original experiments, yet the results of Janssen et al. were consistent across 

the two groups of bilinguals, which suggests that the findings generalize on other bilingual children, as 

long as they speak Russian and an SVO language without case marking. Among our data sets, English 

and French are such languages; therefore, we simulate Russian–English and Russian–French bilinguals, 

in addition to Russian monolinguals. 

Both in monolingual and bilingual simulations the model received a total of 400 AS instances (value 

established empirically): for monolinguals, these were Russian instances only, while for bilinguals the 



 

 

 

input included Russian and English/French instances in equal proportion. After that, the model in each 

condition performed the picture-choice task on the 40 test instances. 

4.1.2. Results 

 

 

(a) Original results of Janssen et al. Reprinted from “On-line comprehension of Russian case cues in 

monolingual Russian and bilingual Russian-Dutch and Russian-Hebrew children”, 2015, by B. Janssen, 

N. Meir, A. Baker, and S. Armon-Lotem. In E. Grillo & K. Jepson (Eds.), Proceedings of the 39th Annual 

Boston University Conference on Language Development, p. 273. Copyright 2015 by B. Janssen. Adapted 

with permission. 

 

(b) Results of our simulations. 

Figure 3: Simulating the experiment of Janssen et al. (2015). 



 

 

 

 

Figure 3 provides a visual comparison of our results vs. human data from Janssen et al. (2015). There are 

three groups in each Figure: Russian monolinguals and two groups of bilinguals – Russian–Dutch and 

Russian–Hebrew (in the original study), or Russian–French and Russian– English (in our simulations). 

Each group is tested in two conditions: on the stimuli with converging cues and with conflicting cues. The 

accuracy is measured as the ratio of the correct choices to the total number of replies. We can observe the 

following similarities between the two studies: 

1. All groups of learners in both studies perform high in the converging condition: see the gray bar plot in 

each pair. 

2. Monolingual Russian learners (human as well as simulated) perform above chance in the conflicting 

condition, although not as high as in the converging condition: see the pair of bar plots on the left. 

3. All bilingual learners perform either at chance or below chance in the conflicting condition: see the 

white bar plots in the two pairs on the right. 

To investigate whether these similarities are statistically significant, we fit a logistic regression model to 

the data, which predicts the odds of making the right choice from three variables used by Janssen et al. 

(2015): group (Russian monolinguals vs. English bilinguals vs. French bilinguals), stimulus cue condition 

(converging vs. conflicting), and stimulus case contrast (nominative–accusative vs. nominative–dative), 

with all the interactions between these variables.7 The summary is provided in Table 3. 

When interpreting the results, it is important to keep in mind three points. First, the reference level in the 

Table is the Russian monolingual group, conflicting cues and nominative–accusative case contrast. 

Second, to make the results more interpretable, we report them in terms of the probability of selecting the 

correct alternative in a pair of instances, P(Icorrect). Finally, only some pairwise comparisons between 

various factor levels are reported in the Table: to obtain the missing comparisons, we use lsmeans 

package for R (Lenth, 2016). 

First, there is a significant effect of type, which means that simulated Russian speakers interpret the 

nominative–accusative stimuli with conflicting cues less accurately than such stimuli with converging 

cues: P(Icorrect) = .84 vs. .97. Our post-hoc pairwise comparisons confirm that this effect is significant in 

all the other group–case conditions. 

 



 

 

 

 

Table 3: Summary of the logistic regression model (in)correct ~ group × type × case, fitted to the data 
from our simulation of Janssen et al.’s (2015) experiment. 

Variable β SE  P P(Icorrect)a 

(Intercept)b 1.67 0.10 <.001 .84 

Group:En −1.12 0.23 <.001 .63 

Group:Fr −0.91 0.22 <.001 .68 

Type:Conv 1.73 0.22 <.001 .97 

Case:DAT −1.12 0.21 <.001 .63 

Group:En × Type:Conv −0.33 0.26 .20 .88 

Group:Fr × Type:Conv −1.37 0.25 <.001 .75 

Group:En × Case:DAT −1.24 0.27 <.001 .14 

Group:Fr × Case:DAT −0.41 0.24 .01 .32 

Type:Conv × Case:DAT −0.86 0.24 <.001 .81 

Group:En × Type:Conv × Case:DAT 4.10 0.31 <.001 .94 

Group:Fr × Type:Conv × Case:DAT 3.08 0.29 <.001 .86 
a This variable shows the resulting probability of selecting the correct alternative in a particular condition: 
for example, the value .88 in the line “Group:En × Type:Conv” means that the English group selects the 
correct alternative on a test stimulus with converging cues (and nominative–accusative contrast, which is 
the baseline) with the probability of 88%. Each P(Icorrect) value is computed using an inverse-logit 
transformation on the value of the respective β-coefficient, and adding it up to the identically transformed 
baseline probability: intercept for the main effects, main effects for the two-way interactions, and so on. 
b Intercept corresponds to the probability of choosing the correct alternative by the Russian monolingual 
group on the stimuli with conflicting cue type and nominative–accusative case contrast. 

  

More importantly, we observe a significant effect of group. The monolinguals perform significantly more 

accurately than Russian–English and Russian–French bilinguals on the nominative–accusative stimuli 

with conflicting cues: P(Icorrect) = .84 vs. .63 and .68, respectively. The post-hoc comparisons yield the 

same effect for all the other types of stimuli, apart from the ones with converging cues and nominative–

dative case contrast. Together with the main effect of case reported in the Table, this suggests that the 

Russian monolinguals could not successfully acquire the nominative–dative cue contrast. This differs 



 

 

 

from the human subject results reported by Janssen et al. (2015). However, an analysis of the input data to 

our model explains this difference: the dative case occurs only 25 times in our Russian data, and not a 

single time in a noun-verb-noun sentence. Given such input, it is unsurprising that the model could not 

successfully acquire the nominative–dative cue contrast. 

