

 1

Extracting Information from
Spoken User Input

Piroska Lendvai
Tilburg University

19 April 2005

Outline

 Two-party communication: Dialogue
• Pragmatics of dialogue
• Semantics of dialogue
• Human - machine dialogue

 A case study on the OVIS corpus
• Detection of miscommunication in dialogue
• Extraction of pragmatic and semantic information from dialogue
• ML issues: Co-learning of dialogue phenomena

Aspects of dialogue

Spoken Dutch corpus

MapTask, ATIS

3 Philip:
{fg|Eh}, you have the missionary camp in the bottom right-hand corner, is that right?

4 Martin:
Yeah, I've got a start.

5 Philip:
Right. {fg|Eh}, if you take ... If you go about an inch exactly to the left of that and stop.

6 Martin:
Okay.

7 Philip:
{fg|Eh}, now you're heading diagonally down and to the left about two inches, {fg|eh},

{ip|til=until} you're within about three quarters of an inch of the bottom of the page. And
at the bottom left-hand corner of the missionary camp.

8 Martin:
Okay.

9 Philip:
Right. {fg|Eh}, to the left have you got gorillas at the bottom left-hand corner or any sort of

10 Martin:
I've got a banana tree.

11 Philip:
Banana tree, right. Okay. {fp|Erm}, if you head left about four inches {ip|til=until} you're at

the bottom left-hand side of that marker, that should leave you within an inch of the left-
hand side of the page and about three quarters of an inch up from the bottom of the page.

AirTravel Information System
 User: I WANT TO GO TO SAN FRANCISCO.
 ATIS: Where from?
 User: BOSTON.
 ATIS: What date will you be travelling on?
 User: I'LL BE LEAVING BOSTON NEXT SUNDAY AND RETURNING

THE FOLLOWING TUESDAY.
 ATIS: These are the flights from Boston to San Francisco on Sunday

January 6. (…)
 User: WHERE DOES THE THIRD ONE STOP?
 ATIS: American flight 813 from Boston to San Francisco on Sunday

January 6 stops in the following places. (…)
 User: WHAT IS THE CHEAPEST FARE FOR THE EARLIEST

NONSTOP FLIGHT THAT SERVES DINNER?
 ATIS: This is the cheapest round-trip fare for the earliest non-stop flights

from Boston to San Francisco serving dinner on Sunday January 6. (…)
 User: BOOK IT.

Properties of dialogue (i)

 Communicative function (purpose): small talk, information exchange, job
interview, task solving

 Form: how is the purpose expressed? Dependent on
• (Artificial) intelligence: human-human vs human-machine, expert vs

naive
• Modality (visual instruments): eye contact yes/no, facial expression,

gestures, spoken vs written style, telephone, keyboard
• Situation: spontaneous/relaxed vs directed/formal
• Structure: Turn taking, multi-party

 2

Properties of dialogue (ii)

 What information can we draw on when understanding the other party?
• Language (verbal instruments):

• Syntax: well/ill-formed
• Prosody: loudness, duration, pitch
• Word usage: large vocabulary vs restricted vs jargon

• Cognitive processes involved: world knowledge, reasoning
• Multi-modality (face, eyes, hands, pointing)

Pragmatics of dialogue

 Speaker’s intentions are manifested by his utterance
 Intentions are formed by and dependent on the situation
 Intentions are referred to by the term “speech act” or “dialogue act”

• “My name is Piroska.” inform
• “My name is Bond.” inform + threat/joke

 Computational pragmatics: detection and processing of dialogue acts
• Discovery of underlying mechanisms in dialogue
• Interpretation of dialogues

 Annotation frameworks (DAMSL, Switchboard, MATE)
 Hierarchy and granularity of dialogue acts

• (“I won’t go tomorrow.”: answer, inform: statement, repeat_statement,
influence_addressee_future_action)

Semantics of dialogue

 Utterance content
 Highly relevant for task-oriented dialogue: factual values that exist in the

world independent of the context of the dialogue
 Need to be extracted to reach the dialgoue’s goal
 In task-oriented dialogue may be referred to as “slots”

• “go to the left of the missionary camp”: go(left_of,missionary_camp)
• “I’d like to book a trip to Northern Italy”: interest(trip,Northern_Italy)
• Semantic parser: a tool that detects such information units

