
Lexicon Grounding on Mobile Robots

Paul Vogt

Vrije Universiteit Brussel

Faculteit Wetenschappen
Laboratorium voor Artificiële Intelligentie
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Summary

One of the most difficult problems in artificial intelligence and cognitive science
in general is the so-called symbol grounding problem. This problem is concerned
with the question “how seemingly meaningless symbols acquire a meaning in
relation to the real world?” Each robot, which reasons about its environment or
uses language, has to deal with the symbol grounding problem.

Finding a consistent symbolic representation has proven to be very difficult.
In early robot applications the meaning of a symbol, for instance the colour ‘red’
was assigned by the programmer. Such a meaning was given a rule that, e.g.
if the robot observes a particular light frequency, this observation means ‘red’.
But detecting the colour red under different lighting conditions does not yield
a singular frequency. Nevertheless, humans are well capable of categorising red.
So far, a robot is not capable of doing this very well. It is impractical, if not
impossible to program the grounded meaning of a symbol so that a robot can
deal with this meaning in all possible real-world situations. Yet, if this could
be done, such an implementation would soon be out of date. Many meanings
are continuously subject to change and depend often on the experience of the ob-
server. Hence it would be more interesting to design a robot, which can construct
meaning symbolic representations of its observations. Such a robot is developed
in this thesis.

In the introduction of this PhD thesis, the symbol grounding problem is in-
troduced, and a theoretic framework is presented with which this problem may
be solved. The theory on semiotics is used as a starting point. The design of the
implementation is inspired by the behaviour-oriented approach to AI. Three re-
search questions are formulated at the end of this chapter, which are answered in
the rest of this thesis. The questions are: (1) Can the symbol grounding problem
be solved within the given experimental set-up? And if so, how is this accom-
plished? (2) What are the important types of non-linguistic information that
agents should share when developing a coherent communication system? Two
types of non-linguistic information are investigated. The first one concerns joint
attention established prior to the linguistic communication. The second is about
the feedback, which the robots may get from the effect of their communication.
And (3) what is the influence of the physical conditions and interaction of the
robots on developing a grounded lexicon?

ix



The research is done using two LEGO robots, which are developed at the
Artificial Intelligence Laboratory of the Free University of Brussels. The robots
have a sensorimotor interface with which the robots can observe and act. They
do this in an environment where there are four light sources about which the
robots will try to develop a shared lexicon. The robots are programmed in the
Process Description Language PDL. PDL is a programming language with which
the robots can be programmed with the behaviour-oriented control. The robots,
their environment and programming language are described in chapter 2.

The symbol grounding problem is solved by means of language games. At the
beginning of each experiment the robots have no representations of meaning, nei-
ther do the have word-meaning associations in their lexicons. In a language game
two robots, a speaker and a hearer, come together and observe their surround-
ings. This observation is segmented such that the robots find sensings that relate
to the light sources. Next, the speaker selects one segment as the topic of the
language game and tries to find one or more categories relating to this segment.
If it fails, the speaker expands it memory of categories so that it might succeed in
the future. The hearer does the same for those segments that it considers a possi-
ble topic. Which segments the hearer considers depends on the type of language
game being played. Four different language games are investigated in this the-
sis. If both robots thus acquired a categorisation (or meaning), the speaker will
search its lexicon for a word-meaning association that matches the meaning. The
found word-form is exchanged with the hearer. In turn, the hearer will look in
its lexicon for word-meaning associations that match the word-form. Depending
on the matching meaning, the hearer will select its topic. The language game is
successful when both robots thus identified the same topic. It is argued that the
symbol grounding problem is solved in a particular situation when the language
game is successful. If the language game fails, the lexicon is expanded so that the
robots may be successful in the future. Furthermore, word-meaning associations
are either strengthened or weakened depending on the association’s effectiveness
in the game. In this way the lexicon is constructed and organised such that the
robots can effectively communicate with each other. The model of the language
games is explained in chapter 3.

In chapter 4 the first experimental results are presented. Although the robots
succeed to solve the symbol grounding problem to some extent, a few problems
were observed. To investigate these problems, a few methods and parameters of
the experiment from chapter 4 are varied to see what their impact is. In addition,
experiments are done to compare all four language games. The results of these
experiments are presented in chapter 5. Observed improvements from chapter
5 are combined in three experiments that give the most optimal results. The
three experiments involve two different language games in which the successful
combinations of joint attention and feedback are investigated. This is presented
in chapter 6. Each set of experiments in these three chapters is followed by a
brief discussion.
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Finally, chapter 7 contains an extensive discussion of the results and conclu-
sions are drawn. The most important conclusion is that the symbol grounding
problem is solved in the given experimental set-up. Although some assumptions
are made to overcome a few technical problems. The most important assumption
made is that the robots are technically capable of establishing joint attention on
a referent without using linguistic information. The establishment of joint atten-
tion, used both for prior topic information and feedback, is indispensable for the
success of the experiments. An interesting finding is that despite a referent can-
not be categorised uniquely and a word-form may have several meanings, these
word-forms mostly refer to a single referent. The results further showed that the
physical conditions of the experiments, as expected, do influence the success. The
end of chapter 7 discusses a few possible future experiments.
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Samenvatting

Een van de moeilijkste problemen in de kunstmatige intelligentie en cognitieweten-
schap in het algemeen is het zogenaamde ’symbol grounding problem’. Dit prob-
leem houdt zich bezig met de vraag ‘hoe kunnen schijnbaar betekenisloze sym-
bolen een betekenis krijgen in de werkelijke wereld?’ Elke robot die redeneert
over zijn omgeving of die taal gebruikt, heeft te maken met het symbol ground-
ing problem.

Het is gebleken dat het vinden van een consistente symbolische representatie
voor een waarneming van een robot erg moeilijk is. In vroegere robot applicaties
werden betekenissen als ‘rood’ toegekend als een symbool. Hieraan werd bijvoor-
beeld een regel gekoppeld dat bij de waarneming van een bepaalde frequentie
deze waarneming ‘rood’ betekent. Maar het fysisch waarnemen van rood onder
verschillende lichtomstandigheden met een elektronische sensor geeft geen een-
duidige frequentie. Toch weten mensen heel goed wat rood is. Voor een robot
kan dit niet eenduidig worden vastgelegd. Het is dus ondoenlijk, zo niet onmo-
gelijk om de betekenis van een symbool in relatie tot de werkelijke wereld te
programmeren. Als we dit al zouden kunnen, dan is een dergelijke implementatie
snel verouderd. Veel betekenissen zijn voortdurend aan verandering onderhevig
en zijn vaak afhankelijk van de ervaring van de waarnemer. Het zou dus veel in-
teressanter zijn om een robot te ontwikkelen die zelfstandig een representatie van
betekenissen kan opbouwen die relateren aan waarnemingen in hun omgeving. In
deze thesis wordt een dergelijk systeem ontwikkeld.

In de inleiding van deze doctoraats-thesis wordt het symbol grounding prob-
lem gëıntroduceerd en wordt er een theoretisch kader gepresenteerd waarbin-
nen dit probleem kan worden opgelost. Als uitgangspunt wordt de theorie over
semiotiek gebruikt. Het ontwerp dat wordt voorgesteld is gëınspireerd door de
gedrags-georiënteerde aanpak van de artificiële intelligentie. Aan het einde van
dit hoofdstuk worden er een drietal onderzoeksvragen opgesteld die in de rest
van de thesis worden beantwoord. De vragen zijn: (1) Kan het symbol ground-
ing problem worden opgelost binnen de gegeven experimentele opzet? En zo ja,
hoe? (2) Welke niet-lingüıstische informatie is er nodig om dit te doen? Er
zijn twee soorten informatie onderzocht. De eerste betreft gedeelde aandacht op
het onderwerp voorafgaand aan de lingustische communicatie. De tweede is de
terugkoppeling over het communicatief succes die de robots ontvangen. En (3)
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wat is de invloed van de fysische gesteldheid en interactie op het ontwikkelen van
een ‘grounded’ lexicon?

Het probleem wordt onderzocht met twee LEGO robots die zijn ontwikkeld
op het Artificiële Intelligentie Laboratorium van de Vrije Universiteit Brussel. De
robots hebben een sensor-motor interface waarmee de robots kunnen waarnemen
en acties kunnen uitvoeren. Dit doen zij in een omgeving waarin vier lichtbronnen
staan waarover de robots een lexicon gaan opbouwen. De robots worden gepro-
grammeerd in de Process Description Language PDL. PDL is een programmeer-
taal waarmee de robots volgens een gedrags-georiënteerd principe kunnen worden
bestuurd. De robots, hun omgeving en programmeertaal worden beschreven in
hoofdstuk 2.

Het symbol grounding problem wordt opgelost door middel van zogenaamde
taalspellen. Aan het begin van ieder experiment hebben de robots geen betekenis-
sen in hun geheugen, noch hebben zij woord-betekenis associaties in hun lexicon.
In een taalspel komen de twee robots, een spreker en een luisteraar, bij elkaar
en nemen hun omgeving waar. Deze waarneming wordt gesegmenteerd, zodat de
robots percepties krijgen van de vier lichtbronnen. Vervolgens kiest de spreker
een segment als onderwerp van het taalspel, waar het een of meerdere betekenis-
sen voor probeert te vinden. Lukt dit niet, dan zal de spreker zijn geheugen
zo uitbreiden dat het bij een volgende poging kan slagen. De luisteraar doet
hetzelfde over de segmenten die hij als mogelijk onderwerp beschouwt. Welke
segmenten dit zijn hangt af van het soort taalspel dat gespeeld wordt. Er wor-
den vier verschillende taalspellen gëıntroduceerd. Als beide robots een betekenis
hebben gevonden, zal de spreker in zijn lexicon een woord-betekenis associatie
zoeken de bij de betekenis van het onderwerp past. Afhankelijk van de bijbe-
horende betekenis kiest de luisteraar zijn onderwerp. Het bijbehorende woord
wordt doorgegeven aan de luisteraar. De luisteraar zoekt op zijn beurt in het
lexicon naar een woord-betekenis associatie die bij het ontvangen woord past.
Het taalspel is een succes wanneer een dergelijke communicatie tot stand komt
en beide robots hetzelfde onderwerp hebben gëıdentificeerd. Er wordt beargu-
menteerd dat het symbol grounding problem is opgelost in de gegeven situatie
als het taalspel succesvol is. Als het taalspel mislukt, dan wordt het lexicon uitge-
breid zodat de robots in de toekomst wel succesvol kunnen zijn. Tevens worden
er na elk taalspel associaties tussen woord en betekenis versterkt of verzwakt,
afhankelijk van hun effectiviteit. Op deze wijze wordt het lexicon opgebouwd en
zo georganiseerd dat de robots effectief met elkaar kunnen communiceren. Het
model van de taalspellen wordt uitgelegd in hoofstuk 3.

In hoofdstuk 4 worden de eerste experimentele resultaten van een experiment
besproken. Hoewel de robots er in zekere zin in slagen om het symbol grounding
problem op te lossen, waren er nog een aantal problemen. Om deze problemen
op te lossen worden een aantal methoden en parameters van het experiment uit
hoofdstuk 4 gevarieerd om te onderzoeken wat hun invloed is op het succes van de
experimenten. De resultaten van deze experimenten worden in hoofdstuk 5 be-
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sproken. Tevens worden er experimenten gedaan met de overige drie taalspellen.
Waargenomen verbeteringen uit hoofdstuk 5 worden gecombineerd in een drietal
experimenten die de meest optimale resultaten geven. Dit wordt in hoofdstuk 6
besproken. De drie experimenten betreffen twee verschillende taalspellen waarin
de succesvolle combinaties van gedeelde aandacht en terugkoppeling worden on-
derzocht. In deze drie hoofdstukken volgt na elk experiment een korte discussie
over de resultaten.

Hoofdstuk 6 ten slotte bevat een uitgebreide discussie van de resultaten en
worden er conclusies getrokken. De belangrijkste conclusie is dat het symbol
grounding problem wordt opgelost in de gegeven experimentele opzet, waarbij
een aantal aannames zijn gemaakt om een belangrijk technisch probleem op te
lossen. De belangrijkste aanname hierbij is dat de robots in staat zouden zijn
om technisch gezien gezamelijke hun aandacht te vestigen op een referent zonder
lingüıstische informatie. Het vestigen van deze aandacht, hetzij voor de commu-
nicatie, hetzij nadien ten behoeve van de terugkoppeling is onontbeerlijk voor
het succes van de experimenten. Een interessante bevinding is dat ondanks dat
een referent niet eenduidig geconceptualiseerd wordt en een woordvorm meerdere
betekenissen kan hebben, de woordvormen toch meestal eenduidig naar een ref-
erent verwijzen. De resultaten laten verder zien dat de fysische condities van
de experimenten, zoals verwacht van belang zijn voor het slagen ervan. Tot slot
bespreekt dit hoofdstuk een aantal mogelijke toekomstige experimenten.
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Chapter 1

Introduction

One of the hardest problems in artificial intelligence and robotics is what has
been called the symbol grounding problem (Harnad 1990). The question how
”seemingly meaningless symbols become meaningful” (Harnad 1990) is a ques-
tion that also holds grip of many philosophers for already more than a century,
e.g. (Bretano 1874; Searle 1980; Dennett 1991)1. With the rise of artificial intel-
ligence (AI), the question has become very actual, especially within the symbolic
paradigm (Newell 1990)2. The symbol grounding problem is still a very hard
problem in AI and especially in robotics (Pfeifer and Scheier 1999).

The problem is that an agent, be it a robot or a human, perceives the world in
analogue signals. Yet humans have the ability to categorise the world in symbols
that they, for instance may use for language. The perception of something, like
e.g. the colour red, may vary a lot when observed under different circumstances.
Nevertheless, humans are very good at recognising and naming this colour un-
der these different conditions. For robots, however, this is extremely difficult. In
many applications the robots try to recognise such perceptions based on the rules
that are pre-programmed. But there are no singular rules that guide the concep-
tualisation of red. The same argument holds for many, if not all perceptions. A
lot of solutions to the symbol grounding problem have been proposed, but there
are still many limitations on these solutions.

Intelligent systems or, as Newell (1980) called them physical symbol systems
should amongst others be able to use symbols, abstractions and language. These
symbols, abstractions and language are always about something. But how do
they become that way? There is something going on in the brains of language
users that give meaning to these symbols. What is going on is not clear. It
is clear from neuroscience that active neuronal pathways in the brain activate
mental states. But how does this relate to objects and other things in the real

1In philosophy the problem is usually addressed with the term intentionality introduced by
(Bretano 1874).

2In the classical and symbolic AI the problem has also been addressed in what is known as
the frame problem (Pylyshyn 1987).
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world? According to Maturana and Varela (1992) there is a structural coupling
between the things in the world and an organism’s active pathways. Wittgenstein
(1958) stresses the importance of how language is used to make a relation with
language and its meaning. The context of what he called a language game and the
purpose of the language game establishes the meaning of it. According to these
views, the meaning of symbols is established for a great deal by the interaction of
an agent with its environment and is context dependent. A view that has been
adopted in the field of pragmatics and situated cognition (Clancey 1997).

In traditional AI and robotics the meaning of symbols was predefined by
the programmer of the system. Besides that these systems have no knowledge
about the meaning of these symbols, the symbols’ meanings were very static and
could not deal with different contexts or varying environments. Early computer
programs that modelled natural language, notably SHRDLU (Winograd 1972)
were completely pre-programmed, and hence could not handle the complete scope
of a natural language. It could only handle that part of the language that was
pre-programmed. SHRDLU has been programmed as if it were a robot with an
eye and arm that was operating in a blocks world. Within certain constrictions,
SHRDLU could manipulate English input such that it could plan particular goals.
However, the symbols that SHRDLU was manipulating had no meaning for the
virtual robot. Shakey, a real robot operating in a blocks world, did solve the
grounding problem. But Shakey was limited to the knowledge that had been
pre-programmed.