Despite this difference, our main finding in terms of the competition of the two cues, case marking and 

word order, is compatible with Janssen et al.’s (2015) results: OVS sentences are interpreted less 

accurately than SVO sentences, and this difference is most evident in bilingual learners. Given the 

competition of cues in our model, this result supports the explanation provided by the Competition 

Model. Next, we will investigate whether the results can be explained in terms of CLI. 

4.1.3. Analysis of CLI 

 

Figure 4: Average accuracy vs. amount of CLI per stimulus in simulation set 1, with a fitted linear 
regression line. 

 

We use the ( )ICLI∆  measure introduced in section 3.5. Our main prediction concerns the bilinguals’ 

interpretation of the OVS sentences: we expect the negative effect of CLI to prevail over its positive 

effect. This is why we first zoom in on the conflicting cue condition. The arithmetic mean of ( )ICLI∆  is 



 

 

 

negative in this condition for each group of bilinguals: –0.06 for the English group, and –0.05 for the 

French group. This is different from the converging cue condition, in which the corresponding values of 

( )ICLI∆  are positive: 0.04 and 0.03. Although the difference is not large in absolute terms, the signs of 

the means are opposite, and the Mann–Whitney U test shows that the difference is statistically significant: 

U = 2,079,000, p < .001. The difference between the two types of stimuli is clearly visible in Figure 4: the 

average accuracy tends to be higher for those stimuli which yield more positive CLI. All together, this 

supports our prediction that the negative CLI prevails in OVS sentences, leading to their 

misinterpretation. 

To test whether ( )ICLI∆  adds any explanatory power to the regression model reported in the previous 

section (Table 3), we updated the model by including various interactions between ( )ICLI∆ , group, 

type, and case: the resulting model was (in)correct ~ ( )ICLI∆  × group × type × case – ( )ICLI∆  × type 

– ( )ICLI∆  × case. In the model fitted to the data, the coefficients for the predictors and their interactions 

differed to a certain extent in their absolute values from those in the original model, but these differences 

were small and did not affect the main results – for brevity we do not report the full model. Most 

importantly, the amount of CLI had a significant effect on the accuracy of the two bilingual groups on the 

sentences with conflicting cues, judging by the respective β-coefficients. Also, the comparison between 

the two regression models, with and without ( )ICLI∆ , in terms of the corrected Akaike information 

criterion (AICc) demonstrated that the model which takes into account the amount of CLI predicted the 

data better: ∆AICc = 568. This suggests that our ∆CLI measure is able to capture the amount of CLI, as 

well as its effect on the model’s choice in the target task. 

To summarize, the results of our simulation were similar to those reported by Janssen et al. (2015), 

although due to the lack of dative nouns in our input data the model could not successfully acquire the 

dative–nominative contrast. Taken into account the type of our computational model, this result supports 

the competition of cues as a plausible explanation for the misinterpretation of OVS sentences. Our 

analysis of CLI showed that the ( )ICLI∆  measure could serve as an additional independent predictor of 

the model’s accuracy in the target task. 

In the next experiment, we simulate a different population of learners, and further investigate the role of 

CLI in the target task. 

4.2. Simulation set 2 



 

 

 

In our second set of simulations, we proceed with the experiment of Kempe and MacWhinney (1998). 

Just as in the previous section, we first test our model by simulating the picture-choice task in the two 

populations from the target experiment: adult L2 Russian learners and L2 German learners. Second, we 

investigate whether the impact of CLI on the comprehension of case-marking cues in Russian is 

manifested in these two populations. Ultimately, this set of simulations will also allow us to make more 

informed predictions about case-marking comprehension in other language pairs. 

We start, however, with an additional data analysis. Kempe and MacWhinney (1998) report that the 

validity of the case-marking cues in Russian is higher than in German, which makes German case-

marking cues more difficult to acquire and comprehend. Following their method (see section 2.3), we 

calculated the validity of case-marking and word order cues for all the transitive sentences in our data 

sets. The overall pattern (Table 4) is in line with what Kempe and MacWhinney report for their language 

samples, although the absolute values differ, probably due to the small number of target sentences in our 

data set (40 in Russian and 70 in German). 

The validity of the case-marking cues, especially the accusative, is lower in German than in Russian – this 

is why we expect that our model will interpret Russian OVS sentences more successfully than German 

OVS sentences, just as the human participants in Kempe and MacWhinney’s experiment. 

 

Table 4: Availability, reliability, and validity of the case-marking cues in transitive sentences in our data 

sets. 

 German Russian 
Cue Availability Reliability Validity Availability Reliability Validity 
Word order       

(Agent first) 1.00 .97 .97 1.00 .78 .78 
VSO .40 1.00 .40 — — — 
SVO .60 .96 .57 .58 1.00 .58 
SOV — — — .43 .47 .20 

Case       

(Total) .80 1.00 .80 1.00 1.00 1.00 

Nom. .77 1.00 .77 .98 1.00 .98 

Acc. .13 1.00 .13 .55 1.00 .55 

 



 

 

 

4.2.1. Simulation details 

We annotated the original stimuli available from Kempe and MacWhinney’s (1998) study, using the same 

approach as for our input data sets. Recall that our data sets were obtained from child-directed speech, 

therefore the L1 input to our model in this experiment may not be as rich as the input that adult speakers 

are exposed to through the course of their life. Besides, the type of L2 input that adult learners receive 

differs from child-directed speech. Therefore, we use our data sets as an approximation of the input only, 

although they are representative in terms of the case marking in Russian and German transitive sentences. 