 Involves both segmentation and value extraction
[I’d like to book] [a trip] [to Northern Italy]

 Hierarchy and granularity of slots
 [I’d like to book] - dialogue act
 [a trip] - (vs accomodation vs transport) slot supercategory, “topic”
 [to Northern Italy] - slot value

Human - machine dialogue: Practical use

 Spoken dialogue systems (SDS): software that communicates with a user in
order to perform some task (e.g. book / inform about flights in database).
AKA “information systems“, “conversational agents”

 Save money with automated telephone interfaces that provide info (calling,
transport, weather, booking, banking)

Ook na twaalven reisinformatie?
Bel met de sprekende computer van 9292 via 0900-1475 (€ 0,35 p/m), voor het plannen van uw
treinreis en voor informatie over werkzaamheden en vertragingen.

 Create automated help systems/manuals
 Voice control in smart household appliances / industrial robots / research
 (Provide support for customers in) using e- commerce
 E-mail, voice mail access

Human - machine dialogue: Technology

 Create systems that enable interaction with an application (eg. software,
TV, database) using natural language through a voice interface

 From 60s: communication with a machine in natural language. Advances in
speech technology facilitate development of SDS

 Ever-going progress in NLP: spoken language understanding, reasoning

 Dialogue is task-oriented: restricted vocabulary and limited amount of
moves (dialogue acts)

 Popular technology: slot-filling

A typical human - machine
interaction

I need to go
from
Amsterdam
to Tilburg
on Tuesday
next week.

From where to where do
you want to travel on

Tuesday twelve December?

Depart_station:
Arrive_station:
Travel_date: Tue 12 Dec
Travel_time:

 3

Human - machine dialogue: Challenges

 Man-machine communication demands combining techniques of speech
analysis and generation + linguistic analysis/generation (syntax, semantics)
+ task planning (dynamically changing context)

 Must interpret subtle and implicit dialogue acts (does user request / provide
/ acknowledge info, correct misunderstanding, etc.)

 Must recognise problematic situations and recover from those

 Must extract semantic values from the user’s utterance

 Future (?): Must meet discourse requirements: satisfy broad social
obligations, handle world knowledge

The OVIS system

 Developed in 1995-2000, NWO project
 Openbaar Vervoer Informatiesysteem
 80 test users
 Noisy real-data Dutch corpus
 441 full dialogues
 3,738 turns of system prompt - user reply
 Slots to fill: DepartStation, ArriveStation, Day_of_Travel, Time_of_Travel
 System always verifies received info

• explicitly (“So you want to leave on Thursday.”) or
• implicitly (“ At what time do you want to leave on Thursday?”)

OVIS example

S1: Good evening. From which station to which station do you want to travel?
U1: I need to go from Schiphol to Nijmegen on Tuesday next week.
S2: From where to where do you want to travel on Tuesday twelve December?
U2: From Schiphol to Nijmegen.
S3: At what time do you want to travel from Schiphol to Nijmegen?
U3: Around quarter past eleven in the evening.
(…)
S5: I have found the following connections: (…). Do you want me to repeat the

connection?
U5: Please do.
…

Miscommunication in human-
machine spoken dialogue

Communication problems

 Frequent occurrence of communication problems btw system and user in
SDSs

 User input is erroneously processed
• ASR: hyperarticulated speech, dialect, noise, OOV word
• NLU: ungrammatical user input, self-corrections
• DM: incorrect assumptions or grounding

 Prompt generated is improper
 User gets distracted or frustrated

Automatic detection of miscommunication

 Statistical approaches are widely applied for automatic problem detection

 Case study: Machine learning of miscommunication with a train timetable
SDS

 Achieving robustness of method:
• Automatically extractable features
• Algorithm choice
• Class engineering

 4

Assessment of SDS performance

 Word accuracy
• Percentage of words correctly recognised by SDS

 Concept accuracy
• Percentage of semantic concepts (e.g. departure station) correctly

recognised

 In our study: Miscommunication (Problem) =
Lack of full concept accuracy

 Defined on a dual time line:
• Problem origin
• Awareness of problems

ML of miscommunication

 Supervised learning: a data-driven AI method
• Learners are able to extract knowledge from examples, and to improve

with experience

 Annotated corpus is required for training learners

 Training examples: human-machine dialogue turns converted into a fixed-
length vector of dialogue features + class (to be assigned)

Class design (1)

 What do we want to learn?
• Granularity issue: Research often models some subclass of

miscommunication:
• Poor speech recognition
• Mismatch/partial match btw user input and ASR output
• End task success/failure
• Erroneous system grounding
• Types of user reactions to errors

• Encoding such classes is often not trivial

Class design (2)

 Some dialogue act taxonomies (e.g. DAMSL) partially cover
miscommunication:
• REJECT (‘Well, no.’)
• SIGNAL NON-UNDERSTANDING (‘Excuse me?’)
• APOLOGY (‘I’m sorry.’)