Later approaches to solve the grounding problem on real world multi-agent
systems involving language have been investigated by Yanco and Stein (1993)
and Billard and Hayes (1997). In the work of Yanco and Stein the robots learned
to communicate about actions. These actions, however, were pre-programmed
and limited, and are therefore limited to the meanings that the robots had. In
Billard and Hayes (1997) one robot had pre-programmed meanings of actions,
which were represented in a neural network architecture. A student robot had
to learn couplings between communicated words and actions it did to follow the
first robot. In this work the student robot learned to ground the meaning of its
actions symbolically by associating behavioural activation with words. However,
the language of the teacher robot was pre-programmed and hence the student
could only learn what the teacher knows.

In the work of Billard and Hayes, the meaning is grounded in a situated ex-
periment. So, a part of the meaning is situated in the context in which it is used.
However, the learned representation of the meaning is developed through bodily
experiences. This is conform the principle of embodiment (Lakoff 1987), in which
the meaning of something is represented according to bodily experiences. The
meaning represented in someone’s (or something’s) brain depends on previous
experiences of interactions with such meanings. The language that emerges is
therefore dependent on the body of the system that experiences. This principle
is made clear very elegantly by Thomas Nagel in his famous article What’s it like
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to be a bat? (Nagel 1974). In this article Nagel argues that it is impossible to un-
derstand what a bat is experiencing because it has a different body with different
sensing capabilities (a bat uses echolocation to navigate). A bat approaching a
wall must experience different meanings (if it has any) than humans would have
when approaching a wall. Thus a robot that has a different body than humans
will have different meanings. Moreover, different humans have different meaning
representations because they encountered different experiences.

This thesis presents a series of experiments in which two robots try to solve the
symbol grounding problem. The experiments are based on a recent approach in AI
and the study of language origins, proposed by Luc Steels (1996b). In this new
approach behaviour-based AI (Steels and Brooks 1995) is combined with new
computational approaches to the language origins and multi-agent technology.
The ideas of Steels have been implemented on real mobile robots so that they
can develop a grounded lexicon about objects they can detect in their real world,
as reported first in (Steels and Vogt 1997). This work differs from the work of
(Yanco and Stein 1993; Billard and Hayes 1997) in that no part of the lexicon
and its meaning has been programmed. Hence their representation is not limited
due to pre-programmed relations.

The next section introduces the symbol grounding problem in more detail.
This section first discusses some theoretical background on the meaning of sym-
bols after which some practical issues on symbol grounding are discussed. The
experiments are carried out within a broader research on the origins of language,
which is presented in section 1.2. A little background on human language ac-
quisition is given in section 1.3. The research goals of this thesis are defined in
section 1.4. The final section of this chapter presents the outline of this thesis.

1.1 Symbol Grounding Problem

1.1.1 Language of Thought

Already for more than a century philosophers ask themselves how is it possible
that we seem to think in terms of symbols which are about something that is in
the real world. So, if one manipulates symbols as a mental process, one could ask
what is the symbol (manipulation) about? Most explanations in the literature are
however in terms of symbols that again are about something as in folk-psychology
intentionality is often explained in terms of beliefs, desires etc. For instance,
according to Jerry Fodor (1975) every concept is a propositional attitude. Fodor
hypothesises a Language of Thought to explain why humans tend to think in a
mental language rather than in natural language alone.

Fodor argues that concepts can be described by symbols that represent propo-
sitions towards which attitudes (like beliefs, desires) can be attributed. Fodor
calls these symbols propositional attitudes. If P is a proposition, then the phrase
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“I belief that P” is a propositional attitude. According to Fodor, all mental states
can be described as propositional attitudes, so a mental state is a belief or desire
about something. This something, however is a proposition, which according to
Fodor is in the head. But mental states should be about something that is in the
real world. That is the essence of the symbol grounding problem. The proposi-
tions are symbol structures that are represented in the brain, sometimes called
mental representations. In addition, the brain consists of rules that describe how
these representations can be manipulated. The language of thought, according
to Fodor, is constituted by symbols which can be manipulated by applying exist-
ing rules. Fodor further argues that the language of thought is innate, and thus
resembles Chomsky’s universal grammar very well.

Concepts are in this Computational Theory of Mind (as Fodor’s theory some-
times is called) constructed from a set of propositions. The language of thought
(and with that concepts) can, however, not be learned according to Fodor, who
denies:

[r]oughly, that one can learn a language whose expressive power is
greater than that of a language that one already knows. Less roughly,
that one can learn a language whose predicates express extensions not
expressible by those of a previously available representational system.
Still less roughly, that one can learn a language whose predicates ex-
press extensions not expressible by predicates of the representational
system whose employment mediates the learning. (Fodor 1975, p. 86,
Fodor’s italics)

According to this, the process of concept learning is the testing of hypotheses
that are already available at birth.

Likewise Fodor argues that perception is again the formulating and testing of
hypotheses, which are already available to the agent.

So, Fodor argues that, since one cannot learn a concept if one does not have
the conceptual building blocks of this concept. And since perception needs such
building blocks as well, concept learning does not exist and therefore concepts
must be innate. This is a remarkable finding, since it roughly implies that all
that we know is actual innate knowledge. Fodor called this innate inner language
“Mentalese”. It must be clear that it is impossible to have such a language. As
Patricia S. Churchland puts it:

[The Mentalese hypothesis] entails the ostensibly new concepts evolv-
ing in the course of scientific innovation - concepts such as atom, force
field, quark, electrical charge, and gene - are lying ready-made in the
language of thought, even of a prehistoric hunter-gatherer... The con-
cepts of modern science are defined in terms of the theories that embed
them, not in terms of a set of “primitive conceptual atoms,” whatever
those may be. (Churchland 1986, p. 389)
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Although the Computational Theory of Mind is controversial, there are still many
scientist who adheres to this theory and not the least many AI researchers. This
is not surprising, since the theory tries to model cognition computationally, which
of course is a nice property since computers are computational devices. It will
be shown however that Fodor’s Computational Theory of Mind is not necessary
for concept and language learning. In particular it will be shown that robots
can be developed that can acquire, use and manipulate symbols which are about
something that exists in the real world, and which are initially not available to
the robots.

1.1.2 Understanding Chinese

This so-called symbol grounding problem was made clear excellently by John R.
Searle with a gedanken experiment called the Chinese Room (Searle 1980). In
this experiment, Searle considers himself standing in a room in which there is a
large data bank of Chinese symbols and a set of rules how to manipulate these
symbols. Searle, while in the room receives symbols that represent a Chinese
expression. Searle, who does not know any Chinese, manipulates these symbols
according to the rules such that he can output (other) Chinese symbols as if it
was responding correctly in a human like way, but only in Chinese. Moreover,
this room passes the Turing test for speaking and understanding Chinese.

Searle claims that this room cannot understand Chinese because he himself
does not. Therefore it is impossible to build a computer program that can have
mental states and thus being what Searle calls a strong AI3. It is because Searle
inside the room does not know what the Chinese symbols are about that Searle
concludes that the room does not understand Chinese. Searle argues with a
logical structure by using some of the following premises (Searle 1984, p. 39):

1. Brains cause minds.

2. Syntax is not sufficient for semantics.

3. Computer programs are entirely defined by their formal, or syntactical,
structure.

4. Minds have mental contents; specifically, they have semantic contents.

Searle draws his conclusions from these premises in a correct logical deduc-
tion, but for instance premise (1) seems incomplete. This premise is drawn from
Searle’s observation that:

3It is not the purpose of this thesis to show that computer programs can have mental states,
but to show that symbols in a robot can be about something.
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(A)ll mental phenomena ... are caused by processes going on in the
brain. (Searle 1984, p. 18).

One could argue in favour of this, but Searle does not mention what causes
these brain processes. Besides metabolic and other biological processes that are
ongoing in the brain, brain processes are caused by sensory stimulation and maybe
even by sensorimotor activity as a whole. So, at least some mental phenomena
are to some extent caused by an agent’s4 interaction with its environment.

Premise (3) states that computer programs are entirely defined by their formal
structure, which is correct. Only Searle equates formal with syntactical, which
is correct when syntactic means something like manipulating symbols according
to the rules of the structure. The appearance of symbols in this definition is
crucial, since they are by definition about something. If the symbols in computer
programs are about something, the programs are also defined by their semantic
structure.

Although Searle does not discuss this, it may be well possible that he makes
another big mistake in assuming that he (the central processing unit) is the
part where all mental phenomena should come together. An assumption which
is debatable (see e.g. (Dennett 1991; Edelman 1992)). It is more likely that
consciousness is more distributed. But it is not the purpose here to explain con-
sciousness, instead the question is how are symbols about the world. The Chinese
Room is presented to make clear what the problem is and how philosophers deal
with it.

Obviously Searle’s Chinese Room argument found a lot of opposition in the
cognitive science community. The critique presented here is in line with what
has been called the system’s reply and to a certain extend the robot’s reply5. The
system’s reply holds that it is not the system who does not understand Chinese,
but it is Searle who does not. The system as a whole does, since it passed the
Turing test.

The robot’s reply goes as follows: The Chinese Room as a system does not
have any other input than the Chinese symbols. So the system is a very un-
likely cognitive agent. Humans have perceptual systems that receive much more
information than only linguistic information. Humans perceive visual, tactile,
auditory, olfactory and many other information; the Chinese Room does, as it
seems, not. So, what if we build a device that has such sensors and like hu-
mans has motor capacities? Could such a system with Searle inside understand
Chinese?

According to Searle in his answer to both the system’s as robot’s reply (Searle
1984), his argument still holds. He argues that both the system’s reply and the

4I refer to an agent when I am talking about an autonomous agent in general, be it a human,
animal, robot or something else.

5See for instance the critiques that appeared in the open peer commentary of Searle’s 1980
article in the Behavioural and Brain Sciences.



1.1 Symbol Grounding Problem 7

robot’s reply do not solve the syntax vs. semantics argument (premise (2)). But
the mistake that Searle makes is that premise (3) does not hold, thus making
premise (2) redundant. Furthermore, in relation to the robot’s reply Searle fails
to notice the fact that brain processes are (partly) caused by sensory input and
thus mental phenomena are indirectly caused by sensory stimulation.

And even if Searle’s arguments are right, in his answer to the robot’s reply he
fails to understand that a robot is actually a machine. It is not just a computer
that runs a computer program. And as Searle keeps on stressing:

’Could a machine think?’ Well, in one sense, of course, we are all
machines. (...) [In the] sense in which a machine is just a physical
system which is capable of performing certain kinds of operations in
that sense we are all machines, and we can think. So, trivially there
are machines that can think. (Searle 1984, p. 35, my italics)

The reason why the phrase “a physical system which is capable of performing
certain kinds of operations” is emphasised is because it is exactly that what a
robot is. A robot is more than a computer that runs a computer program.

A last point that is made in this section is that Searle does not speak about
development. Could Searle learn to understand Chinese if it was in the room
from its birth and that he learned to interpret and manipulate the symbols that
were presented to him? It is strange that a distinguished philosopher like Searle
does not understand that it is possible to develop computer programs which can
learn.

The Chinese Room introduced the symbol grounding problem as a thought
experiment that inspired Stevan Harnad to define his version of the problem
(Harnad 1990). Although controversial, the Chinese Room experiment showed
that there are nontrivial problems arising when one builds a cognitive robot
that should be able to acquire a meaningful language system. The arguments
presented against the Chinese Room are the core of the argument why robots
can ground language. As shall become clear, there’s more to language than just
symbol manipulation according to some rules.

1.1.3 Symbol Grounding: Philosophical or Technical?

Although it might seem very philosophical up to now, this thesis in no way tries
to solve the philosophical problem of what is meaning. In fact there is no attempt
being made in solving any philosophical problem. The only thing that is done
here is to translate a philosophical problem into a technical problem, which will
be tackled in this work. The solution to the technical problem could then be the
meat for the philosophers to solve their problem.
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FORM

MEANING

SIGN

REFERENT

Figure 1.1: A semiotic triangle shows how a referent, meaning and form are related

as a sign.

Before discussing the symbol grounding problem in more technical detail, it is
useful to come up with a working definition of what is meant with a symbol.
Harnad’s definition of a symbol is very much in line with the standard definition
used in artificial intelligence. This definition is primarily based on physical symbol
systems introduced by Newell and Simon (Newell 1980; Newell 1990). According
to Harnad symbols are basically a set of arbitrary tokens that can be manipulated
by rules made of tokens; the tokens (either atomic or composite) are “semantically
interpretable” (Harnad 1990).

In this thesis a definition taken from semiotics will be adopted. Following
Charles Sanders Peirce and Umberto Eco (Eco 1976; Eco 1986) a symbol will
be equalled with a sign. Using a different, but more familiar terminology than
Peirce (Nöth 1990), a sign consists of three elements (Chandler 1994)6:

Representamen The form which the sign takes (not necessarily material).

Interpretant The sense made of the sign.

Object To which the sign refers.

Rather than using Peirce’s terms, the terms adopted in this thesis are form for
representamen, meaning for interpretant and referent for object. The adopted
terminology is in line with Steels’ terminology (Steels 1999). It is also interesting
to note that the Peircean sign is not the same as the Saussurean sign (de Saussure
1974). De Saussure does not discuss the notion of the referent. In de Saussure’s
terminology the form is called signifier and the meaning is called the signified.

How the three units of the sign are combined is often illustrated with the
semiotic triangle (figure 1.1). According to Peirce, a sign becomes a symbol
when its form, in relation to its meaning “is arbitrary or purely conventional -
so that the relationship must be learnt” (Chandler 1994). The relation can be

6An instructive introduction into the theory of semiotics can be found on the world-wide
web (Chandler 1994). The work of Peirce is collected in (Peirce 1931).
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conventionalised in language. According to the semiotic triangle and the above,
a symbol is per definition grounded.

In the experiments reported in this thesis, the robots try to develop a shared
and grounded lexicon about the real world objects they can detect. They do so
by communicating a name of the categorisation of a real world object. In line
with the theory of semiotics, the following definitions are made:

Referent The referent is the real world object that is subject of the communi-
cation.

Meaning The meaning is the categorisation that is made of the real world object
and that is used in the communication.

Form The form is the name that is communicated. In principle its shape is
arbitrary, but in a shared lexicon it is conventionalised through language
use.

Symbol A symbol is the relation between the referent, the meaning and the
form as illustrated in the semiotic triangle.

This brings us to the technically hard part of the symbol grounding problem that
remains to be solved: How can an agent construct the relations between a form,
meaning and referent? In his article Harnad (1990) recognises three main tasks
of grounding symbols:

1. Iconisation7 Analogue signals need to be transformed to iconic represen-
tation (or icons).

2. Discrimination “[The ability] to judge whether two inputs are the same
or different, and, if different, how different they are.” Note that in Harnad’s
article, discrimination is already pursued at the perceptual level. In this
thesis, discrimination is done at the categorical level.

3. Identification “[The ability] to be able to assign a unique (usually ar-
bitrary) response – a ‘name’ – to a class of inputs, treating them all as
equivalent or invariant in some respect.” (Harnad 1990, my italics)

So, what is the problem? Analogue signals can be iconised (or recorded) rather
simple with meaningless sub-symbolic structures. The ability to discriminate is
easy to implement just by comparing two different sensory inputs. The ability
to identify requires to find invariant properties of objects, events and state of
affairs. Since finding distinctions is rather easy, the big problem in grounding
actually reduces to identifying

7The terms icon and iconisation as they are used by Harnad, which will be adopted here,
should not be confused with Peirce’s notion of these terms.
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invariant features of the sensory projection that will reliably distin-
guish a member of a category from any non-members with which it
could be confused. (Harnad 1990)

Although people might disagree, for the roboticists this is not more than a
technical problem. The question is whether or not there exist real invariant fea-
tures of a category in the world. This probably could be doubted quite seriously
(see e.g. (Harnad 1993)). For the time being it is assumed that there are invariant
properties in the world and it will be shown that these invariants can be found
if an embodied agent is equipped with the right physical body and control. The
latter inference is in line with the physical grounding hypothesis (Brooks 1990),
which will be discussed below.