The model was exposed to 600 English instances, followed by 600 instances of mixed input, in which 

English and Russian (or English and German) were contained in equal proportion. Note that these values 

are higher than in our previous simulation set, to better approximate adult L2 learning. After that, the 

model in each condition performed the picture-choice task on the 40 test instances. 

4.2.2. Results 

Figure 5 provides a visual comparison of our results against Kempe and MacWhinney’s (1998) study. 

Each barplot shows how many times the SVO interpretation was chosen (first-noun-as-subject), 

normalized by the total number of (simulated) learners; there are seven groups of stimuli in total, 

depending on the case marking of the first and the second noun in the sentence. The first four groups 

(NEU-NEU, NOM-NEU, NEU-ACC, and NOM-ACC) represent the SVO pattern, and the other three the OVS 

pattern. The Figure reveals the following similarities between the original study and our simulation: 

1. In SVO sentences (four pairs of bar plots on the left), both Russian and German learners predominantly 

choose the first noun in the sentence as the agent. 

2. In OVS sentences (three pairs of bar plots on the right), Russian learners tend to choose the second 

noun in the sentence as the agent, while German learners perform close to chance on this type of stimuli. 

At the same time, Figure 5 also reveals some differences between the two studies. Most importantly, 

human participants perform on SVO sentences with fully neutralized case-marking cues (the utmost left 

pair of bar plots) just as on the other SVO sentences, choosing the first noun as the agent in 

approximately 90% of cases. In contrast, our model exhibits a less clear preference on this type of stimuli: 

the proportion of first-noun choice is approximately 70% in each language. We believe it may be either 

due to the relatively small size of the input data that the model received compared to human speakers, or 



 

 

 

due to the model’s insufficient attention to the word order cue in isolation; we return to this issue in the 

discussion. 

Another difference relates to the relative accuracy on particular types of Russian OVS sentences. For 

Kempe and MacWhinney’s participants, sentences with the neutralized–nominative case contrast were the 

most difficult to interpret among the three types of Russian OVS sentences: note that the height of the 

respective bar plot in Figure 5a is the closest to the chance level. In contrast, our model performed worst 

on the accusative–neutralized case contrast. We see this difference as an artifact of the particular data sets 

used in our simulations. 

To statistically test the difference in accuracy between the two types of stimuli (OVS vs. SVO sentences) 

and between the two languages (German vs. Russian), we fit a logistic mixed-effects model to the data, 

which predicts the odds of making the correct choice from the two mentioned variables and their 

interaction, with random intercepts over learners and stimuli, and with a random slope of the stimulus 

type over learners. The model summary is presented in Table 5. 

Table 5: Summary of the logistic mixed-effects regression model (in)correct ~ group × type + (group | 

simulation) + (1 | sentence), fitted to the data from our simulation of Kempe and MacWhinney’s (1998) 

experiment. 

Variable β SE p P(Icorrect) 
(Intercept)* −0.19 0.33 .76 .45 
Group:Ru 3.04 0.44 <.001 .95 
Type:SVO 5.96 1.01 <.001 1.00 
Group:Ru × Type:SVO −3.39 0.97 <.001 1.00 

* Intercept corresponds to the probability of choosing the correct alternative by the German monolingual 
group on the OVS stimuli. 

 



 

 

 

 

(a) Original results of Kempe and MacWhinney. Reprinted from “The acquisition of case marking by 
adult learners of Russian and German”, 1998, by V. Kempe and B. MacWhinney. Studies in Second 
Language Acquisition, 20, p. 563. Copyright 1998 by Cambridge University Press. Reprinted with 
permission. 

 

 

(b) Results of our simulations. 

Figure 5: Simulating the experiment of Kempe and MacWhinney (1998). 

 



 

 

 

The results demonstrate a significant effect of language: Russian learners perform significantly more 

accurately than German learners on the OVS stimuli: P(Icorrect) = .95 vs. .55, while there is no difference 

on SVO stimuli: P(Icorrect) for both languages is close to 1. There is also a significant effect of sentence 

type: the performance of the German group on SVO sentences is significantly higher than on OVS 

sentences: P(Icorrect) = 1.00 vs. .45. Our post-hoc analysis shows that the same effect is significant for 

Russian learners as well. 

Additionally, we compared the performance of Russian and German simulated learners on each of the 

seven stimulus types shown in Figure 5. A logistic mixed-effects model was fitted to the data on each 

stimulus type with a fixed effect of language (German vs. Russian), a random intercept and a random 

slope of language over individual learners, and a random intercept over individual stimuli. The results 

demonstrated that the difference between Russian and German learners is only statistically significant in 

the three OVS types (the three pairs of bar plots on the right in Figure 5). These findings are in line with 

the results of Kempe and MacWhinney (1998) for the accuracy of case-marking comprehension. 

To conclude, the results support our prediction about the interpretation of SVO vs. OVS sentences. We 

proceed with the analysis of CLI in this set of simulations. 