 Merge all such cases in binary class
 Assigned class per training example: Problem/OK

Problem origin (i)

 Predict problems originating in current dialogue turn (having consequences
in next turn)

 Example: OVIS train travel SDS:
User t1: ‘I need to go from Schiphol to Nijmegen on Tuesday next week.’
System t2: ‘From where to where do you want to travel on Tuesday

twelve December?’

 Miscommunication can only be inferred from next prompt, but this is not
yet known

Problem origin (ii)

 Usefulness of detecting PROB ORIGIN:

 ASR has more confidence in accepting/rejecting recognition hypothesis

 DM can adapt strategy to a more optimal one
• Re-prompt for same input
• Launch a differently trained ASR
• Switch to explicit prompting strategy

 5

Problem awareness (i)

 Information received is grounded
• System:

• ‘Go on’ (implicit prompt, ask for next info piece)
• ‘Go back’ (explicit prompt, meta-prompt, apology)

• User feedback
• ‘Go on’ (“yes”, give info that was asked for)
• ‘Go back’ (“no”, “incorrect”, “not to Amsterdam”)

 Goal: Detect incorrect grounding by system,
 Based on user’s awareness in this

Problem awareness (ii)

 ‘Awareness site’: user becomes aware of miscommunication

 Often signalled by user’s negative feedback
• Wording

• Correction, Rejection, Info Repetition (‘Not this Tuesday but
Tuesday next week’)

• Prosody (high pitch, slower tempo, longer input)

 Usefulness: DM can launch error recovery

Annotation: ORIGIN; AWARENESS

S1: Good evening. From which station to which station do you want to travel?
U1: I need to go from Schiphol to Nijmegen on Tuesday next week.
 ORIGIN >> Prob AWARENESS >> OK

S2: From where to where do you want to travel on Tuesday twelve December?
U2: From Schiphol to Nijmegen.
ORIGIN >> OK AWARENESS >> Prob

S3: At what time do you want to travel from Schiphol to Nijmegen?
U3: Around quarter past eleven in the evening.
ORIGIN >> OK AWARENESS >> OK

S5: I have found the following connections: (…). Do you want me to repeat the
connection?

U5: Please do.
ORIGIN >> OK AWARENESS >> OK

How to interpret automatically?

 Baseline strategy: predict that user input will be the one which is most
likely to be triggered by the system prompt

If system_input is “Q_DepArr” (‘Good evening. From
which station to which station do you want to
travel?’)

Then always predict: ProbOrigin_OK (ProbAwareness_OK)

• Real annotation: ProbOrigin_Prob (ProbAwareness_OK)
(‘I need to go from Schiphol to Nijmegen on Tuesday next week’)

Assessment: Testing

 Baseline scoring in evaluative test

Acc Prec Rec Fß=1

ProbOrigin 64.8 61.3 50.6 55.3

ProbAwareness 86.2 96.2 70.7 81.3

ML experiments

Classification carried out by two orthogonally different learning algorithms:

• Memory-based learning (MBL):
• classifies new input based on similarity with stored examples
• k-nearest neighbour classifier implemented in TiMBL

• Rule induction (RI): classifies new input by rules that were induced from
examples, implemented in RIPPER

 6

Experimental set-up

 ProbOrigin and ProbAwareness are learnt in separate experiments

 10-fold cross-validation

 Algorithm parameter settings optimised with heuristics (wrapped progressive
sampling; Antal Van den Bosch 2004)

Features of ML examples (i)

 Other studies: Information sources used are sometimes very high level
• inconsistency btw system prompt and user answer, topic shifts, age,

gender, input word order

 Here: MBL and RI utilise linguistically unsophisticated information,
automatically extracted from SDS