Stevan Harnad proposes that the SGP for a robot could possibly be solved
by invoking (hybrid) connectionist models with a serious interface to the outside
world in the form of transducers (or sensors) (Harnad 1993). Harnad, however
admits that the symbol grounding problem also might be solved with other than
connectionist architectures.

1.1.4 Grounding Symbols in Language

In line with the work of Luc Steels the symbols are grounded in language, see e.g.
(Steels 1997b; Steels 1999). Why grounding symbols in language directly and not
ground the symbols first and develop a shared lexicon afterwards? Associating
the grounded symbols with a lexicon is then a simple task, see e.g. (Oliphant
1997; Steels 1996b). However, as Wittgenstein (1958) pointed out, the meaning
of something depends on how it is used in language. It is situated in the environ-
ment of an agent and depends on the bodily experience of it. Language use gives
feedback on the appropriateness of the sense that is made of a referent. So, lan-
guage gives rise to the construction of meanings and the construction of meaning
gives rise to language development. Hence, meaning co-evolves with language.

That this approach seems natural can be illustrated with Roussau’s para-
dox. Although for communication categorisation of reality needs to be similar
to different language users, different languages do not always employ the same
categorisations. For instance, there are different referential frames to categorise
spatial relations in different language communities. In English there are spatial
relations like left, right, front and back relative to some axis. However in Tze-
tal, a Mayan language, this frame of reference is not used not used. The Tzetal
speakers live in an area with mountains and their frame of reference is absolute
in relation to the mountain they are on. The spatial relations in this language
can be translated with uphill, downhill and across. If something is higher up the
mountain in relation to the speaker, they can say ’this something is uphill of me’.

So, if a novel language user enters a language society, how would it know how
to categorise such a spatial relation? To know this, the new language user has
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to learn how to categorise the reality in relation to the language that is used by
the particular language society. Therefore it is thought to be necessary to ground
meaning in language. How lexicon development interacts with the development
of meaning will become clearer in the remainder of this thesis.

1.1.5 Physical Grounding Hypothesis

Another approach to grounding is physical grounding. In his article Elephants
Don’t Play Chess Rodney Brooks (1990) proposed the physical grounding hy-
pothesis as an additional constraint to the physical symbol system hypothesis.

The physical grounding hypothesis states that to build a system that
is intelligent it is necessary to have its representations grounded in
the physical world. (Brooks 1990)

The advantage of the physical grounding hypothesis over physical symbol
system hypothesis is that the system (or agent) is directly coupled to the real
world through its set of sensors and actuators.

Typed input and output are no longer of interest. They are not
physically grounded. (Brooks 1990)

In Brooks’ approach symbols are not a necessary condition for intelligent
behaviour anymore (Brooks 1990; Brooks 1991). Intelligent behaviour can emerge
from a set of simple couplings of an agent’s sensors with its actuators8, as is also
shown in e.g. (Steels and Brooks 1995; Steels 1994c; Steels 1996a). An example
is wall following. Suppose a robot has two simple behaviours: (1) the tendency
to move towards the wall and (2) the tendency to move away from the wall.
If the robot incorporates both behaviours at once, then the resulting emergent
behaviour is wall following. Note that agents designed from this perspective have
no cognitive abilities. They are reactive agents, like e.g. ants are, rather than
cognitive agents that can manipulate symbolic meanings.

The argument that Brooks uses to propose the physical grounding hypothesis
is that

[evolution] suggests that problem solving behaviour, language, expert
knowledge and application, and reason, are all rather simple once the
essence of being and reacting are available. That essence is the ability
to move around in a dynamic environment, sensing the surroundings
to a degree sufficient to achieve the necessary maintenance of life and
reproduction. (Brooks 1990)

8Note that Brooks’ approach does not necessarily invoke connectionist models.
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Figure 1.2: (a) The evolutionary time-scale of life and cognitive abilities on earth.

After the entrance of the Great Apes, evolution of man went so fast, that it cannot be

shown on the same plot, unless it is shown in logarithmic scale, see (b). It appears from

the plot that cultural evolution works much faster than biological evolution. Time-scale

is adapted from (Brooks 1990).
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This rapid evolution is illustrated in figure 1.2. Brooks also uses this argument
of the rapid evolution of human intelligence as opposed to the slow evolution of
life on earth in relation to symbols.

[O]nce evolution had symbols and representations things started mov-
ing rather quickly. Thus symbols are the key invention ... Without
a carefully built physical grounding any symbolic representation will
be mismatched to its sensors and actuators. (Brooks 1990)

To explore the physical grounding hypothesis, Brooks and his co-workers at
the MIT AI Lab developed a software architecture called the subsumption archi-
tecture (Brooks 1986). This architecture is designed to connect a robot’s sensors
to its actuators so that it embeds the robot correctly in the world (Brooks 1990).
The point made by Brooks is that intelligence can emerge from an agent’s phys-
ical interactions with the world. So, the robot that needs to be built should be
both embodied and situated. The approach proposed by Brooks is also known as
behaviour-based AI.

1.1.6 Physical Symbol Grounding

The physical grounding hypothesis (Brooks 1990) states that intelligent agents
should be grounded in the real world. However, it also states that the intelligence
need not to be represented with symbols. According to the physical symbol
system hypothesis the thus physically grounded agents are no cognitive agents.
The physical symbol system hypothesis (Newell 1980) states that cognitive agents
are physical symbol systems that have a (Newell 1990, p. 77)

Memory Contains structures that contain symbol tokens
Independently modifiable at some grain size

Symbols Patterns that provide access to distal structures
A symbol token is the occurrence of a pattern in a structure

Operations Processes that take symbol structures as input and pro-
duce symbol structures as output

Interpretation Processes that take symbol structures as input and
execute operations

Capacities Sufficient memory and symbols
Complete compositionality
Complete interpretability

Clearly, an agent that uses language is a physical symbol system. It should have
a memory to store an ontology and lexicon. It has symbols. The agent makes
operations on the symbols and interprets them. Furthermore, it should have the
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capacity to do so. In this sense, the robots of this thesis are physical symbol
systems.

A physical symbol system somehow has to represent the symbols. Hence the
physical grounding hypothesis is not the best candidate. But since the defini-
tion of a symbol adopted in this thesis has an explicit relation to the referent,
the complete symbol cannot be represented inside a robot. The only parts of
the symbols that can be represented are the meaning and the form. Like in the
physical grounding hypothesis, a part of the agent’s knowledge is in the world.
The problem is how the robot can ground the relation between internal repre-
sentations and the referent? Although Newell (1990) recognises the problem, he
does not investigate a solution to it.

This problem is what (Harnad 1990) called the symbol grounding problem.
Because there is a strong relation between the physical grounding hypothesis
(that the robot has its knowledge grounded in the real world) and the physical
symbol system hypothesis (that cognitive agents are physical symbol systems) it is
useful to rename the symbol grounding problem in the physical symbol grounding
problem.

The physical symbol grounding problem is very much related to the frame
problem (?). The frame problem deals with the question how a robot can represent
things of the dynamically changing real world and operate in it. In order to do
so, the robot needs to solve the symbol grounding problem.

As mentioned, this is a very hard problem. Why is the physical symbol grounding
problem so hard? When sensing something in the real world under different
circumstances, the physical sensing of this something is different as well. Humans
are nevertheless very good at identifying this something under these different
circumstances. For robots this is different. The one-to-many mappings of this
something unto the different perceptions needs to be interpreted so that there is
a more or less one-to-one mapping between this something and a symbol, i.e. the
identification needs to be invariant. Studies have shown that this is an extremely
difficult task for robots.

Already numerous systems have been physically grounded, see e.g. (Brooks
1990; Steels 1994c; Barnes, Aylett, Coddington, and Ghanea-Hercock 1997; Kröse,
Bunschoten, Vlassis, and Motomura 1999; Tani and Nolfi 1998; Berthouze and
Kuniyoshi 1998; Pfeifer and Scheier 1999; Billard and Hayes 1997; Rosenstein and
Cohen 1998a; Yanco and Stein 1993) and many more. However, a lot of these
systems do not ground symbolic structures because they have no form (or arbi-
trary label) attached. These applications ground ‘simple’ physical behaviours in
the Brooksean sense. Only a few physically grounded systems mentioned above
grounded symbolic structures. This is for instance in the case of (Yanco and
Stein 1993; Billard and Hayes 1997; Rosenstein and Cohen 1998a).
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Yanco and Stein (1993) developed a troupe of two robots that could learn to
associate certain actions with a pre-defined set of words. One robot would decide
what action is to be taken and communicates a relating signal to the other robot.
The learning strategy they used was reinforcement learning where the feedback
in their task completion was provided by a human instructor. If both robots
performed the same task, a positive reinforcement was give, and when both robots
did not, the feedback consisted of a negative reinforcement.

The research was primarily focussed on the learning of associations between
word and meaning on physical robots. No real solution was attempted to solve
the grounding problem and only a limited set of word-meaning associations were
pre-defined. In addition, the robots learned by means of supervised learning with
a human instructor. Yanco and Stein (1993) showed however, that a group of
robots could converge in learning such a communication system.

In Billard and Hayes (1997) two robots grounded a language by means of imi-
tation. The experiments consisted of a teacher robot, which had a pre-defined
communication system, and a student robot, which had to learn the teacher’s lan-
guage by following it. The learning mechanism was provided by an associative
neural network architecture called DRAMA. This neural network learned asso-
ciations between communication signals and sensorimotor couplings. Feedback
was provided by the student’s evaluation if it was still following the teacher.

So, the language was grounded by the student using this neural network ar-
chitecture, which is derived from Wilshaw networks. Associations for the teacher
robot were pre-defined in their couplings and weights. The student could learn
a limited amount of associations of actions and perceptions very rapidly (Billard
1998).

Rosenstein and Cohen (1998a) developed a robot that could ground time series
by using the so-called method of delays, which is drawn from the theory of non-
linear dynamics. The time series that the robots produce by interacting in their
environment are categorised by comparing their delay vectors, which is a low-
dimensional reconstruction of the original time series, with a set of prototypes.
The concepts the robots thus ground could be used for grounding word-meanings
(Rosenstein and Cohen 1998b).

The method proposed by Rosenstein and Cohen (1998a) has been incorpo-
rated in a language experiment where two robots play follow me games to con-
struct an ontology and lexicon to communicate their actions (Vogt 1999; Vogt
2000). This was a preliminary experiment, but the results appear to be promising.

A similar experiment on language acquisition on mobile robots has been done
by the same group of Rosenstein and Cohen at the University of Massachusetts
(Oates, Eyler-Walker, and Cohen 1999). The time series of a robot’s actions are
categorised using a clustering method for distinctions (Oates 1999). Similarities
between observed time series and prototypes are calculated using dynamical time
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warping. The thus conceptualised time series are then analysed in terms of human
linguistic interactions, who describe what they see when watching a movie of the
robot operating (Oates, Eyler-Walker, and Cohen 1999).

Other research propose simulated solutions to the symbol grounding problem,
notably (Cangelosi and Parisi 1998; Greco, Cangelosi, and Harnad 1998). In his
work Angelo Cangelosi created an ecology of edible and non-edible mushrooms.
Agents that are provided with neural networks learn to categorise the mushrooms
from ‘visible’ features into the categories of edible and non-edible mushrooms.

A problem with simulations of grounding is that the problem cannot be solved
in principle, because the agents that ‘ground’ symbols do not do so in the real
world. However, these simulations are useful in that they can learn us more about
how categories and words could be grounded. One of the important findings of
Cangelosi’s research is that communication helps the agents to improve their
categorisation abilities (Cangelosi, Greco, and Harnad 2000).

Additional work can be found in The Grounding of Word Meaning: Data and
Models (Gasser 1998), the proceedings of a joint workshop on the grounding of
word meaning of the AAAI and Cognitive Science Society. In these proceedings,
grounding of word meaning is discussed among computer scientists, linguistics
and psychologist.

So, the problem that is tried to be solved in this thesis is what might be called
the physical symbol grounding problem. This problem shall not be treated philo-
sophically but technically. It will be shown that the quality of the physically
grounded interaction is essential to the quality of the symbol grounding. This is
in line with Brooks’ observation that a.o. language is

rather easy once the essence of being and reacting are available.
(Brooks 1990)

Now that it is clear that the physical symbol grounding problem in this work
is considered to be a technical problem, the question rises how it is solved? In
1996 Luc Steels published a series of papers in which some simple mechanisms
were introduced by which autonomous agents could develop a ‘grounded’ lexi-
con (Steels 1996b; Steels 1996c; Steels 1996d; Steels 1996e), for an overview see
(Steels 1997c). Before this work is discussed, a brief introduction in the origins
of language is given.

1.2 Language Origins

Why is it that humans have language and other animals cannot? Until not very
long ago, language has been ascribed as a creation of God. Modern science,
however, assumes that life as it currently exists has evolved gradually. Most
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influencing in this view has been the book of Charles Darwin The origins of species
(Darwin 1968). In the beginning of the existence of life on earth, humans were
not yet present. Modern humans evolved only about 100,000 to 200,000 years
ago. With the arrival of Homo Sapiens, language is thought to have emerged.
So, although life on earth is present for about 3.5 billion years, humans are on
earth only a fraction of this time.

Language is exclusive to humans. Although other animals have communica-
tion systems, they do not use a complex communication system like humans do.
At some point in evolution, humans must have developed language capabilities.
These capabilities did not evolve in other animals. It is likely that these capa-
bilities evolved biologically and are present in the human brain. But, what are
these capabilities? They are likely to be the initial conditions from which lan-
guage emerged. Some of them might have co-evolved with language, but most of
them were likely to be present before language originated. This is likely because
biological evolution is very slow, whereas language on the evolutionary time scale
evolved very fast.

The capabilities include at least the following things: (1) The ability to asso-
ciate meanings of things that exist in the world with arbitrary word-forms. (2)
The ability to communicate these meaningful symbols to other language users.
(3) The ability to vocalise such symbols. (4) The ability to map auditory stimuli
of such vocalisations to the symbols. And (5) the ability to use grammatical
structures. These abilities must have evolved somehow, because they are prin-
ciple features of human language. There are probably more capabilities, but
they serve to accomplish the five capabilities mentioned. In line with the symbol
grounding problem this thesis concentrates on the first two principle capabilities.

Until the 1950s there was very little research going on about the evolution and
origins of language. Since Noam Chomsky wrote his influential paper on syntactic
structures (Chomsky 1956), linguistic research and research on the evolution of
language boomed. It took until 1976 for the first conference on the origins and
evolution of language to be held (Harnad, Steklis, and Lancaster 1976). Most
papers of this conference involved empirical research on ape studies, studies on
gestural communication and theoretical and philosophical studies. Until very
recently, many studies had a high level of speculation and some strange theories
were proposed. For an overview of theories that were proposed on the origins
and evolution of language until 1996, see (Aitchison 1996).

1.2.1 Computational Approaches to Language Evolution

With the rise of advanced computer techniques in Artificial Intelligence (AI) and
Artificial Life (ALife), it became possible to study the origins and evolution of
language computationally. In the 1990s many such studies were done. It is prob-
ably impossible to say with this approach exactly how language originated, but
the same is probably true for all other investigations. The only contribution com-
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puter techniques can bring is a possible scenario of language evolution. Possible
initial conditions and hypotheses can be validated using computer techniques,
which may shed light on how language may have emerged. Furthermore, one can
rule out some theories, because they do not work on a computer.