4.2.3. Analysis of CLI 

Just as in the previous experiment, we investigate whether the choices made by our computational model 

can be explained in terms of CLI. We fit a regression model similar to the one described in the previous 

section, which includes ∆CLI and its interactions as additional predictors. The results demonstrate the 

effect of CLI in OVS sentences: a .1 increase in ∆CLI results in a .04 (German) or .01 (Russian) increase 

in the probability of making the correct choice for OVS sentences. This is also visualized in Figure 6: we 

see that the accuracy tends to be higher for the positive values of ∆CLI. The result shows that the CLI 

measure is highly predictive of the difference between subject groups in the target task. 

At the same time, if we focus on OVS sentences and compare the ∆CLI values in Russian vs. German 

learners, there tends to be no difference: compare the X-coordinate of the OVS points (circles) in Figure 6 

across the two colors. The Mann–Whitney U test also demonstrates no support for the possible difference: 

U = 1,310,400, p = .24. This suggests that it is not the CLI that explains the difference in the 

interpretation of OVS sentences by German vs. Russian learners. Instead, this difference must be 

explained in terms of Russian-to-Russian or German-to-German influence: the higher ambiguity in the 



 

 

 

German case system, compared to the Russian system, leads to the observed difference in the model's 

performance on OVS sentences in Russian vs. German. 

 

Figure 6: Average accuracy vs. amount of CLI per stimulus in simulation set 2, with a fitted linear 
regression line. 

 

To summarize, in this set of simulations we demonstrated that our model produces results similar to the 

human data, when interpreting case-marking cues in Russian and German SVO and OVS sentences. The 

main discrepancy between our results and human subject results was observed in the interpretation of 

sentences with fully neutralized case-marking cues. As for the effect of CLI, it was manifested in this set 

of simulations just as in the previous one, but the amount of CLI could not explain the difference between 

the accuracy of Russian and German learners. Instead, we attribute this difference to the validity of case-

marking cues, suggesting that our computational model is compatible with the Competition Model 

framework. In the next section we demonstrate how novel predictions can be made based on the outcomes 

of our two sets of simulations. 

 4.3. Novel simulations 

We can now go beyond the replication setup and make predictions about the interpretation of case-

marking cues in other bilingual populations. We make two specific predictions regarding the behavior of 



 

 

 

our model and run two additional sets of simulations to test these, followed by an analysis of the results in 

terms of CLI. 

1. Janssen et al. (2015) in their study explain that their result, in particular the low accuracy on the 

conflicting sentences in bilinguals, may be “due to bilingualism in itself, ... or to the fact that the 

other language provided no support for case cues” (p. 276). At the same time, the presence or 

absence of case cues in the other language has been shown to be important: for example, L1 

Italian speakers interpret L2 Spanish OVS sentences better than L1 English speakers (Isabelli, 

2008). Similarly, we hypothesize that the knowledge of German with its rich case marking can be 

beneficial for the acquisition of Russian cases, and that Russian–German bilingual children would 

interpret Russian sentences more accurately than Russian–English or Russian–French bilinguals. 

2. Kempe and MacWhinney (1998) demonstrate that case-marking cues are more difficult to acquire 

in German than in Russian, and our simulation set 2 validates this result applied to our model. It 

is therefore reasonable to hypothesize that monolingual German children would perform less 

accurately on OVS sentences in the picture-choice task when tested on German, compared to 

Russian monolingual children tested on Russian (i.e., as in the experiment of Janssen et al. and 

our first set of simulations). At the same time, bilingual French–German and English–German 

children are expected to perform poorly on OVS sentences, while Russian–German children may 

benefit from their knowledge of Russian and achieve higher accuracy compared to the two other 

groups of bilinguals. 

Using our computational model, we run two additional simulations to pre-test these hypotheses. 

4.3.1. Bilingual Russian–German children 

Following the setup described in section 4.1.1, we simulate an additional group within the same 

experiment: Russian–German bilinguals. This population of simulated learners is tested on the same 

Russian stimuli as the other three groups (Russian monolinguals, Russian–English and Russian–French 

bilinguals). The comprehension accuracy for the new group (utmost right plots) against the other groups 

is shown in Figure 7. It suggests that Russian–German bilingual learners have an advantage in this task 

over Russian–English and Russian–French learners. This prediction must be tested experimentally with 

human participants. At the same time, to understand whether this effect in our model is caused by positive 

CLI from Russian to German, we believe it is useful to look in more detail at the simulated data. 



 

 

 

 

Figure 7: Accuracy of simulated Russian–German bilinguals against the other groups. 

 

First, we statistically test the pairwise differences in accuracy between the Russian–German group and the 

other groups across the types of our stimuli: a logistic regression model (in)correct ~ group × type × case 

is fitted to the data for all the five groups, just as in simulation set 1 (section 4.1.2), and then all the 

pairwise contrasts between the Russian–German group vs. each of the other groups are analyzed using 

lsmeans package. The summary of the contrasts is provided in Table 6. 

We are mostly interested in the difference between Russian–German vs. the other two groups of 

bilinguals. Table 6 suggests that the former perform substantially better than the other two groups on 

dative-verb-nominative sentences, and than the Russian–French group (but not Russian–English) on 

nominative-verb-accusative and nominative-verb-dative sentences. Because there are no significant 

differences for the other types of sentences, our hypothesis about the facilitatory effect of the German 

knowledge is supported only partially. 

To investigate the contribution of CLI to this result, we can compare the differences in accuracy to the 

differences in the amount of CLI across different groups of learners. A linear mixed-effects model has 

been fitted to the data, predicting the amount of CLI (∆CLI), and the pairwise contrasts were computed 

(see Table 6 on the right). We can see that the greatest difference in the amount of CLI is observed for 

dative-verb-nominative sentences (∆LSM = −0.10 and −0.06), which is the only type of stimuli on which 

the Russian–German group scores higher in accuracy than both other bilingual groups. This means that 

the amount of positive CLI for this type of stimuli is higher in Russian–German group than in Russian–

French and Russian–English group, in line with our prediction. 