 Speech signal measurements: Acoustics, Prosody
 Recognition hypotheses: Bag-of-words (BoW), recognition confidence
 Dialogue context in terms of prompt type history: 10 system prompts

represented as structured symbols
• “From where to where do you want to travel on Tuesday twelve December?” >>

ImplVerif_Day; Q-DepArr

• _, _, _, _, _, _,Q-DepArr, RepQ-DepArr, ImplVerDep;Q-Arr,
ImplVerArr;Q-Day

Features of ML examples (ii)

 Features of the user input, coming from ASR
• Acoustics/prosody (voice pitch, loudness, duration, tempo, pausing)
• Recognised hypotheses (bag-of-words, confidence-based scores)

 “ik moet volgende week dinsdag van Schiphol naar Nijmegen”

> ik moet volgende week dinsdag van schiphol maar nijmegen
> ik moet op dinsdag van schiphol naar nijmegen

BoW: >> ik, dinsdag, maar, moet, naar, nijmegen, op, schiphol, van, volgende, week

Experimental Results

Acc Prec Rec Fß=1

ProbOrigin baseline 64.8 61.3 50.6 55.3

MBL 68.1 67.7 49.4 57.0
RI 64.8 63.9 54.9 54.8

ProbAwareness bline 86.2 96.2 70.7 81.3

MBL 89.9 95.0 80.7 87.2
RI 90.5 92.4 85.1 88.5

ProbOrigin - induced rules

 Specific and complex situations
 All feature types are used

 If ‘naar’ in_SysBoW and BranchFact > 3 and ‘ik’ in_UserBoW and
‘herhalen’ not_in_prevSysBoW then ProbOrigin.

 If ‘verbinding’ not_in_SysBoW and BranchFact > 2 and ‘een’
not_in_prevSysBoW and ‘naar’ in_UserBoW and loudness < 285 then
ProbOrigin.

 If recognisedStringLength > 4 and ‘van’ in_prevSysBoW and ‘herhalen’
not_in_SysBoW and tempo < 2.057 then ProbOrigin.

 If ‘verbinding’ not_in_SysBoW and ‘maar’ not_in_SysBoW and ’ja’
in_UserBoW and ’uur’ in_UserBoW then ProbOrigin.

 Else OK.

ProbAwareness - induced rules

 All feature types are used
 First two rules cover the ‘system knows’ baseline

 If ‘niet’ in_SysBoW and ‘ik’ in_SysBoW then ProbAwareness.
 If ‘waar’ in_SysBoW then ProbAwareness.
 If ‘uur’ in_prevSysBoW and topConfidence > 772 then ProbAwareness.
 If ‘naar’ in_prevSysBoW and ‘naar’ in_SysBoW and prevBranchFact > 2

and ‘@m’ not_in_prevUserBoW then ProbAwareness.
 Else OK.

 7

ML methodological issues

 What if both problem aspects (origin; awareness) are co-learnt
simultaneously

 What if miscommunication aspects are co-learnt with yet other dialogue
phenomena (dialogue act; filled slots)

 During classification certain interpretation components may correlate,
license, or disturb each other in classifier

Co-learning components of spoken
input

ProbOrigin
ProbAwareness

DialogueAct
FilledSlot

Pragmatic and semantic classes

 Task-related dialogue act: basic action in user’s utterance:
• Slot-filling (‘I need to go from Schiphol to Nijmegen on Tuesday next

week.’)
• Affirmative (‘Please do.’, ‘Yes, indeed.’, …)
• Negation (‘No, it’s not necessary.’, ‘Incorrect.’, …)
• Acceptance of error (‘Yes.’, …)
• Non-standard input (silence, irrelevant info,…)

 Slot(s) being filled by user:
• Departure station (‘from Schiphol’)
• Arrival station (‘to Nijmegen’)
• Day (‘on Tuesday next week’)
• Time of day (‘in the evening’)
• Hour (‘Around quarter past eleven’)

Co-Learning

 Example Question: If we simultaneously classify what the user is doing and
whether he is aware of communication problems (task: TRA +Slot +
ProbAwareness), do we get better scores than when we only have to detect
that user is aware/unaware of problems (task: ProbAwareness)?