Many early (and still very popular) scenarios were investigated based on
Chomsky’s theory about a Universal Grammar, which are supposed to be innate9.
According to Chomsky the innate universal grammar codes principles and param-
eters that enables infants to learn any language. The principles encode universals
of languages as they are found in the world. Depending on the language environ-
ment of a language learner, the parameters are set, which allows the principles of
a particular language to become learnable. So, the quest for computer scientist
is to use evolutionary computation techniques to come up with a genetic code
of the universal grammar. That this is difficult can already be inferred from the
fact that up to now not one non-trivial universal tendency of language is found
which is valid for every language.

In the early nineties a different approach gained popularity. This approach is
based on the paradigm that language is a complex dynamical adaptive system.
Here it is believed that universal tendencies of language are learned and evolve
culturally.

Agent based simulations were constructed in which the agents tried to develop
(usually an aspect of) language. The agents are made adaptive using techniques
taken from AI and adaptive behaviour (or ALife). The main approach taken
is a bottom-up approach. In contrast to the top-down approach, where the
intelligence is modelled and implemented in rules, the bottom-up approach starts
with implementing simple sensorimotor interfaces and learning rules, and tries
to increase the complexity of the intelligent agent step by step.

Various models have been built by a variety of computer scientists and computa-
tional linguists to investigate the evolution of language and communication, e.g.
(Cangelosi and Parisi 1998; Kirby and Hurford 1997; MacLennan 1991; Oliphant
1997; Werner and Dyer 1991). It goes beyond the scope of this paper to dis-
cuss all this research, but there is one research that is of particular interest for
this thesis, namely the work of Mike Oliphant (Oliphant 1997; Oliphant 1998;
Oliphant 2000).

Oliphant simulates the learning of a symbolic communication system in which
a fixed number of signals are matched with a fixed number of meanings. The
number of signals that can be learned is equal to the number of meanings. Such
a coherent mapping is called a Saussurean sign (de Saussure 1974) and is the
idealisation of language. The learning paradigm of Oliphant is an observational
one and he uses an associative network incorporating Hebbian learning. With

9One of the reasons why Chomsky’s theory is still very popular amongst computational
linguistics is that the theory has a computational approach.
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observational is meant that the agents during a language game have access to
both the linguistic signal and its meaning.

As long as the communicating agents are aware of the meaning they are sig-
nalling, the Saussurean sign can be learned (Oliphant 1997; Oliphant 2000). The
awareness of the meaning meant by the signal should be acquired by observation
in the environment. Oliphant further argues that reinforcement types of learning
as used by (Yanco and Stein 1993; Steels 1996b) are not necessary and unlikely
(see also the discussion about the no negative feedback evidence in section 1.3).
But he does not say they are not a possible source of language learning (Oliphant
2000).

The claim Oliphant makes has implications on why only humans can learn
language. According to Oliphant (1998), animals have difficulty in matching a
signal to a meaning when it is not an innate feature of the animal. Although this
is arguable (Oliphant refers here to e.g. (Gardner and Gardner 1969; Premack
1971)), he observes the fact that in these animal learning the communication is
explicitly taught by the researchers.

1.2.2 Steels’ Approach

This adaptive behaviour based approach has also been adopted by Luc Steels,
e.g. (Steels 1996b; Steels 1996c; Steels 1997c). The work of Steels is based on
the notion of language games (Wittgenstein 1958). In language games agents
construct a lexicon through cultural interaction, individual adaptation and self-
organisation. The view of Wittgenstein is adopted that language gets its meaning
through its use and should be investigated accordingly. The research presented
in this thesis is in line with the work done by Luc Steels. This research is part of
the ongoing research done at the Computer Science Laboratory of Sony in Paris
and at the Artificial Intelligence Laboratory of the Free University of Brussels,
both directed by Luc Steels.

The investigation in Paris and Brussels is done on both simulations and
grounded robots. It focuses on the origins of sound systems, in particular in
the field of phonetics (De Boer 1997; De Boer 1999; Oudeyer 1999), the origins
of meaning (Steels 1996c; Steels and Vogt 1997; De Jong and Vogt 1998; Vogt
1998c; De Jong and Steels 1999), the emergence of lexicons (Steels 1996b; Steels
and Kaplan 1998; Kaplan 2000; Vogt 1998a; Van Looveren 1999), the origins
of communication (De Jong 1999a; De Jong 2000) and the emergence of syntax
(Steels 2000). Within these subjects various aspects of language like stochas-
ticity (Steels and Kaplan 1998; Kaplan 2000), dynamic language change (Steels
1997a; Steels and McIntyre 1999; De Boer and Vogt 1999), multi-word utterances
(Van Looveren 1999), situation concepts (De Jong 1999b) and grounding (Bel-
paeme, Steels, and van Looveren 1998; Steels and Vogt 1997; Steels 1999; Kaplan
2000) are investigated.
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Bart de Boer of the VUB AI Lab has shown how agents can develop a human-
like vowel system through self-organisation (De Boer 1997; De Boer 1999). These
agents were modelled with a human like vocal tract and auditory system. Through
cultural interactions and imitations the agents learned vowel systems as they are
found prominently among human languages.

First in simulations (Steels 1996b; Steels 1996c) and later in grounded experi-
ments on mobile robots (Steels and Vogt 1997; Vogt 1998c; Vogt 1998a; De Jong
and Vogt 1998) and on the Talking Heads (Belpaeme, Steels, and van Looveren
1998; Kaplan 2000; Steels 1999) the emergence of meaning and lexicons have
been investigated. Since the mobile robots experiment is the issue of the current
thesis, only the other work will be discussed briefly here.

The simulations began fairly simple by assuming a relative perfect world
(Steels 1996b; Steels 1996c). Software agents played naming and discrimination
games to create lexicons and meaning. The lexicons were formed to name prede-
fined meanings and the meanings were created to discriminate predefined visual
features. In later experiments more complexity was added to the experiments.
From findings of the mobile robots experiments (Vogt 1998c) it was found that
the ideal assumptions of the naming game, for instance, considering the topic
to be known by the hearer, were not satisfied. Therefore a more sophisticated
naming game was developed that could handle noise of the environment (Steels
and Kaplan 1998).

For coupling the discrimination game to the naming game, which first has
been done in (Steels and Vogt 1997), a new software environment was created:
the GEOM world (Steels 1999). The GEOM world consisted of an environment
in which geometric figures could be conceptualised through the discrimination
game. The resulting representations could then be lexicalized using the naming
game. The Talking Heads is also situated in a world of geometrical shapes that
are pasted on a white board the cameras of the heads look at (figure 1.3).

The Talking Heads consists of a couple of installations that are distributed
around the world. Installations currently exist in Paris at the Sony CSL, in Brus-
sels at the VUB AI Lab, in Amsterdam at the Intelligent Autonomous Systems
laboratory of the University of Amsterdam. Temporal installations have been op-
erational in Antwerp, Tokyo, Laussane, Cambridge, London and at another site
in Paris. Agents can travel the world through the internet and embody them-
selves into a Talking Head. A Talking Head is a pan-tilt camera connected to
a computer. The Talking Heads play language games with the cognitive capaci-
ties and memories that each agent has or has acquired. The language games are
similar to the ones that are presented in the subsequent chapters. The main dif-
ference is that the Talking Heads do not move from their place, which the mobile
robots do. The Talking Heads have cameras as their primary sensory apparatus
and there are some slight differences in the cognitive capabilities as will become
clear in the rest of this thesis.
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Figure 1.3: The Talking Heads as it is installed at Sony CSL Paris.

All these experiments show similar results. Label-representation (or form-
meaning) pairs can be grounded in sensorimotor control, for which (cultural)
interactions, individual adaptation and self-organisation are the key mechanisms.
A similar conclusion will be drawn at the end of this thesis. The results of
the experiments on mobile robots will be compared with the Talking Heads as
reported mainly in (Steels 1999). Other findings based on the different variations
of the model, which inspects the different influences of the model will be compared
with the PhD thesis of Frédéric Kaplan of Sony CSL in Paris (Kaplan 2000)10.

A last set of experiments that will be brought to the reader’s attention is the work
done by Edwin de Jong of the VUB AI Lab. De Jong has done an interesting
experiment in which he showed that the communication systems that emerged
under the conditions by which language research is done in Paris and Brussels are
indeed complex dynamical systems (De Jong 2000). The communication systems
of his own experiments all evolved towards an attractor and he showed empirically
that the system was a complex dynamical system.

Using simulations, De Jong studied the evolution of communication in ex-
periments in which agents construct a communication system about situation

10Currently Frédéric Kaplan is working on human-machine interaction on the AIBO robot
that looks like a dog and which has been developed by Sony CSL in Tokyo. Naturally, the
AIBO learns language according to the same principles advocated by our labs.
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concepts (De Jong 1999b). In his simulation, a population of agents were in
some situation that required a response in the form of an action. I.e. if one
of the agents observed something (e.g. a predator), all the agents needed to go
in some save state. De Jong investigated if the agents could benefit from com-
munication, by allowing the agents to develop a shared lexicon that is grounded
in this simulated world. The agents were given a mechanism to evaluate, based
on their previous experiences, whether to trust on their observations or on some
communicated signal. The signal is communicated by one of the agents that had
observed something.

While doing so, the agents developed an ontology of situation concepts and a
lexicon in basically the same way as in the work of Luc Steels. This means that
the robots play discrimination games to build up the ontology and naming games
to develop a language. A major difference is that the experiments are situated in
a task oriented approach. The agents have to respond correctly to some situation.
To do so, the agents can evaluate their success based on the appropriateness of
their actions. As will be discussed in chapter 3, De Jong used a different method
for categorisation, called the adaptive subspace method (De Jong and Vogt 1998).

One interesting finding of De Jong was that it is not necessary that agents use
feedback on the outcome of their linguistic interactions to construct a coherent
lexicon, provided that the robots have access to the meaning of such an interaction
and lateral inhibition was assured. Hence this confirms the findings of Mike
Oliphant (1998). Questions about the feedback on language games are also issued
in the field of human language acquisition.

1.3 Language Acquisition

Although children learn an existing language, lessons from the language acquisi-
tion field may help to understand how humans acquire symbols. This knowledge
may in turn help to build a physically grounded symbol system. In the ex-
periments presented in the forthcoming, the robots develop only a lexicon by
producing and understanding one word utterances. In the literature of language
acquisition, this period is called early lexicon development. Infants need to learn
how words are associated with meanings. How do they do that?

In early lexicon development it is important to identify what cues an infant
receives of the language it is learning. These cues not only focus on the lin-
guistic information, but also on the extra-linguistic information. It is not hard to
imagine that when no linguistic knowledge is available about a language, it seems
impossible to learn such a language without extra-linguistic cues such as pointing
or feedback about whether one understands a word correctly. (Psycho)linguists
have not agreed upon what information is available to a child and to what extend.

The poverty of the stimulus argument led Chomsky to propose his linguistic
theory. Although an adult language user can express an unlimited number of
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sentences, a language learner receives a limited amount of linguistic information
to master the language. With this argument Chomsky concluded that linguistic
structures must be innate. But perhaps there are other mechanisms that allow
humans to learn language. Some might be learned and some might be innate.

A problem that occupies the nativist linguists is the so-called no negative
feedback evidence (e.g. (Bowerman 1988)). The problem is that in the innate
approach language can only be learned when both positive and negative feedback
on language is available to a language learner. However, psychological research
has shown that no negative feedback is provided by adult language users (Braine
1971). Demetras and colleagues, however showed that there is more negative
feedback provided than assumed (Demetras, Nolan Post, and Snow 1986). In
addition, it is perhaps underestimated how much feedback a child can evaluate
itself from its environment. Furthermore, feedback is thought to be an important
principle in cognitive development, see e.g. (Clancey 1997).

One alternative for the feedback, which is assumed to be provided after the
linguistic act, is the establishment of joint attention prior to the linguistic com-
munication. Do children really receive such input? Early studies of Tomasello
showed that children can learn better when joint attention is established, as long
as this is done spontaneously by the child (Tomasello, Mannle, and Kruger 1986)
cited in (Barrett 1995). Explicit drawing of attention seemed to have a negative
side effect. Although it has been assumed that pointing was a frequently used
method to draw a child’s attention, later studies have argued against such this
assumption. Tomasello reported in a later studies that pointing is not necessary
for learning language, provided there is explicit feedback (Tomasello and Barton
1994).

In this article, Tomasello and Barton report on experiments where children
learn novel words under two different conditions. In one condition, children do
not receive extra-linguistic cues when the word-form is presented. There is a so-
called nonostensive context. When at a later moment the corresponding referent
is shown, a positive feedback is given if the child correctly relates the referent
with given word-form. If the child relates the word-form to an incorrect referent,
negative feedback is given. In the second condition, joint attention is established
simultaneous with the presentation of the word-form. In this condition the child
receives a so-called ostensive context. Tomasello and Barton (1994) showed in
their experiments that children could equally well learn novel word-meaning re-
lations in both condition.

Yet another strategy is proposed by Eve Clark (1993). She argues that chil-
dren can fill in knowledge gaps when receiving novel language, provided the con-
text was known.

So, a lot of strategies appear to be available to a language learner, and there
may be more. It is not unlikely that a combination of the available strategies is
used; perhaps some more frequent than others. A natural question rises: Which
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strategies work and which do not? In this thesis experiments are presented that
investigate both the role of feedback and joint attention.

1.4 Setting Up The Goals

This thesis presents the development and results of a series of experiments where
two mobile robots develop a grounded lexicon. The experiments are based on
language games that have first been implemented on mobile robots in (Steels
and Vogt 1997; Vogt 1997). The goal of the language games is to construct an
ontology and lexicon about the objects the robots can detect in their environment.

The sensory equipment with which the robots detect their world is kept simple,
namely sensors that can only detect light intensities. One of the goals was to
develop the experiments without changing the simplicity of the robots very much
and to keep the control architecture within the behaviour-based design. Luc
Steels (1996b) hypothesises three basic mechanisms for language evolution, which
have been introduced above: individual adaptation, cultural evolution and self-
organisation.

In a language game, robots produce a sensorimotor behaviour to perceive
their environment. The environment consists of a set of light sources, which are
distinguishable in height. The raw sensory data that results from this sensing
is segmented, yielding a set of segments of which each segment relates to the
detection of a light source. These segments can be described by features, which
are categorised by the individual robots. The categorisation is processed by so-
called discrimination games (Steels 1996c). In this process the robots try to
develop categories that discriminates one segment from another. The lexicon is
formed based on an interaction and adaptation strategy modelled in what has
been called naming games (Steels 1996b). In a naming game one robot has the
role of a speaker and the other robot has the role of the hearer. The speaker tries
to name the categorisation (or meaning) of a segment it has chosen to be the topic.
The hearer tries to identify the topic using both linguistic and extra-linguistic
information when available.

The language game is adaptive in that the robots can adapt either their
ontology or lexicon when they fail to categorise of name the topic. This way they
may be successful in future games. In addition, the robots can adapt association
strengths that they use to select elements of their ontology or lexicon. The
selection principle is very much based on natural selection as proposed by Charles
Darwin (1968), but the evolution is not spread over generations of organisms,
but over ‘generations’ of language games. The principle is that the most effective
elements are selected more and ineffective ones are selected less frequently, or
even not at all. This way the most effective elements of the language are spread
in the language community, thus leading to a cultural evolution.
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The idea of cultural evolution has best been described by Richard Dawkins in
his book The Selfish Gene (Dawkins 1976). In this book Dawkins proposes the
notion of memes. Memes are elements that carry the notion of ideas, like the idea
of a wheel. Like genes, memes are generated as varieties of previous ideas and
possibly as complete new ideas. The memes are spread in the society by cultural
interactions. The evolution of memes is similar to that of genetic evolution and
good memes survive, whereas bad memes do not. However, the cultural evolution
is much faster than biological evolution and several generations of memes can
occur in a society within the lifetime of an organism. When changing the notion
of memes into language elements, a cultural evolution of language arrives. The
emergence of language through cultural evolution is based on the same principle
as biological evolution, namely self-organisation.