 



 

 

 

Table 6: Summary of pairwise linear contrasts for accuracy and CLI using least-square means (LSM). 

   Accuracy CLI 

Contrasta Type Case ∆LSM SE pb ∆LSM SE p 

Ru–Gec conflicting Acc  0.83  0.12  <.001  0.02  0.00  <.01 

En–Ge conflicting Acc –0.29 0.11 .07 –0.03 0.00 <.001 

Fr–Ge conflicting Acc –0.08 0.11 1.00 –0.02 0.00 <.001 

Ru–Ge converging Acc 1.28 0.23 <.001 0.00 0.00 1.00 

En–Ge converging Acc –0.17 0.16 .96 0.01 0.00 .86 

Fr–Ge converging Acc –1.01 0.14 <.001 0.01 0.00 .94 

Ru–Ge conflicting Dat 0.10 0.08 .91 –0.02 0.00 <.001 

En–Ge conflicting Dat –2.25 0.10 <.001 –0.10 0.00 <.001 

Fr–Ge conflicting Dat –1.22 0.08 <.001 –0.06 0.00 <.001 

Ru–Ge converging Dat –1.36 0.15 <.001 –0.05 0.00 <.001 

En–Ge converging Dat 0.05 0.18 1.00 0.01 0.00 .01 

Fr–Ge converging Dat –0.98 0.16 <.001 –0.02 0.00 <.001 
a German-Russian bilingual learners are at the second position in each contrast: negative Δ values are 
associated with the higher estimate of the respective coefficient in the Russian–German group. 
b The p-values are adjusted for multiple comparisons (so-called multivariate t-probabilities) using the mvt 
method (Lenth, 2016). 
c “Ru” is the monolingual group, while “Ge”, “En” and “Fr” denote the respective bilingual groups. 

 

As for the other types of stimuli, the amount of CLI in German is simply not high enough to facilitate the 

interpretation of Russian sentences: this can be demonstrated by plotting the average amount of CLI 

across the three groups of bilinguals, see Figure 8. Note that in the conflicting cue condition, the amount 

of CLI is always higher in the German group than in the other two groups. However, its absolute value is 

positive only for the dative-verb-nominative sentences, but not for accusative-verb-nominative. This 

explains why we observe no differences across the bilingual groups for this latter type of sentences. 



 

 

 

 

Figure 8: Amount of CLI (∆CLI) per group, averaged over stimuli, in the Russian picture-choice task. 

 

To summarize, our simulated data only partially confirms our prediction that the knowledge of German 

can facilitate the interpretation of Russian case marking. The lack of the hypothesized effect can be 

explained by the amount of CLI across different types of stimuli. 

4.3.2. Bilingual and monolingual German children 

Until this point, we have simulated the experiment of Janssen et al. (2015) using Russian sentences. Our 

final prediction, however, concerns case comprehension in German. We use the same setup as in 

simulation set 1, but this time simulating German monolingual children and three groups of bilinguals: 

German–French, German–English, and German–Russian. All the four groups are tested on German 

instances. Ideally, we would translate Janssen et al.’s stimuli into German, however many of such 

translated sentences would be fully neutralized in terms of their case-marking cues. To give an example, 

the sentence Кукла любит жирафа ‘The doll loves the giraffe’ would translate into German as Die 

Puppe liebt die Giraffe, where the case of both nouns can be interpreted as either accusative or 

nominative. Therefore, in this experiment we used a subset of Kempe and MacWhinney’s German 

stimuli, 24 out of 32: the 8 fully neutralized stimuli were eliminated. 



 

 

 

 

Figure 9: Accuracy per group in the German picture-choice task. 

 

The performance of the four groups is shown in Figure 9 (the significance was tested with a logistic 

mixed-effects model fitted to the data)8. First of all, the results show that German monolinguals (the 

utmost left pair of plots) perform well in the converging cue condition, but close to chance in the 

conflicting cue condition. This is in line with the findings of Kempe and MacWhinney (1998) for L2 

learners (which we simulated in experiment 2), and also with the existing data suggesting that German 

children are only able to interpret case marking in OVS sentences around the age of seven (Dittmar et al., 

2008). Besides, this result is clearly different from the accuracy of simulated Russian monolinguals in our 

simulation set 1, who performed well in the conflicting cue condition. This supports our prediction about 

the accuracy of monolinguals on German vs. Russian OVS sentences. 

As for the bilingual groups, both German–English and German–French bilinguals perform in the 

conflicting cue condition less accurately than monolinguals. Interestingly, our simulated German–Russian 

bilinguals perform significantly better than German monolinguals in this condition. While this is 

inconsistent with the view that bilinguals lag behind monolinguals in their language development (Hulk, 

2004; Schmitz, 2006), bilingual children have been shown to acquire some grammatical features earlier 

than monolinguals (Meisel, 1986; Pléh, Jarovinskij, & Balajan, 1987). In our model, this may only 

happen if bilinguals benefit from positive CLI. To investigate this, we analyze the ∆CLI values for all the 

groups, focusing on the conflicting condition. The comparison is provided in Figure 10. Note the obvious 

difference across the groups in the conflicting condition, but not in the converging condition. The 

direction of this difference is as expected: the effect of CLI is positive in German–Russian bilinguals and 

negative in the other two groups. 