 Solution: Exhaustive search by ML experiments:

for each user input aspect {dialogue act; filled slots; prob origin; prob awareness}
select the optimal task component combination by maximising learner performance

(F)

Co-learning: Tasks

 Detect four information components:

1. Task-related act in the input (query slot filling / affirmative / negative / error acceptance)

2. Query slot filled by input (departure / arrival station / time / hour of travel)

3. Origin of communication problem (input will cause communication problem / OK)

4. Awareness of communication problem (user knows there is a communication problem
/ OK)

 These provide a partial interpretation of the user’s utterance

Co-learning: Classes

S1: Good evening. From which station to which station do you want to travel?
U1: I need to go from Amsterdam to Tilburg on Tuesday next week.
 >> S_Dep-Arr-TravelDay_Prob_Ok
S2: From where to where do you want to travel on Tuesday twelve December?
U2: From Amsterdam to Tilburg.
>> S_Dep-Arr_Ok_Prob
S3: At what time do you want to travel from Amsterdam to Tilburg ?
U3: Around quarter past eleven in the evening.
>> S_TimeofDay-Hour_Ok_Ok
S5: I have found the following connections: (…). Do you want me to repeat the

connection?
U5: Please do.
>> Y_void_Ok_Ok

 8

Class label combinations

Component nr of classes Component nr of classes

TRA 8 TRA + Slot + ProbOrigin 104
Slot 30 TRA + Slot + ProbAware 90
ProbOrigin 2 TRA + ProbOrigin + ProbAware 29
ProbAware 2 Slot + ProbOrigin + ProbAware 81

TRA + slot 63 TRA + Slot + ProbOrigin + ProbAware 148
TRA + ProbOrigin 16
TRA + ProbAware 15
Slot + ProbOrigin 48
Slot + ProbAware 47
ProbOrigin + ProbAware 4

Co-learning: Findings

 Optimal component combinations might differ per learner
(MBL: TRA + slot; RI: slot)

 After finding the optimal combination
• Classifier performance enhances compared to “traditional” combination

(MBL: TRA + slot, TRA + ProbAware; RI: slot, TRA + ProbAware)
• The differently biased classifiers achieve same performance

 Optimal component combinations result from algorithm bias (eg., RI
sometimes prefers learning less classes) AND the components’ correlation

• TRA + ProbOrigin (16), TRA + ProbAware (15) but TRA + ProbOrigin
classifies much worse

 TRA is in general beneficial for all components: main, decisive action of
utterance

Results

DA Filled Slots ProbOrig ProbAware
F F F F

MBL
 isolated 91.7 86.7 57.0 87.7
co-learnt 91.7 87.7 59.4 90.8
RI
isolated 90.5 85.5 54.8 88.5
co-learnt 90.5 82.0 62.6 88.5

 Magnitude of difficulty (performance): TRA > ProbAware > Filled Slots >
ProbOrigin

 ProbOrigin combines unoptimally with anything, and performance is
generally low on it

 ProbOrigin has nothing to do with dialogue pragmatics or semantics

Classifying TRAs

 TRA is best learnt in isolation, or with one other component (stat. insign.)

 Performance ordering (both learners):
Slot-filling > Affirmative > Negation > Nonstd > Acceptance

 Affirmative input much better classified than Negative

 TRA and ProbAwareness combine optimally: describe same dimension by
same properties

Classifying Filled Slots

 MBL learns slots best in combination with TRA
 RI learns slots best in isolation (class amount)

 Performance ordering (both learners):
DepartStat > NoSlot > ArrivStat > Hour > Day > TimeOfDay

Co-learning: Conclusions

 Class engineering (via co-learning different language phenomena) is an
important issue in ML for NLP

 Can provide explanation about the nature of designed tasks
 Might enable improvement over traditionally established task design/order
 Enables identical performance of the two, differently biased algorithms on all

four user input aspects
 Pragmatic-semantic processing tasks should sometimes be differently formulated

depending on the classifier’s bias


 ProbOrigin should be decomposed into more meaningful classes
 New shallow features can be introduced to the same method

 9

Evaluation of ML performance

 Automatic extraction of high-level dialogue phenomena based on cheap
info is possible with good performance

 Useful to search for optimal class component combination, possibly
yielding improvement

 If ASR in OVIS would get better, interpretation scores would overall
improve
• Up to 24% error reduction if simulating perfect ASR.