Three main research questions are raised in this thesis:

1. Can the symbol grounding problem be solved with these robots by con-
structing a lexicon through individual adaptation, (cultural) interaction
and self-organisation? And if so, how is this accomplished?

2. What are the important types of extra-linguistic information that agents
should share when developing a coherent communication system?

3. What is the influence of the physical conditions and interaction of the robots
on developing a grounded lexicon?

The first question is an obvious one and can be answered with yes, but to
a certain extend. As argued in section 1.1.3, the symbol grounding problem is
solved when the robots are able to construct a semiotic sign of which the form
is either arbitrary or conventionalised. Since the robots try to ground a shared
lexicon, the form has to be conventionalised. Therefore the robots solve the
symbol grounding problem when they successfully play a language game. I.e.
when both robots are able to identify a symbol with the same form that stands
for the same referent.

Throughout the thesis the model that accomplishes the task is presented and
revised to come up with two language game models that work best. Although
the basics of the models, namely the discrimination- and naming game are very
simple, the implementation on these simple robots has proven to be extremely
difficult. Not all the designer’s frustrations are made explicit in this thesis, but
working with LEGO robots and “home-made” sensorimotor boards made life
not easier. In order to concentrate on the grounding problem, some practical
assumptions have been made leaving some unsolved technical problems.

The two models that are proposed at the end of the experimental results show
different interaction strategies that answer the second question. Both feedback
and joint-attention are important types of extra-linguistic information necessary
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for agents to develop a lexicon, although not necessarily used simultaneously.
How feedback and joint attention can be established is left as an open question.
Technical limitations drove to leave this question open as one of the remaining
frustrations. Some of these limitations are the same that introduced the assump-
tions that have been made.

Although more difficult to show, the quality of physical interactions have an
important influence on the robots’ ability to ground a lexicon. When the robots
are not well adapted to their environment (or vice versa) no meaningful lexicon
can emerge. In addition, when the robots can co-ordinate their actions well to
accomplish a certain (sub)task, they will be better in grounding a lexicon than
when the co-ordination is weak.

1.5 Contributions

How does this thesis contribute to the field of artificial intelligence and cognitive
science? The main contributions made in this thesis that there is an autonomous
system that is grounded in the real world of which no parts of the ontology or lex-
icon is pre-defined. The categorisation is organised hierarchically by prototypical
categories. In addition, the thesis investigates different types of extra-linguistic
information that the robots can use to develop a shared lexicon. No single aspect
is more or less unique. However, the combination of some aspects is.

Table 1.1 shows the contributions of research that is most relevant to this
work. The table lists some aspects that the various researchers have contributed
in their work. The aspects that are listed are thought to be most relevant to this
work. Note that with Steels’ work the Talking Heads experiments are meant.
In the discussion at the end of this thesis, a more detailed comparison with the
Talking Heads is made.

Of the related work, the work of (Cangelosi and Parisi 1998; De Jong 2000;
Oliphant 1997) is not grounded in the real world. The work of Cangelosi et al.
and De Jong is grounded only in simulations. This makes the grounding process
relatively easy, because it avoids the problems that come about when categorising
the real world. Oliphant does not ground meaning at all. The work of this thesis
is grounded in the real world.

Some researchers, notably (Billard and Hayes 1997; Cangelosi and Parisi 1998;
Yanco and Stein 1993), pre-define the language. I.e. they define how a word-form
relates to a behaviour or real world phenomenon. The pre-defined language in
Billard and Hayes’ experiments is only given to the teacher robot, the student
robot has to learn the language. Although in the work of Yanco and Stein the
robots learn the language, the researchers have pre-defined the language and
they provide feedback whether the language is used successfully. Rosenstein and
Cohen (1998a) do not model language yet. Hence the question if they pre-define
the language is not applicable. In the work done at the VUB AI Lab no such
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Aspect B C D O R S V Y
Grounded in real world + - - - + + + +
Language pre-defined + + - - · - - +
Meaning pre-defined +/- - - + - - - +
Prototypical categories - - - · + - + -
Hierarchical layering of
categories

- - + · - + + -

Nr. of meanings given +/- - - + - - - +
Nr. of forms given + + - + · - - +
Nr. of agents 2 ≥ 2 ≥ 2 ≥ 2 1 ≥ 2 2 ≥ 2
Calibrated world - - - · - + - -
Mobile agents + + + · + - + +
Camera vision - · · · - + - -
Autonomous + + + + + + + -
Task oriented + + + - - - - +
Extra-linguistic - - + + · - + -

Table 1.1: Various aspects investigated by different researchers. Each column of the

table is reserved for a particular research. The related work in this table is from (the

group of): B - Billard, C - Cangelosi, D - De Jong, O - Oliphant, R - Rosenstein, S -

Steels, V - Vogt, Y - Yanco and Stein. The other ’symbols’ in the table stand for ’+’ -

yes, ’-’ - no and ’·’ - not applicable.

relationships are given to the agents. This is also not given in the work of Mike
Oliphant (1997). This means that the agents construct the language themselves.

Meaning is pre-defined if the agents have some representation of the meaning
pre-programmed. This is done in the work of (Billard and Hayes 1997; Oliphant
1997; Yanco and Stein 1993). In the work of Billard and Hayes, the meaning
is only given to the teacher robot. The student robot learns the representation
of the meaning. Oliphant’s agents only have abstract meanings that have no
relation to the real world. In the work that is done in most of Steels’ group the
agents construct their own ontology of meanings.

Of the researchers that are compared with this work, only Rosenstein and
Cohen (1998a) makes use of prototypes as a way of defining categories. All
other work makes use of some other definition. This does not mean that the use
of prototypes is uncommon in artificial intelligence, but it is uncommon in the
’grounding of language community’.

A hierarchical structuring of the categorisations is only done by the researchers
of Steels’ group, this thesis included. The advantage of hierarchical structuring
of categories is that a distinction can be either more general or more specific.

Quite some researchers pre-define the number of meanings and/or forms that
is, or should arise in the language (Billard and Hayes 1997; Cangelosi and Parisi
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1998; Oliphant 1997; Yanco and Stein 1993). Naturally, language is not bound
by the number of meanings and forms. Therefore, the number of meanings and
forms is unbound in this thesis.

It may be useful if the position of the robot in relation to other robots and
objects in their environment is known exactly. Especially for technical purposes,
like pointing to an object. However, such information is not always known to
the language users. In the Talking Heads experiment, the robots have calibrated
knowledge about their own position (which is fixed) and the position of the other
robot, and they can calculate the position of objects in their world. Such in-
formation is not available to the robots in this thesis. This is one of the main
differences between the Talking Heads and the current experiments. Another dif-
ference with the Talking Heads is the use of camera vision, rather than low-level
sensing. Still other differences are at the implementation of the model. These
differences have been discussed above and will be discussed more in chapter 7.

Not all experiments deal with robots that are mobile in their environment.
In particular the Talking Heads are not mobile, at least not in the sense that
they can move freely in their environment. The Talking Heads can only go from
physical head to physical head. The locations of these heads are fixed.

Except the work of Yanco and Stein (1993), all experiments are autonomous,
i.e. without the intervention of a human. Yanco and Stein give their robots feed-
back about the effect of their communication. This feedback is used to reinforce
the connections between form and meaning. The system designed in this thesis
is completely autonomous. The only intervention taken is to place the robots at
a close distance rather than letting them find each other. This is done in order
to speed up the experiments. In previous implementations, the robots did find
each other themselves (Steels and Vogt 1997). There is no intervention at the
grounding and learning level involved.

In most of the experiments mentioned, the agents have only one task: de-
veloping language. Some scientist argue that language should be developed in
a task-oriented way, e.g. (Billard and Hayes 1997; Cangelosi and Parisi 1998;
De Jong 2000; Yanco and Stein 1993). In particular, the task should have an
ecological function. This seems natural and is probably true. However, in or-
der to understand the mechanisms involved in lexicon development, it is useful
to concentrate only on lexicon development. Besides, developing langauge is in
some sense task-oriented.

As explained, one of the research goals is to investigate the importance of
extra-linguistic information that guides the lexicon development. This has also
been investigated by Oliphant (1997) and De Jong (2000).

So, in many respects the research that is presented in this thesis is unique.
It takes on many aspects of a grounded language experiment that is not shared
by other experiments. The experiment that comes closest is the Talking Heads
experiment. The results of the experiments from this thesis will therefore be
compared in more detail at the end of this thesis.
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1.6 The Thesis’ Outline

The thesis is basically divided in three parts. In the first part, the model by which
the experiments are developed is introduced. Part two presents experimental
results. And the final part is reserved for discussions and conclusions.

Chapter 2 introduces the experimental set-up. This includes the environment in
which the robots behave and the technical set-up of the robots. This chap-
ter explains the Process Description Language PDL in which the robots are
programmed. PDL is for the purpose of these experiments extended from a
behaviour-based architecture in a behaviour-based cognitive architecture. This
is to enable better controllable planned behaviour. People not interested in the
technical details of the robots may omit this chapter. For these people it is ad-
visable to read section 2.1 in which the environment is presented. In addition,
the part on the white light sensors in section 2.2.1 is important to follow some of
the discussions.

The language game model is introduced in chapter 3. It explains how the
robots interact with each other and their environment. The interaction with
their environment includes sensing the surroundings. The result of the sensing is
pre-processed further to allow efficient categorisation. The discrimination game
with which categorisation and ontological development is modelled is explained.
After that, the naming game is presented, which models the naming part of the
language game and the lexicon formation. The chapter ends with a presentation
of how the discrimination game and the naming game are coupled to each other.

The experimental results are presented in chapters 4, 5 and 6. Chapter 4 first
introduces the measures by which the results are monitored. The first experiment
that is presented is called the basic experiment. A detailed analysis is made of
what is going on during the experiment. As will become clear it still has a lot of
discrepancies. These discrepancies are mostly identified in following chapters.

The experiments presented in chapter 5 are all variants of the basic experi-
ment. In each only one parameter or strategy has been changed. The experiments
investigate the impact from various strategies for categorisation, physical interac-
tion, joint attention and feedback. In addition, the influence of a few parameters
that control adaptation are investigated. Each set of experiments is followed by
a brief discussion.

The final series experiments are presented in chapter 6. Two variants of
the language games that have proven to be successful in previous chapters are
investigated in more detail. Each of these experiments have a varying strategy of
using extra-linguistic information and are additionally provided with parameter
settings that appeared to yield the best results. The first experiment is the
guessing game in which the hearer has to guess what light source the speaker tries
to name, without previous knowledge about the topic. In the second experiment
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prior topic knowledge is provided by joint attention. No feedback on the outcome
is provided in the second game, called the observational game.

Chapter 7 discusses the experimental results and presents the conclusions. The
discussion is centred on the research questions posed in the previous section.
Additional discussions centre on the similarities and differences with related work,
in particular with the work done by other members of the VUB AI Lab and Sony
CSL Paris. Finally some possible future directions are given.



Chapter 2

The Sensorimotor Component

In this chapter the design and architecture of the robots is discussed. The experi-
ments use two small LEGO vehicles, which are controlled by a small sensorimotor
board. The robots, including their electronics, were designed at the VUB AI Lab.
They were constructed such that the configuration of the robots can be changed
easily. Sensors may be added or changed and the physical robustness of the robots
has improved through time. In some experiments they are changed substantially,
but in most experiments the robots remain the same.

The robots are controlled by a specialised sensorimotor board, the SMBII1

(Vereertbrugghen 1996). The sensorimotor board connects the sensory equip-
ment with the actuators in such a way that the actuators and sensor readings are
updated 40 times per second. The actuators respond to sensory stimuli, where
the response is calculated by a set of ‘parallel’ processes. These processes are pro-
grammed in the Process Description Language (PDL), which has been developed
at the VUB AI Lab as a software architecture to implement behaviour-oriented
control (Steels 1994b).

The outline of the experiments is discussed in chapters 3; this chapter is
concentrated on the physical set-up of the robots and their environment in the
different experiments. The robots’ environment is presented in section 2.1. Sec-
tion 2.2 discusses the physical architecture of the robots. Section 2.3 discusses
the Process Description Language.

2.1 The Environment

The environment that has been used for the experiments in the past varied across
some of the experiments. The environment in early experiments (Steels and
Vogt 1997; Vogt 1998a; Vogt 1998c) had different light sources than the current
environment. Furthermore, the size of the environment shrinked from 5 × 5m2

1Read as SMB-2.
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Figure 2.1: The robots in the environment as is used in the experiments.

to 2.5 × 2.5m2. In the current environment there are four different white light
sources, each placed at a different height (figure 2.1).

These white light (WL) sources (or light sources for short) all emit their light
from black cylindrical boxes with small slits. The light sources are halogen lights
and each box now has a height of 22cm, a diameter of 16cm and 3 horizontal
slits. Each slit has its centre at a height of 13cm (measured from the bottom of
the box) and is 0.8cm wide. Although the different slits are intersected by a bar,
they can be approximated to be one slit.

The boxes are placed such that the height of the slit varied per light source.
The four different heights are distributed with a vertical distance of 3.9 cm. In
one experiment the difference in height was changed to 2.9 cm. The robots were
adjusted to this environment (or vice versa) so that the light sensors were placed
at the same height as the centre of the slits.

2.2 The Robots

In the experiments two LEGO robots as in figure 2.2 are used. Each robot
has a set of sensors to observe the world. These sensors are low-level. They
can only detect the intensity of light in a particular frequency domain. Other
low-level sensors are used to control the robots in their movement. The sensors
are connected to a dedicated sensorimotor board, the so-called SMBII. On the
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Figure 2.2: One of the LEGO robots used in the experiments.

SMBII all sensors are read at a rate of 40 Hz. The sensor readings are processed
according to the software, written in PDL (see next section). After the sensors
have been processed the SMBII outputs the actuator commands and sends its
appropriate signals to the actuators. The robots are powered by a re-chargeable
Nickel-Cadmium battery pack as used in portable computers.

In this section the set-up of the sensors and actuators of the robots are dis-
cussed first. Secondly the architecture of the SMBII is discussed briefly.

2.2.1 The Sensors and Actuators

The robots in all experiments have a set-up like shown schematically in figure
2.3. The sensory equipment consists of four binary bumpers, three infrared (IR)
sensors and a radio link receiver. The radio link is a module that also has a radio
link transmitter, which is classified as an actuator. The infrared sensors are part of
the infrared module, which also consists of an actuator: the infrared transmitter.
Two independent motors complete the actuator set-up. All sensors and actuators
are connected to the SMBII, which is powered by a battery-pack. The battery-
pack also powers the motor-controller. The motor-controller, controlled by the
SMBII controls the motors. The motors are connected to the wheels via a set
of gears. Finally there are four white light sensors that are responsible for the
perception.

Below a more detailed description of the most important sensors and actuators
are given.
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Figure 2.3: A schematic overview of the basic set-up of the robots that are used in

the experiments.

The Bumpers The robots have four bumpers that are used for touch based
obstacle avoidance; two on the front and two on the back of the robot, both
left and right. Each bumper is a binary switch: when it is pressed it returns
1, else it returns 0. The bumpers have a spanning construction of LEGO
(see figure 2.4(a) and 2.4(b)). If a robot bumps with this construction into
an obstacle. The program can then react on the sensed collision.

The Infrared Module Whereas the bumpers are simple binary sensors, the
infrared module (figure 2.4(a)) is more complex. The infrared module con-
sists of infrared emitters and sensors. The emitters are light emitting diodes
emitting infrared. The infrared sensors themselves are sensors that can be
found in e.g. television sets. They detect light at infrared wavelengths and
send a signal to the SMBII that is proportional to the intensity of the in-
frared. The sensors are mounted such that they can discriminate infrared
coming from the left, centre and right sides in front of the robot. The sen-
sors are not calibrated in the sense that one can calculate the exact angle
from where the infrared is coming or from what distance. Also the positions
of the sensors are not exactly symmetric, due to some physical limitations of
the sensors and the LEGO construction. Vogt (1997) discusses some practi-
cal problems concerning the modulation and characteristics of the infrared
module in detail.