 

 

 

 

Figure 10: Amount of CLI (∆CLI) per group, averaged over stimuli, in the German picture-choice task. 

 

To summarize, the results of this simulation set support our prediction: the accuracy of simulated 

monolinguals on the sentences with conflicting cues is lower in German than in Russian. This is in line 

with Kempe and MacWhinney’s (1998) findings and with the results of our simulation set 2, 

corroborating the idea in the Competition Model that the validity of case cues is important. The results 

also confirm our hypothesis about the performance of the bilingual groups on the German OVS sentences: 

while the simulated German–French and German–English bilinguals performed poorly on such sentences, 

German–Russian bilinguals benefited from positive CLI and achieved high accuracy. 

5. Discussion 

Our goal in this article was to demonstrate how the amount of CLI can be measured in a computational 

model, and how such a measure can be applied for explaining a particular phenomenon, the 

comprehension of case-marking cues. 

5.1. Quantifying the effect of CLI 

We introduced a measure of CLI and used it to quantify the CLI effect in the picture-choice task. This 

measure helped us to determine the contribution of CLI to the observed result. As it was demonstrated, 

the measure can be used both on the level of a particular group or condition (e.g., average amount of CLI 

in the interpretation of OVS sentences by Russian–German bilinguals), and on the level of a particular 

test item (cf. Figure 4), in case the goal is to study the differences between individual sentences. 

In this study, we only employed a particular linguistic task related to sentence interpretation, but it is 

perfectly possible to use this computational model for simulating other linguistic tasks: filling in verbs or 



 

 

 

prepositions, verb definition, verb selection, and others (see Matusevych et al., 2016b, 2017). For all these 

tasks, the same type of measure (CLI or ∆CLI) can be used to quantify the amount of CLI and shed light 

on its role in language comprehension and production. 

As we demonstrated in this study, this measure can help us explain the observed linguistic behavior of 

human participants, as well as make informed predictions about such behavior in groups that have not 

been studied yet (our novel simulations). A potential drawback of this measure is that it may not be 

possible at the moment to verify it with human participants. As we argue in section 1.1, the existing 

measures of CLI in human speakers are based on their language use, and not on the actual linguistic 

representations, as in the present study. At the same time, the development of neuroimaging tools 

measuring brain activation in bilingual and L2 speakers (e.g., Higby et al., 2016; Jeong, Sugiura, & Sassa, 

2007; Yokoyama, Kim, Uchida, Miyamoto, Yoshimoto, & Kawashima, 2013) may allow for a proper 

evaluation of our CLI measure in the future. 

5.2. CLI and “agent-first” in case-marking cue comprehension 

Speaking about the linguistic phenomenon of interest – case-marking cue comprehension – it was 

demonstrated in this study that our probabilistic computational model performed in the target task similar 

to human learners: early bilinguals in the experiment of Janssen et al. (2015) and L2 learners in the 

experiment of Kempe and MacWhinney (1998). In section 1.2 we outlined two general views on the role 

of CLI in case-marking cue comprehension by bilingual or L2 learners. Our results suggest that CLI is an 

important factor that affects this kind of comprehension: first, an effect of the amount of CLI was 

observed in all our simulations; second, the performance of simulated Russian–German speakers on 

Russian and German OVS sentences (recall our novel sets of simulations) was higher compared to 

bilinguals whose other language had no case-marking cues (i.e., French or English). 

At the same time, our results do not rule out the existence of an independent “agent-first” cognitive 

strategy, not driven by language input, in line with VanPatten’s First-Noun Principle. There is no 

agreement in the literature whether such a strategy is plausible. Yasunaga, Yano, Yasugi, and Koizumi 

(2015) provide an overview of the issue and argue against the universal strategy. On the other hand, 

studies of non-verbal behavior, in which speakers of different languages use the same order of gestures to 

describe an event, provide one type of indirect evidence that an agent-first strategy may exist (Goldin-

Meadow, So, Özyürek, & Mylander, 2008). Another type of evidence is the fact that the subject precedes 

the object in the majority of the world’s languages (e.g., the SVO word order is more common than OVS, 

and SOV is more common than OSV). Our study does not provide conclusive evidence on the issue, but it 



 

 

 

may be the case that the mismatch between the performance of our model and Kempe and MacWhinney’s 

participants on fully neutralized sentences (recall section 4.2.2) comes from the fact that our model does 

not employ an independent “agent-first” strategy, while human speakers may do so. At the same time, 

there are alternative explanations of the mentioned mismatch, which we discuss in section 5.5. 

Finally, recall from section 1.2 that there are at least two theories promoting the role of CLI: the 

Competition Model and the L1 Transfer Principle. In our model, various features compete with each 

other, which makes it compatible with the Competition Model. This similarity is also supported by the 

data of our simulation set 2: while the amount of CLI could not explain the difference in the performance 

of German–English vs. Russian–English learners on OVS sentences, our analysis of the cue validity in the 

German and Russian input data suggested that the model was sensitive to the cue validity, at least for the 

case-marking cues. This being said, our study supports MacWhinney’s Competition Model as the 

explanation of the misinterpretation of OVS sentences. At the same time, the results do not necessarily 

challenge VanPatten’s L1 Transfer Principle. To our knowledge, the cognitive mechanisms behind this 

principle have not been described in detail, and this is why it is challenging to verify of falsify this 

principle. 