The Radio Link The radio link module is a transmitter/receiver device de-
signed to connect with the SMBII (see figure 2.4(b)). The module is a
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Caster wheel

(c) Bottom

Figure 2.4: Several close ups of one of the robots. Figure (a) shows the front

side of the robot. The bumper construction can be seen. The perceptual sensor array

consisting of 4 light sensors, the infrared sensors and the infrared emitter are also visible.

The radio link module can be seen in (b) as well as a part of the bumper construction

on the back. Figure (c) shows the bottom of the robot. We see the wheels, gearing and

the battery pack. Also a good view is seen of the bumper constructions.
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Radiometrix BM-433F module with RX (receive) and TX (transmission)
connections. The module can send up to 40 Kbit/s, but is used at 9.6
Kbit/s.

Every clock cycle of the SMBII a packet of messages can be sent. A packet
can consist of a maximum of 31 messages each up to 127 bytes long. A
message has a transmission ID and an destination address, which define
the sender and receiver(s) of the message. It also has a bit defining the
reliability of the transmission; this bit has to be set to unreliable, i.e. to
0, because the reliability protocol has not been implemented in the radio
link kernel. This has the consequence that if a message is sent, it is not sure
if the message arrives at its destination. But when it arrives, the message
arrives error-less. About 5% of the messages sent do not arrive at their
destination.

This unreliability has some technical impacts on the experiments. Since
data logging, -recording and communication passes through the radio link,
not all information is received. Filters had to written to find out whether
all data was logged and if not, part of the data would be unreliable and
should therefore be discarded. It is beyond the scope of this dissertation to
go into the details of such filters here. For the purpose of the thesis it is
assumed that the radio transmission is reliable.

The Motor Controller and the Motors The motor controller is a device that
transforms and controls motor commands coming from the SMBII into sig-
nals that are sent to the standard LEGO DC motors. Each robot has two
independent motors. So, in order to steer the robot, one has to send a
(possibly different) signal to each motor.

Gearing The motors are not directly connected to the wheels. They are con-
nected to the wheels with a set of gears (see figure 2.4(c)). The wheels are
placed such that they form an axis approximately through the centre of the
robot so that it can rotate around this point. A third small caster-wheel is
used to stabilise the robot.

The light sensors The white light sensors are the most crucial sensors in the
experiments. This is because they are used for the perception of the ana-
logue signals that the robots are supposed to ground. Each robot has four
white light sensors stacked on top of each other. The sensors have a vertical
distance of 3.9 cm between each other. Each sensor is at the same height
as a light source (figure 2.4(a)).

The light sensors were calibrated such that the characteristics of all sensors
are roughly the same. Figure 2.5 shows the characteristics of the calibrated
light sensors as empirically measured for the experimental set-up. On the
x-axis of each plot the distance of the robot to the light source is given in
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centimetres; the y-axis shows the intensity of the light in PDL values. PDL
scales the light sensors between 0 and 255, where 0 means no detection of
light and 255 means maximum intensity. The calibration of each sensor
is done while it was exposed to a corresponding light source. A sensor is
said to correspond with a light source when it has the same height. The
complete figure shows the characteristics of the two robots r0 and r1, each
with four sensors (s0 . . . s3).

It is notable that for light source L0 the characteristics of sensor s3 is high
at the beginning (figure 2.5 (a) and (e)). This is because for the lowest light
source L0, sensor s3 is higher than the top of the box, which is open. At a
larger distance the light coming from the top of this box cannot be seen.

It is clear that all characteristics are similar. The sensor that corresponds
to a light source detects high intensities at short distances and low values at
larger distances. From 0.6m other sensors start detecting the light source as
well. This is because the light coming from the slit does not propagate in a
perpendicular beam, but is diverging slightly. It is important to note that
corresponding light sensors are calibrated to read the highest intensities
between 0 and 1.2m. The shape of the plots are like they would have been
expected from the physics rule that the intensity I ∼ 1

r2 , where r is the
distance to the light source.

It is noteworthy that each sensor detects noise that comes mainly from
ambient light.

The robots are also equipped with sensors and actuators that are used for
interfacing the robot with the experimenter. It has for instance a serial port for
connecting the robot to a PC, a display with 64 LEDs, a pause button, an on/off
switch, etc. Since these sensors are not vital for the behaviour of the robots, they
are not discussed in more detail here.

This subsection introduced the sensorimotor equipment that the robot carries
in the experiments as discussed throughout this thesis. The next subsection
discusses the sensorimotor board in some more detail.

2.2.2 Sensor-Motor Board II

The computing hardware of the robots is a sensorimotor board, called the SM-
BII, which is developed at the VUB AI Lab by Dany Vereertbrugghen (1996).
It consists of an add-on SMB-2 board and a Vesta Technologies SBC332 micro
controller board.

The Vesta board (see figure 2.6(a)) contains a Motorola MC68332 micro-
controller, 128 kB ROM and 1 MB RAM2. The board’s micro-controller runs at

2In the original version of the SMBII there was only 256 kB RAM (Vereertbrugghen 1996).
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Figure 2.5: The characteristics of the calibrated light sensors as empirically measured

for the experimental set-up when exposed to light sources L0−L3. Plots (a) - (d) show

the of robot r0 and plots (e) - (h) show them for r1. The distances are measured from

the front of the robots to the boxes. Actual distances from source to sensor are 12cm

further.
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Figure 2.6: The two components of the SMBII board: (a) the Vesta Technologies

SBC332 micro controller board, and (b) the add-on SMB-2 sensorimotor board.



42 The Sensorimotor Component
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Figure 2.7: The way that PDL interacts with the world via a robot. Every 1
40s PDL

is going through a cycle as shown in the figure.

16.78 MHz at 5Volt and everything is powered by a pack of rechargeable Nickel-
Cadmium batteries.

The add-on SMB-2 board (figure 2.6(b)) contains several I/O chips, bus con-
trollers and connectors. The SMBII low-level program is run on the kernel and
it can interface a user program written in any language as long a the kernel calls
are written in C (Vereertbrugghen 1996). The program that is run on the SMBII
for these experiments is written in the Process Description Language PDL.

2.3 The Process Description Language

The robots are programmed in the so-called Process Description Language (Steels
1992; Steels 1994b; Steels 1994a). PDL is designed as a framework for designing
software for autonomous agents according to the behaviour-oriented control.

In PDL one can decompose a behaviour system in a set of dynamical processes.
For instance, one can decompose the behaviour of phototaxis (i.e. moving towards
a light source) into two dynamical processes: (1) moving forward and (2) orienting
towards the light. PDL is designed to implement parallel processes that are
virtually evaluated simultaneously to output a summated response. So, suppose
there are the two parallel processes (1) and (2) that are evaluated simultaneously.
And suppose further that the output of the two processes are summated to give
a motor response. Then the emergent behaviour is phototaxis.

PDL cycles the process of reading sensors, evaluate processes and control
actuators (figure 2.7). During a PDL cycle a robot reads the sensors to detect
the current state of a robot in the world. These sensor readings are evaluated
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by processes that are defined in the software as explained below. The processes
output commands to activate the actuators. These actuators in turn change the
state of the world. Such a cycle is processed at 40Hz, so 40 PDL cycles take 1
second. Throughout the thesis the basic time unit is a PDL cycle ( 1

40
s).

The initial implementation of PDL was written in LISP, the currently used
version is implemented in ANSI-C. It can compile both the specialised PDL
syntax and ANSI-C commands within its architecture. The PDL architecture has
as its basic symbolic units so-called quantities. A quantity is a struct type
that has a name, a value, an upper bound, a lower bound and an initial

value. Each quantity can be connected to a serial port, interfacing the program
with the physical sensors and actuators. Each type of sensor and actuator is
defined within the operating system of the SMBII. The radio module has its own
interface, but can be called with a PDL command. The most important parts
of a PDL program are the processes. Each time a PDL program is compiled a
network of processes is build up. The following example of phototaxis shows how
this is done.

The example implements two behaviours: (1) infrared orientation and (2) infrared
phototaxis. In infrared orientation the goal of the robot is to orient itself in the
direction of an infrared source without approaching the source3 It is implemented
using only one dynamic process called Taxis. With infrared phototaxis the goal of
a robot is to approach the infrared source. It is implemented with an additional
process that causes a robot to try to move at a default speed.

After declaration, the quantities have to added to the system as follows:

add_quantity(LeftFrontIR,’’LeftFrontIR’’,255.0f,0.0f,0.0f);

add_quantity(RightFrontIR,’’RightFrontIR’’,255.0f,0.0f,0.0f);

add_quantity(LeftMotor,’’LeftMotor’’,100.0f,-100.0f,0.0f);

add_quantity(RightMotor,’’RightMotor’’,100.0f,-100.0f,0.0f);

The function add q adds the quantity LeftFrontIR is added to the network with
name ’’LeftFrontIR’’, an upper bound of 255.0f (where f stands for float),
a lower bound of 0.0f and an initial value of 0.0f. Likewise the quantities
RightFrontIR, LeftMotor and RightMotor were added, see figure 2.8. The
upper- and lower bound of the motors are resp. 100.0 and -100.0. If mathemati-
cally an upper- or lower bound would be exceeded, PDL sets the quantity-value
to its upper- or lower bound. The next step is to connect the quantities to the
serial ports of the SMBII, which are connected to the sensors and actuators.

3In the experiments the robots themselves are infrared sources.
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Figure 2.8: The construction of a PDL network. The program has serial

ports SID AN1 and SID AN2 for analogue sensory input. Ports AID Motor1 and

AID Motor2 are serial ports for the motors. The network consists of the quantities

LeftFrontIR, RightFrontIR, LeftMotor and RightMotor.

add_connection(SID_AN1,LeftFrontIR);

add_connection(SID_AN2,RightFrontIR);

add_connection(AID1_Motor,LeftMotor);

add_connection(AID2_Motor,RightMotor);

Now the network looks like in figure 2.9.
The above is part of the initialisation. Another step of the initialisation is to

add processes to the network:

add_process(Taxis,’’Taxis’’);

add_process(TowardsDefault,’’TowardsDefault’’);

This leads to the network as shown in figure 2.10.
To couple the sensors with the actuators, the processes have to be defined.

The process taxis causes the robot to orient towards an infrared light source.

void Taxis()

{

D=value(RightFrontIR)-value(LeftFrontIR);

add_value(LeftMotor,C*F(D)*D));

add_value(RightMotor,-C*F(D)*D));

}

Here, value(Q) is a function that returns the value of quantity Q, add value(Q,V)

adds value V to the value of Q. The actual update of Q is done at the end of each
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Figure 2.9: This is the PDL network after the quantities are connected with the

serial ports.
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Figure 2.10: This is the PDL network after the processes Taxis and TowardsDefault

are added.
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PDL cycle. When more values are added to Q, these values are summed before
they are added. C is a constant and F(D) is a scaling factor of difference (D) in
infrared. F(x) is implemented as an inverse sigmoid function.

F (x) =
1

1 + eα·(x−β)

F(x)*x dampens x strongly if x is large, it is less dampened if x is not large.
If F(x) is not applied, the robot would exaggerate its wiggling too much.

Taxis increases the LeftMotor and decreases the RightMotor by a value pro-
portionate to D. If the infrared source is to the right of the robot, the difference
D is positive. Hence the value of the LeftMotor increases and the value of the
RightMotor decreases. This in effect causes the robot to turn to the right. When
the infrared source is to the left of the robot, the opposite happens. So, the
robot will rotate in the direction in which the intensity of infrared is detected
the highest. If the robot passes the infrared source, the direction in which the
infrared is detected (i.e. the sign of Direction changes) and so the robot changes
its direction of rotation. This will continue until D approaches zero or when the
values become so small, that it there is no power left to move the robot.

Although the robot is rotating around its axis in varying directions, it does not
move from its place. This is accomplished by introducing the following process:

void TowardsDefault()

{

add_value(LeftMotor,(DefaultSpeed-value(LeftMotor))/Step);

add_value(RightMotor,(DefaultSpeed-value(RightMotor))/Step);

}

This process causes the robot to change its speed towards a default speed with
certain step size. The step size is introduced to let the robot accelerate smoothly.
Note that this way the motor values do not reach the default speed; the values
approach it asymptotically. When the processes are defined, the network looks
like in figure 2.12.

Taking the two processes together results in the emergent behaviour that
the robot will move wiggling towards the infrared source, see figure 2.11. Such
phototaxis behaviour, although with a slightly different implementation, was in-
troduced for a robot application by Valentino Braitenberg (1984) and has already
been discussed extensively in the literature, see e.g. (Steels 1994c).

Appendix B presents the structure of the implemented PDL program in more
detail. In the next section the behaviour based architecture is expanded to in-
corporate planned behaviours as well.
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Figure 2.11: This figure shows the evolution of the infrared sensors and Motor values

in time during phototaxis, i.e. the emergent dynamics of combining the processes Taxis

and TowardsDefault. On the x-axis the time is shown in the basic time unit of the

robots, a PDL cycle (= 1
40s. The y-axis shows the intensity of the infrared sensors and

motor signals. The data is taken from a robot that was driving using both processes

Taxis and TowardsDefault. It drove straight forward until at time 140 the robot

detected an infrared source after which it adjusted its motor signals to home in on the

source.
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Figure 2.12: Finally the network of quantities and processes for the phototaxis

example is complete. The LeftFrontIR and RightFrontIR are connected to input Taxis,

which outputs to the motor quantities. The motor quantities are also used to calculate

the output, hence this connection is bi-directional. The process TowardsDefault does

not use any sensors; as in Taxis it only uses values of the quantities LeftMotor and

RightMotor thus giving the bi-directional connection between TowardsDefault and the

motors.

2.4 Cognitive Architecture in PDL

To accomplish a complex task like communication, a sequence of actions have to
be planned. Reactive behaviours, like phototaxis alone do not suffice. To allow
the robots to execute planned behaviour a new architecture has been developed.
This resulted in what could be called a behaviour-based cognitive architecture that
is primarily based on the behaviour-based control architecture proposed by Luc
Steels (1994b). This cognitive architecture could be applied as a general purpose
architecture for complex and dynamic tasks like navigation. The architecture
executes a script (or plan) through excitation and inhibition of processes that
altogether result in some emergent behaviour. The scripts are implemented as
finite state automata in which transitions are controlled by state-specific pre- and
post-conditions. In each state of the finite state automaton (FSA) a particular
set of processes are activated or inhibited. Figure 2.13 shows the basic principle.

In the architecture the sensors Se and actuators A are coupled through a
complex of connections. The agent consists of a set of scripts, which are imple-
mented as finite state automata. The finite state automata are parallel processes
where transitions are regulated by pre- and post-conditions. Usually the pre- and
post-conditions are satisfied by some sensory stimuli. A state may also be fed
with information coming from some internal process (not shown). Every state S
has a post-condition that allows the system to enter the default state S0 where
nothing happens. Each state of the automaton has excitatory and inhibitory con-
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Figure 2.13: A schematic overview of the developed architecture. See the text for

details.
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nections with dynamic sensorimotor processes P. The excitatory connections are
drawn as dotted lines, the inhibitory have been left out for clarity of the picture.
The processes are divided between reactive (R) and cognitive (C) processes. The
reactive processes have more direct processing and can take usually only sen-
sorimotor data as input. The cognitive processes are more complex, and may
take also stimuli coming from other internal processes. Note that the finite state
automaton could be considered as a cognitive process as well. The configuration
of excitatory processes and the dynamics of the robot with its environment cause
the robot to perform some emergent behaviour. Hence the system is consistent
with the behaviour-based paradigm.

Activation of processes is modelled by invoking motivational factors cf. (Steels
1996d; Jaeger and Christaller 1998). For example if is a state that in which the
motivation for doing infrared taxis is present, this state may be a motivational
factor MotIRT that is set to 1. The process taxis can then look like this:

void Taxis()

{

D=value(RightFrontIR)-value(LeftFrontIR);

add_value(LeftMotor,MotIRT*C*F(D)*D));

add_value(RightMotor,-MotIRT*C*F(D)*D));

}

A multi-agent system is a parallel process in which two robots cooperage
autonomously. In order to synchronise these two parallel processes, the robots
use pre-programmed radio communication. The robots playing a language game
process dependent, but parallel operating finite state automata. A signal is broad-
casted when both robots should transfer to another state simultaneously as the
result of the transition of one of the robots.

Because the architecture uses finite state automata, readers may wrongly
suggest it is the subsumption architecture proposed by Rodney Brooks (1990).
In the subsumption architecture each process is viewed as a finite state automaton
on its own with only one state that models a behaviour (figure 2.14 (a)). The
architecture proposed here uses possibly more finite state automata each with
a sequence of states that can be entered (figure 2.14 (b)). These finite state
automata are used to control planning. A process in the cognitive architecture
can be activated by several states, and a particular state can activate several
processes. In addition the processes couple the sensors with the motors, like the
behaviour-based architecture proposed by Luc Steels (1994b).

The behaviour-based cognitive architecture has strong similarities with the
dual dynamics architecture (Jaeger and Christaller 1998). However, the in the
dual dynamics the activation of processes is regulated internally of these pro-
cesses. There is no explicit finite state automaton that regulates the activation.

The architecture proposed here is also similar to the architecture proposed
by (Barnes 1996; Barnes, Aylett, Coddington, and Ghanea-Hercock 1997), called
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Figure 2.14: The finite state automata as used in the subsumption architecture (a)

and in the cognitive architecture (b). In the subsumption architecture the finite state

automata usually only has one state that models a particular behaviour. This behaviour

can inhibit (or subsume) another behaviour. The cognitive architecture has some finite

state automata each modelling a script-like behaviour. Each state excites or inhibits a

number of dynamical processes. The finite state automata function independently as

a parallel process.

the behaviour synthesis architecture (BSA), which synthesises a set of behaviour
patterns with a certain utility (or strength) for accomplishing a task. A behaviour
script controls a sequence of behaviour packets. Each behaviour packet consists of
a set of behaviour patterns, a pre-condition and a post-condition. Comparing the
behaviour patterns with the dynamical processes of PDL, the behaviour scripts
with the finite state automata and the packets with a single state, then the
BSA is very close to the architecture that has been incorporated here. Main
differences with the work of (Barnes 1996) is the use of utility functions as its
synthesis mechanism. Although the architecture here is developed by a human
programmer, (Barnes, Aylett, Coddington, and Ghanea-Hercock 1997) show that
planning can be automated using the BSA.

2.5 Summary

In this chapter the basic set-up of the robots, their software and environment were
introduced. The experiments use two small LEGO vehicles that are equipped
with a set of sensors, actuators, a battery pack and a specialised sensorimotor
board SMBII. The robots are programmed in a specialised programming language
PDL, which is dedicated to process the dynamics of sensorimotor behaviours in
the behaviour-oriented paradigm.

The principles of PDL have been extended to a behaviour-based cognitive
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architecture. In this new architecture robots can execute planned behaviour as
cognitive processes.

The robots as introduced here are the physical bodies with which the agents
try to develop their ontologies and lexicons. How they do that is explained in
chapter 3. As shall become clear some processing is done off-board. This is mainly
done to experiment more efficiently and to be able to test different approaches
on recorded data. In some specific experiments the architecture of the robots
has been changed with respect to the description given in this chapter. Relevant
changes will be reported when these experiments are discussed.

More detailed information on the PDL program can be found in appendix B.



Chapter 3

Language Games

3.1 Introduction

In order to solve the symbol grounding problem the robots engage in a series of
language games. Every language game can be thought of as a communication act
in which the robots communicate about an object (in this case a light source).
The goal of a language game is for the two robots to identify the same referent
through the exchange of linguistic and possibly non-linguistic information. If this
does not succeed they can adjust their set of meanings and/or lexicons so they
may be successful in future games.

The notion of a language game was first introduced by Ludwig Wittgenstein
(1958). Wittgenstein called every language use a language game. The meaning
of the language game depends, according to Wittgenstein, on the how the game
is used. Wittgenstein gave some examples of different types of language games
(Wittgenstein 1958, p. 11, par. 22):

• Giving orders, and obeying them

• Describing the appearances of an object, or giving its measure-
ments

• Constructing an object from a description (a drawing)

• Reporting an event

• Speculating about an event

• ...

In the experiments done at the AI Lab different types of games are investi-
gated. Besides the basic term of language game, the following games have been
introduced naming games (Steels 1996b), discrimination games (Steels 1996c),
imitation games (De Boer 1997), guessing games (Steels and Kaplan 1999), iden-
tification games and follow me games (Vogt 1999; Vogt 2000). All games model
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a communication act, except the discrimination and identification games which
model categorisation. The types of games that will be used in this thesis are
naming games, discrimination games, guessing games and two additional games
that will be explained further on in this chapter. The discrimination and naming
game form a subpart of what is called here a language game. The other games
are a special type of language game.

In the context of this work, a language game is the complete process of per-
forming a communication act. As mentioned in chapter 1, grounding language
is strongly influenced by an agent’s interaction with its environment. Since it
is assumed that language and meaning formation are complex dynamical adap-
tive systems, these systems can be defined by their mechanical processes and
the systems boundary conditions (Prigogine and Strengers 1984). So, to develop
a robot capable of constructing conceptual structures and language, one has to
define such mechanisms and boundary conditions of the system. The mechanism
has already been chosen, namely the selectionist approach taken (Steels 1996b;
Steels 1996c). The boundary conditions will be defined (for a great deal) by the
physical bodies and interaction of the robots with their ecological niche.

This chapter presents the physical interactions of the robots with their envi-
ronment. It defines the language game scenario in detail, defining the physical
interaction in which a context setting is acquired. This happens in the next
section. Then section 4.1.3 discusses the advantages of on-board vs. off-board
processing as a methodology of experimenting with robots. Section 3.4.1 dis-
cusses the perception and segmentation during a language game. Sections 3.4.2
and 3.4.3 explain the higher cognitive functions of categorisation and naming. A
final section of this chapter couples the different parts of the language game.

3.2 The Language Game Scenario

The goal of a language game is to communicate a name for one of the light sources
that the robots can detect in their environment. To do so, both robots first have
to sense their surroundings. One of the robots takes the role of the speaker, the
other takes the role of hearer. The speaker selects one sensation of a light source.
This light source is the subject of the communication. The speaker looks for a
category that relates to the sensation of this light source. When it did this, it
searches a word-form that it has associated with this category in the past. This
word-form is then communicated to the hearer.

The hearer, who has also sensed several light sources, tries to interpret the
communicated word-form. It looks in its memory if it had stored an association
of this word-form with one or more meanings that relate to the sensation of the
light sources. If the hearer can find a link between the word-form and some light
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SPEAKER HEARER

Get together and align
Sensing, segmentation and feature extraction
Topic choice –

Pointing Topic selection
Categorisation

Production –
– Understanding

Feedback
Adaptation

Table 3.1: The language game scenario. The ‘get together and align’ phase is done

by the experimenter for practical reasons. Pointing and Topic selection may be omitted

for methodological reasons. See the text for more details.

source, the language game is successful when both robots communicated about
the same light source.

In the beginning of the experiments, the robots have no categories or word-
forms yet. These are the things that they need to develop. So, when the robots
are not able to find a suitable category or a word-form, they may expand their
memory in order to do so in the future. And if they were able to do so, they will
increase the strength of the used association, this increases the chance that they
will be successful in the future. How they do this, will be explained in detail in
this chapter. In this section, the subtasks of a language game will be identified
and organised.

So, how is a language game organised? Table 3.1 shows the structure of the
language game scenario. In a language game two robots - a speaker and a hearer
- get together at close distance. In earlier experiments (Steels and Vogt 1997)
the robots came together autonomously. When sensing each other’s vicinity, the
speaker approached the hearer by using infrared phototaxis. When both robots
were close to each other, they aligned such that they faced each other prior
to the sensing. This behaviour, however, took approximately 1.5 minutes for
each language game. So, to speed up the current experiments the robots have
been brought together manually. The PDL source code for finding each other is
included in appendix B. For more details on this part of the language games,
consult (Vogt 1997).

When the robots are standing together at close distance, they acquire a spatial
view of their surroundings by means of a specialised sensing task. This sensing
task results in a spatial view of the robot’s surroundings, which is then segmented
resulting in a set of segments (or context for short). Each segment is supposed
to refer to a light source as detected by the robot and is represented by a set
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of connected data points. These data points are sensory data that from which
the noise is reduced. From these segments feature vectors are extracted that
designate some properties of these segments.

The speaker chooses one segment from the context to be the topic of the
language game and tries to categorise its relating feature vector by playing a
discrimination game. The discrimination game results in one or more distinctive
categories. The hearer identifies one or more segments from the context as a
possible topic an tries to categorise its (their) related feature vector(s).

After the speaker has chosen a topic and categorised this segment, it produces
an utterance. An utterance is the communication of a form. The hearer tries to
understand this utterance by looking for matching associations of this form with
a meaning in its lexicon. If one of these meanings is coherent with one of the
distinctive categories of the topic, then the language game may be a success.
The language game is successful when the speaker and the hearer communicated
about the same referent. The evaluation of the success is called the feedback.

If the language game was not a success, the lexicon has to be adapted either by
creating a new form (if the speaker could not produce an utterance), by adopting
the form (if the hearer could not understand the utterance) or by decreasing
association scores. Association scores are increased when the language game is
successful. The process that models naming and lexicon adaptation is called a
naming game.

Figure 3.1 illustrates the language game scenario schematically.

3.3 PDL Implementation

So, to play a language game, a robot has to perform a sequence of actions. These
actions need to be planned. The planning is pre-programmed as a script using
finite state automata. There is a finite state automaton (FSA) for each role the
robots can play: the speaker or hearer. Each finite state automaton is active
all the time and when no language game is played, both robots are in state
0. A process called DefaultBehavior decides when an agent goes into state 1
of the speaker-FSA or hearer-FSA. In each state a set of dynamic processes is
activated or inhibited. See the previous chapter for a general presentation of the
behaviour-based cognitive architecture.

How the physical behaviours of the robots are implemented in PDL is pre-
sented in appendix B. The next section sketches the architecture as a general
architecture for developing cognitive robots. After the introduction of the archi-
tecture sensing, segmentation and pointing is discussed in detail.

Figure 3.2 shows how the language games are implemented in the behaviour-
based cognitive architecture. The architecture is built of a large set of parallel
processes, which are continuously being processed. These processes, however



3.3 PDL Implementation 57

(a) (b)

"WABA" ?!

(c)

!

(d)

Figure 3.1: A temporal overview of the language game scenario. (a) The robots get

together aligned and align. (b) The robots rotate in order to sense their surroundings.

(c) The speaker produces an utterance and the hearer tries to understand the speaker.

(d) When the hearer ‘thinks’ it understood the speaker, feedback is established and the

robots’ memories are adapted.
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Figure 3.2: The behaviour-based cognitive architecture of the robotic system for

processing language games. Note that the PDL-like network structure as introduced in

2.3. The flow of information follows each line in the direction of the arrow. If a cross-

connection is found, the information follows the line straight. Only when a T-connection

is encountered, the direction of the arrow is taken. Some lines are bi-directional, in

such cases information flows in both directions. Basically, the information flows from

the sensors on the left-hand side of the figure to the actuators on the right-hand side.

In between, the information first flows in the finite state automata that controls the

planning of the robots. Table 3.2 gives the translation of the abbreviations. Note that

the term perception is used to designate the sensing.
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Sensors

LFB Left Front Bumper
RFB Right Front Bumper
LBB Left Back Bumper
RBB Right Back Bumper
LIR Left Infrared Sensor
FIR Front Infrared Sensor
RIR Right Infrared Sensor
WL White Light Sensor
RX Radio Receiver

Finite State Automata

0 Default State
Sx Speaker’s State x
Hx Hearer’s State x

Processes

TBOA Touch-Based Obstacle Avoidance

Actuators

TX Radio Transmitter
LM Left Motor
RM Right Motor
IR Infrared Emitter

Table 3.2: A list of abbreviations as used in figure 3.2.
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do model different types of behaviour and should not be viewed at one level of
complexity. Rather, the processes are organised hierarchically.

There is a finite state automaton for the speaker role and one for the hearer.
Each state of the finite state automaton activates a set of processes that are
shown to the right of the finite state automaton. Those processes that are ac-
tive respond to information that flows from connected sensors, actuators or other
processes. All processes have been implemented in PDL on the real robots in pre-
vious versions (Steels and Vogt 1997). In the current experiments, the cognitive
processes are implemented as software agents that are processed on a PC.

There are reactive processes like taxis, rotate and obstacle-avoidance. All
these processes guide the physical behaviour of the robots.

The cognitive processes can be distinguished from the reactive processes in
that they model more complex behaviour and need not directly influence actua-
tors, but they can also influence the internal state of an agent1. Coincidentally
all cognitive processes are implemented off-board, besides the sensing which is
implemented on-board. The cognitive processes tend to work at different time
scales then reactive ones. I.e. the time necessary to e.g. categorise something
takes computationally longer than reactive responses do. This has not only been
observed in neuroscience2, but also during the implementation of so-called follow
me games (Vogt 1999; Vogt 2000). In the follow me games the hearer is following
the speaker using phototaxis. When a change in direction is encountered the
robot categorises a part of its movement. If both phototaxis and categorisation
and naming are processed simultaneously on the SMBII, the robot fails to fol-
low the speaker because the categorisation process takes more time than 0.025s,
which is the time of one PDL cycle. Although PDL normally cycles the read-
process-execute cycle 40 times per second, it only does so when it finished all its
processes.

The categorisation and naming are single processes that carry out a complex
process of search, selection and adaptation, but these processes could in principle
be modelled by a set of parallel processes as well. This has not been done for the
sake of both simplicity and architectural requirements (the computers used are
still serial machines).

Both the reactive and cognitive processes are activated or inhibited by the moti-
vational factors which are set inside the states of the finite state automaton. So,
depending on the role an agent has, it will enter either the speaker-FSA or the

1Although the term cognitive processes are sometimes used to refer to reactive processes
as well, the term is used here to indicate the distinction between reactive behaviours and
behaviours that require more sophisticated cognitive processing. The cognitive processes refer
to those processes that are fundamentally involved in categorisation and/or naming.

2There is a lot of evidence for fast and slow pathways in the central nervous system, where
the fast pathways are reactive and the slow are considered to model higher cognition, see e.g.
(LeDoux 1996).
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hearer-FSA. Each finite state automaton models a script-like scheme that takes
care of the plan. Note that depending on the task numerous finite state automata
could be developed of course. Each state takes either direct sensory stimuli or
indirect stimuli as read messages or a timer as their arguments. These stimuli
are used to determine when the final condition of the state is reached. The final
conditions of a state are immediately the initial conditions of the next state. If a
robot is too long in one state, measured by the timer, a transition is made to the
default state and consequently the language game fails. All other final conditions
cause the robot to enter the subsequent state unless it is the final state of the
automaton, then it also enters the default state. If no final condition is met, the
robot remains in (or re-enters) the same state.

This section sketched how language games are implemented in the behaviour-
based cognitive architecture. Of course, much more could be said about the
architectural implementation, but this is beyond the scope of the dissertation,
which is more concerned with grounding symbols.

3.4 Grounded Language Games

How are the different subparts of the language game scenario modelled? Up to
now the physical set-up and implementation of the robots and their interactions
have been explained. The only part of the implementation that still needs to
be presented are the cognitive models that implement the sensing, segmentation,
feature extraction, categorisation and lexicon formation. These models are the
core of the present solution to the physical symbol grounding problem. The
remainder of this chapter presents these processes.