5.3. CLI in argument structure constructions 

The present study also sheds some light on how CLI may occur at the representational level. Given the 

learning mechanism implemented in our computational model, as well as the type of CLI measure used, 

there are two ways for the CLI measure to obtain higher values. First, the learner may have the two 

languages separated in the existing constructions: that is, some constructions are based on L1 only, and 

others on L2 only. In order for the CLI value to be high, in this case the similarity between a test instance 

in the target L2 language and some of the existing L1 (non-target language) constructions must be rather 

high. This is possible, but improbable. 

A more likely alternative explanation is that some constructions are blended, as it was shown in Figure 2. 

There may be substantial variability across simulations in this respect: the number of blended clusters 

depends on the similarity between L1 and L2 data sets used for training the model, but also – to some 

extent – on the exact sample of the training data in each simulation and the order of presentation of 

instances. Given a test instance in L2, the model sometimes makes its choice based on such blended 

constructions, hence the high CLI value. This supports the view that constructional representations may 

be shared across languages (Bernolet, Hartsuiker, & Pickering, 2013; Higby et al., 2016; Salamoura & 

Williams, 2007).  



 

 

 

5.4. Limitations of the study 

It is important to keep in mind that in the present study we did not consider all the cues that affect 

sentence comprehension. In particular, we did not take into account the pragmatics of the utterance, 

expressed in the intonational cues: such cues have been shown to be highly informative for the 

interpretation of participant roles by monolingual German children (Grünloh, Lieven, & Tomasello, 

2011). 

Another factor that was left out of our simulations is the lexical similarity between languages. In the study 

of Isabelli (2008), L1 Italian speakers could interpret L2 Spanish OVS sentences more accurately 

compared to L1 English speakers, and positive CLI was suggested to be responsible for this. However, as 

VanPatten (2015a) noticed, this may also be due to the better familiarity of L1 Italian speakers with L2 

Spanish personal pronouns used in the experiment. This is why lexical similarity, including the potential 

effect of cognates, must be taken into account. In our computational model this effect could be captured 

only for the words spelled identically in the two target languages, such as giraffe–Giraffe in English and 

German. At the same time, there are more cognates between English/French and German, compared to 

Russian – the results in our simulations (in particular, simulation set 2) may have differed to a certain 

extent, had the effect of cognates been taken into account. 

Another limitation of the present study is that the language pairs in our simulation 1 were not the same as 

in Janssen et al.’s study. The model may behave differently on different language pairs: for example, the 

model trained and tested on Russian data performed differently in our simulations than the model trained 

and tested on German data (novel simulation 1 vs. novel simulation 2). Following Kempe and 

MacWhinney’s theory, we explain this by the different strengths of the case-marking cue characterizing 

German and Russian. This explanation, however, does not hold for English, French, Hebrew, or Dutch: 

these languages do not use case marking on nouns (with few exceptions). This is why there might be no 

reason to assume that the model trained on Russian–English or Russian–French data would perform 

differently from the model trained on Russian–Dutch or Russian–Hebrew data. This is also indirectly 

supported by the following facts: first, Janssen et al. (2015) in their study did not observe differences 

between the Russian–Hebrew group and the Russian–Dutch group; and second, in our simulations, we did 

not observe qualitative differences between the Russian–English group and the Russian–French group. 

Finally, the use of computational modeling has its own merits and flaws, and we discuss this in the next 

section. 



 

 

 

5.5. Computational modeling: methodological implications 

The computational model used in the present study leaves out many essential details characterizing the 

cognitive process of human language acquisition. Most prominently, it only focuses on the bottom-up 

mechanism of statistical (implicit) acquisition from input data. Other cognitive mechanisms are not 

accounted for in this model. To give an example, no distinction is drawn between early and late L2 

learners in terms of the learning mechanisms involved in the learning process. This is why it is important 

to keep in mind that computational modeling is only a tool that helps us explain the existing data and/or 

make informed predictions, which should be tested with human participants in the future. 

With this in mind, we can discuss the particular discrepancy between the results of our simulation 2 vs. 

Kempe and MacWhinney’s experimental data: recall that our model did not perform similarly to human 

participants on fully neutralized sentences. There is something that prevents the model from choosing the 

first noun as the agent in such sentences as frequently as humans do. To investigate this, we have 

additionally looked at the performance of the model on individual neutralized sentences, as well as in 

individual simulations. The variation between individual sentences was substantially smaller than 

between simulations: in some simulations it was always the second noun that was selected as the agent. 

We believe this could happen in case there were very few or even only one construction similar to the 

neutralized sentences, and for each sentence the model made its decision mostly based on the evidence 

from this construction. If agent-second sentences prevailed in this construction, the model would choose 

the second noun as the agent. Training the model on a larger corpus could help the model to build richer 

linguistic representations, so that it would make the decision for each test sentence based on a greater 

number of constructions, preventing the situation described above. Another solution could be to adjust the 

feature weights in the model. In the current setup, all features in the input (i.e., word order, head verb, 

prepositions, etc.) equally affect the model’s decision; the only mechanism allowing for setting the 

weights differently is the parameter w, which helps to distinguish between distributional and symbolic 

features, as it is explained in section 3.3.2. However, it may be the case that some features (e.g., word 

order) are always more important for human speakers than others. If we had available data on the relative 

importance of the features, we could set the respective weights for individual features, for example 

forcing the model to prioritize the evidence coming from the word order. 

Another issue worth bringing up here again is that animacy was not an independent feature in the model. 

While it may contrast with the approach taken in Kempe and MacWhinney’s study, the set of features 

representing the input data for our model (recall Table 1) was largely adopted from the previous studies 



 

 

 

with this model, and setting the animacy as an independent feature would be a questionable solution from 

this perspective. The role of the animacy cue in this computational model must be additionally 

investigated in the future. 

5.6. Modeling bilingual populations 

The model’s focus on the mechanism of statistical learning, mentioned in the previous section, affects the 

way bilingual populations are simulated in this study. Here, the only difference between early and late 

simulated learners was the amount of their exposure to L1 prior to the L2 onset. Clearly, in reality the 

differences between early and late L2 learners are much more substantial and may relate to the cognitive 

mechanisms involved in the learning process, to the role of CLI, to the learning style (e.g., type of 

instruction), motivations, and so on. On the one hand, the fact that all these variables are eliminated from 

our computational model makes it a rather simplistic learner. On the other hand, once we adopt such a 

simplistic view on bilingualism promoted by this model, we can simulate various groups of statistical 

learners – monolinguals, early and late bilinguals, various L2 learners – and see whether the mechanism 

of statistical learning alone can capture certain patterns reported in the existing studies with human 

participants. This approach also makes us leave aside the issue of directionality of CLI: in this model, L1 

and L2 can equally affect each other; and as long as the time of onset of the two languages is the same, it 

does not matter which language is considered L1 and which L2. At the same time, we completely agree 

that the mentioned issues are important for the study of bilingualism and SLA, and an ideal computational 

model would need to account for all of them.  

6. Conclusion 

In this study we used an existing computational model of bilingual argument structure acquisition and 

demonstrated how the amount of CLI can be measured in this model. The proposed measure was 

employed to investigate the interpretation of case-marking cues in Russian and German noun–verb–noun 

sentences. Based on the experimental studies of Janssen et al. (2015) and Kempe and MacWhinney 

(1998), in the two sets of simulations we demonstrated that our model yielded the types of linguistic 

behavior similar to humans in the picture-choice task. We then demonstrated that the interpretation of the 

target sentences in our simulations was more accurate when the amount of CLI was positively large. The 

findings were used to make two novel predictions not yet tested with human participants. One of them 

related to the performance of an additional group of Russian–German speakers in the target task with 

Russian test sentences, while the other one concerned the performance of various groups of learners on 

German test sentences. The predictions were largely supported by the novel simulations, which suggests it 



 

 

 

is worth carrying out the respective experiments with human participants in the future, to see whether the 

predicted effects are borne out. The findings of the study are discussed in the context of various theories 

of sentence interpretation, such as the First-Noun Principle and the Competition Model. Our findings 

support the theoretical framework promoted in the Competition Model, although a cognitive strategy 

similar to the First-Noun Principle might still be at play in the task of sentence interpretation. 
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1 We adopt a broad cognitive view on CLI (Jarvis & Pavlenko, 2008), which covers manifestations of CLI both in 
L2 acquisition and in bilingual language use. 

2 Note, however, that the lexical similarity between Italian and Spanish might be a factor in this example 
(VanPatten, 2015a) – we return to this issue in the discussion. 

3 This does not necessarily contradict Green’s (1998) Inhibitory Control Model, in which each language instance 
carries a tag: L1, L2, and so on. Green’s model deals with lemmas, and in our study most lemmas occur only in one 
input language – that is, each lemma implicitly carries information about its language. Therefore, the model’s 
behavior would barely change if we would append a language tag to each lemma (e.g., rooster-L1 instead of 
rooster). 

4 English Manchester corpus (Theakston, Lieven, Pine, & Rowland, 2001); German corpora of Caroline (von 
Stutterheim, 2004), Kerstin (M. Miller, 1979), and Leo (Behrens, 2006); Russian Protassova corpus (Protassova, 
2004) and Tanya corpus (Bar-Shalom & Snyder, 1996); French Paris corpus (Morgenstern & Parisse, 2012; 
Morgenstern, Parisse, Sekali, Bourdoux, & Caet, 2004). 

5 For simplicity, an English translation of the Russian sentence is used. 

6 The value of this parameter is set empirically, together with the value of the smoothing parameter λ. In all the 
simulations presented here, we use λ = 10−14 and w = 0.2. 

7 We additionally tried fitting mixed-effects models to the data, but these did not converge. At the same time, even 
the non-converged models yielded the values of β and SE close to those in the reported model, and the significance 
of the reported effects was not affected. 

8 A question that may arise is why the model performs rather poorly on two sentences in the converging condition: 
see the outliers in Figure 9, which appear in each group of simulations. These are the sentences Die Tochter sucht 
der Löffel ‘The spoon looks for the daughter’ and Die Torte sucht der Löffel ‘The spoon looks for the cake’. Note 
that both sentences include the word form der Löffel at the second position, which denotes two morphological 
homonyms: singular number nominative case and plural number genitive case. This makes the given form 
ambiguous in isolation, and the model has to rely on other cues. In other sentences, such as Den Sohn sucht der 
Löffel ‘The spoon looks for the son’ or Den Teller sucht der Löffel ‘The spoon looks for the plate’, the model 
successfully resolves this ambiguity by attending to the accusative case marking on the noun at the first position: 



 

 

 

                                                                                                                                                                                           
den Sohn or den Teller. This strategy cannot be used in the outlier sentences, because the case marking of the first 
noun is also ambiguous: the nominative and the accusative coincide in the word forms die Tochter and die Torte. 
Thus, both nouns in each of the two sentences are ambiguous, and the model cannot interpret these sentences 
correctly. We believe that training the model on a larger corpus could provide it with more usages of nouns in the 
genitive case, helping to disambiguate the case marking in the target sentences. 
 