Sensing, segmentation and feature extraction are important ingredients of the
solution of the symbol grounding problem: they form the first step towards in-
variance. Invariance returns in the cognitive processes during the selection of
elements. The three recognised problems in the symbol grounding problem icon-
isation, discrimination and identification (Harnad 1990) are cognitively modelled.
Recall from chapter 1 that iconisation is the construction of iconic representations
that relate to the detection of some real world object. In these experiments, icon-
isation is more or less modelled by the sensing and segmentation. Harnad (1990)
calls discrimination the process where it is determined how iconic representations
differ. He uses discrimination at the sensing level. Here discrimination is used
at the categorisation level. It is modelled by the discrimination games. Iden-
tification is the process where categories are identified that relate to the iconic
representations invariantly. This is modelled in this thesis by the naming game
model. As will be explained soon, this classification is not so clear-cut.

As argued in chapter 1, a symbol can be illustrated with a semiotic triangle.
The semiotic triangle, a symbol or sign has three relations: (1) meaning - referent,



62 Language Games

(2) form - meaning, and (3) form - referent. So, how do robots that have no
knowledge construct a meaningful ontology and lexicon for these three relations?
Two models have been proposed to solve this problem. For relation (1) there
are discrimination games (Steels 1996c). Relation (2) is modelled by the naming
game (Steels 1996b). Coupling the two models in a grounded experiment provides
relation (3). This is so, because as argued in chapter 1, language and meaning
co-evolve (Steels 1997b). Closing the semiotic triangle with success is then what
Harnad (1990) called identification and the symbol grounding problem is solved
for that particular symbol. This is so, because only if it is closed successfully,
there is enough reason to assume that the symbol stands for the referent.

In the semiotic triangle there is a direct relation between the meaning and the
referent. However, in cognitive systems there is no such direct relation; the world
has to be sensed first. So, to achieve a semiotic coupling, Steels (1999) proposes a
semiotic square rather than a triangle, see figure 3.3. Note that the square couples
the semiotic relations in one robot with another. As argued, language dynamics
is thought to give rise to the development of both the lexicon as the ontology.
How the ontology and lexicon are developed is explained in sections 3.4.2 and
3.4.3. The next section explains how the robots do their sensing, segmentation
and feature extraction.

3.4.1 Sensing, Segmentation and Feature Extraction

In the phase of sensing, the goal is that each robot observes its surroundings
from its current physical position. To obtain a more or less identical view, the
robots start close to each other. Sensing its surroundings means that the robots
construct a spatial view of their environment. This spatial view is represented by
the recorded sensory data. However, with the sensors they have the robots cannot
obtain a spatial view directly, because the sensors can only detect light intensity
without spatial information. In order to get a spatial view of their environment,
either the robots need to have a spatially distributed array of sensors or the
robots need to move. Because of the physical limitations of the robots (and the
sensory-motor board in particular) it is opted to let the robots move. As a side-
effect a higher resolution is obtained. To obtain a spatial view of their complete
surroundings the robots rotate a full circle around their axis.

The robot’s observation of its surroundings results in a set of raw sensory
data that represents the scene. However, in order to identify the different light
sources, the robots have to find connected regions of the sensory data that relate
to the sensing of these light sources. This is done by the segmentation process.
The segmentation can result in segments of varying length. To be able to identify
a good category it is more efficient to have a description in a consistent manner
that designates invariant and useful properties or features of the sensation of the
light source. Extracting these features is done by means of what is called feature
extraction.
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perception topic referent perception

meaning meaningutteranceutterance

perceive

conceptualize

verbalize interpret

act

apply

Figure 3.3: The semiotic landscape of a language game can be viewed as a structural

coupling. In this landscape, there are two squares, representing the speaker (left)

and the hearer (right). The speaker senses a topic, resulting in a perception. In the

terminology of this thesis, this is called sensing. The perception is conceptualised

(or categorised) yielding a meaning. This meaning is then verbalised by the speaker

and when the hearer receives the utterance (or form), it tries to interpret this. The

interpretation results in a meaning which can be applied to a perception. According

to this perception, the hearer acts to identify the referent, which should be the same

as the topic and thus completing the coupling. When at some point something goes

wrong, the agent can adapt their memory. The errors are signalled by means of back

propagation. The figure is taken from (Steels 1999).

The detection of the raw sensory data is done completely on-board. This data
is sent to a PC where it is processed further. So, the segmentation and feature
extraction takes place on a PC. This is not necessary, but for reasons mentioned
before, it is convenient.

Sensing

During the sensing the robots construct a spatial view of their surroundings. But,
because the sensors cannot detect spatial information, sensing is done by letting
the robots rotate (ideally) 360o and record their sensory information while doing
so. While they rotate (one by one) they record the sensor data 40 times per
second. Each sensor writes its data on a sensory channel. The data that enter
the sensory channels is transmitted to the PC via the radio.

Figure 3.4 shows a spatial view of a robot’s sensing. The sensing took 60 PDL
cycles (= 1.5s). Each peak corresponds to one of the four light sources in the
environment. Remember that corresponding means that the sensor with the
highest intensity at a peak detects the light source that is placed at the same
height as the sensor itself. Recall that the environment consists of 4 light sources
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Figure 3.4: The sensing of a robot’s surroundings as in the experiments. See the

text for explanation.

P t s0 s1 s2 s3
1 7 201 9 7 3
2 18 56 59 11 3
3 28 5 41 48 6
4 42 3 3 10 248

Table 3.3: Peaks P observed in figure 3.4. The table lists the highest intensity reached

at time t with sensory channels s0, s1, s2 and s3.

that are placed at different heights (section 2.2).

Figure 3.4 shows that at time step 7 sensory channel s0 sensed a large peak,
whereas the other sensory channels show low peak values. At time step 18 there
is a main peak for sensory channel s1 with lower peaks for the other sensory
channels. Sensory channel s2 shows a maximum at time 28 and sensory channel
s3 sensed a maximum during time steps 40 to 43. Table 3.3 gives these peaks
with their sensory channel values.

These peaks can all be explained with the characteristics of the sensory chan-
nels seen in figure 2.5, page 40. The intensity of each peak is dependent on the
distance of the robot to the light source. The robot clearly detects light sources
L0 and L3 from nearby; the corresponding sensory channels detect high values
and almost all other sensory channels show low noise values. Light sources L1
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Figure 3.5: The sensing of the hearer in the same language game situation as in

figure 3.4.

P t s0 s1 s2 s3
1 1 4 25 30 7
2 8 7 3 7 150
3 40 247 5 4 6
4 47 38 24 4 3
5 54 12 4 21 8

Table 3.4: Peaks of figure 3.5.

and L2 are further away. The corresponding light sensors show relative low values
and some adjacent sensory channels show values that are close to the correspond-
ing sensory channels. Values lower than 10 between the peaks are noise values.

After the speaker finished its sensing, the hearer starts its sensing. That the
hearer does not sense the same view as the speaker can clearly be seen in figure
3.5. This figure shows the spatial view of the hearer during the same language
game. If one looks carefully, one can see similarities, but there is no straight
forward mapping. In this plot five interesting peaks can be identified (see table
3.4).

Peaks 1 and 5 (table 3.4) both appear to correspond to L2. Although the
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times at which the peaks are observed lie far apart, these peaks are detected
under almost the same orientation of the robot, namely in the front. This fits
well with the sensing of L2 of the speaker as shown in figure 3.4, where it is
behind the speaker. Peaks 2 and 3 (corresponding to L3 and L0 resp.) can also
be well related to the sensing of the speaker.

Peak 4, which is just observable after the largest peak (between time 55 and
60), does not clearly correspond to a light source. One would expect to detect
L1, both intuitively as from the sensing of the speaker. Sensory channel s1 does
indeed show a peak here, but s0 shows the highest peak. Peak 4 is also interesting
from another point of view. As will be shown below, the segmentation will not
recognise this segment. According to the definition just given, it is part of the
same region of interest as peak 3 because the intensity does not drop below the
noise value.

Usually, the sensing takes about 1.5 seconds, so the robots obtain approximately
60 subsequent data points. Since the robots have 4 sensory channels, they will
have a spatial view of about 60 × 4 data points. Because the speed of rotation
is not always constant and it also varies depending on the energy level of their
batteries, the number of data points can vary per language game. During the
sensing the sensory data is sent to the PC, where the data is processed further.

The onset and offset of the rotation induce 2 problems. They cause a warped
signal on the sensory channels, which is a source of noise, and they do not guar-
antee a full 360o rotation. Therefore, the robots rotate approximately 720o while
starting with their backs towards each other. The sensing, i.e. the data acquisi-
tion starts when the front of the robot faces the opponent robot. This is detected
with infrared. It ends 360o later when the robot again detects a maximum in the
infrared. The robot stops rotating approximately 180o later when the left back
infrared sensor senses infrared. When a robot finished rotating, it sends a radio
signal to the other robot. This way both robots can enter the next state in their
finite state automaton that controls the planned behaviour of the robots. If the
first robot finished, this means that the second robot can start its sensing, while
the first robot waits.

So, during the sensing each robot records a spatial sensory data about its
surroundings. To identify the regions of interest that correspond to the referents
and to describe these regions consistently, the robots segment their data.

Segmentation

The sensing results in a set of approximately 60 observations for the 4 sensory
channels for each robot. As shown above, the sensing yields a signal from which
relevant information can be extracted concerning the observation of the light
sources. The signal needs to be filtered for noise and the relevant regions of
interest have to be recognised. The recognition of these regions is done by a



3.4 Grounded Language Games 67

process called segmentation.

The filtering of noise is modelled with the function H(si,j − Θi), where si is the
sensory channel of sensor i at time step j3, Θi is the noise value of sensory channel
i and H(x) is the Hamilton function:

H(x) =

{

x if x ≥ 0
0 if x < 0

(3.1)

Suppose that τi,j is the result of applying the Hamilton function to the sensory
channel data of sensor i at time step j, i.e. τi,j = H(si,j − Θi). The for noise
reduced sensing data can be described by a series (s0, . . . , sn−1) where n is the
number of sensory channels and each si = (τi,0, . . . , τi,M) for M data points.

The regions where one of the for noise reduced sensory channels is greater than
0 is supposed to relate to the sensing of a light source. Therefore, the segmenta-
tion should construct regions in which this is the case. Hence the segmentation
in a set of segments {Sk} where Sk = {sk,0, . . . , sk,n−1} consists of a series of
sensory channel data. Each sensory channel sk,i = (τk,i,0, . . . , τk,i,m) where m is
the length of the segment and for which τk,i,j > 0 in at least one sensory channel
at each time step j. The different sensory channels sk,i that have some overlap
will constitute one segment. For simplicity, the term sensory channel will also be
used for the sensory data after noise reduction.

It is very common in perceptual systems that the amount of input needs to be
reduced for, e.g. computational reasons. Usually the raw image contains one
or more regions of interest. These regions of interest may be dependent on the
task of the agent. For instance, for a frog only small moving spots on the visual
field are interesting, since these may be edible flies. In the application described
here, the regions of interest are indirectly defined by the goal of the experiments,
namely categorising and naming the light sources.

What does a robot detect of a light source? In figures 3.4 and 3.5 it is clear
that the robots detect peaks of intensity of the sensory stimuli in contrast to some
background noise. Applying the Hamilton function to figure 3.4 results in figure
3.6. Each region where the response is greater than zero will from now on be
called a segment. It is assumed that each segment corresponds to a light source.
Although in the original figure there only 4 regions of interest were identified,
the above method identifies 6 segments. The two additional segments come from
small perturbations in the landscape that exceeds the noise values a little bit.
This does not necessarily mean that these perturbations cannot be due to noise,
but it can also be due to reflection.

To filter out these segments, an additional rule is applied that a segment
should contain more than one data point. Nevertheless, this will not guarantee

3Note that a time step designates at which angle the robot is sensing.
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Figure 3.6: The for noise filtered sensed view of robot r0 as seen in figure 3.4.

that all irrelevant regions are filtered out. Neither are all relevant regions seg-
mented. If two peaks (partly) coincide, this segmentation fails to extract the
relevant segments. Nevertheless, as will be shown in subsequent chapters, the
segmentation makes it possible to ground the sensing of the light sources.

The segmentation of the spatial view of figure 3.5 does not recognise peak 4
(table 3.4) because the signal of sensory channel s0 does not decrease the noise
value between peaks 3 and 4. Hence these two peaks are recognised as one
segment.

Feature Extraction

The segments that result from the segmentation have different lengths and may
still have a lot of data. Therefore, it is desirable to describe each segment with
one vector of low and equal dimension. Low dimension benefits computational
efficiency. Equal dimension is used for consistency in the data, which makes the
computations easier.

In line with pattern recognition and computer vision such a vector represen-
tation will be called a feature vector (see e.g. (Fu 1976)). The elements of this
feature vector will be called features. The extraction of the features is called
feature extraction. The aim of the feature extraction is to extract features that
bear invariant information about the light sources.
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The feature extraction is applied to each segment Sk. It extracts for each sensory
channel i the value τk,i,j that has the highest value in Sk. Or, in other words, it
gives the highest intensity of a sensory channel in the segment. But the absolute
intensities have information about the distance of the light source, which is not
an invariant property. Therefore, this highest value is normalised to the absolute
highest value of all sensory channels in the segment.

Formally the feature extraction of segment Sk for sensory channel i can be
described by a function ϕ(sk,i) : S → S ′, where S = [0, 255] is the sensory channel
space of some sensory channel and S ′ = [0, 1] is a one dimensional feature space.

ϕ(sk,i) =
maxsk,i

(τk,i,l)

maxSk
(maxsk,i

(τk,i,l))
(3.2)

This function will yield a value 1 for the sensory channel on which the sensor
reads the highest peak in a segment. For all other sensory channels the feature
extraction yield a value between [0, 1]. Naturally, the values of these other fea-
tures are irrelevant. However, this inference can easily be made by humans, but
it should be unknown to the robots. This is so because in more complex environ-
ments this need not be an invariant property, and it is not the purpose to give
the robots much knowledge. In addition, the so constructed invariance helps a
human observer to analyse the experiments easier.

The result of applying a feature extraction to the data of sensory channel i

will be called feature fi, so fi = ϕ(sk,i). A feature thus designates a property of
the sensed segment. In this case, the property can be described as the maximum
intensity of a sensory channel in the segment relative to the maximum intensity
of this segment.

Segment Sk can now be related to a feature vector fk = (f0, . . . , fn−1), where
n is the total number of sensory channels. The space that spans all possible
feature vectors f is called the n dimensional feature space F = S

′n, or feature
space for short. Although this need not be so, in the current experiment the
dimension of the feature space is equal to the number of sensory channels.

Applying the feature extraction of equation 3.2 to the sensing of figure 3.6 would
result in the context given in table 3.5. Consider for example segment 1 of figure
3.6. In this segment the top of sensory channel s0 has a value of 200, the top of
s1 has value 4 and the two other sensory channels have values 0. Normalising the
tops of this segment to the highest value yields f0 = 1.00, f1 = 0.02, f2 = 0.00
and f3 = 0.00, cf. table 3.5.

The complete process of sensing and segmentation results in what is called the
context. This context Cxt is a set of segments Si that relate to their feature
vectors, so
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f t f0 f1 f2 f3

1 7 1.00 0.02 0.00 0.00
2 18 0.94 1.00 0.07 0.00
3 28 0.00 0.90 1.00 0.03
4 40 0.00 0.00 0.01 1.00
5 50 0.00 0.00 0.00 1.00
6 59 1.00 0.00 0.00 0.00

Table 3.5: Feature vectors f after applying the feature extraction measuring the

relative intensity of a sensory channel in a given segment.

Cxt = {S0, . . . , Sm} → {f0, . . . , fm} (3.3)

where m is the context size.
The feature extraction that calculates the relative intensities is the only trans-

formation used in the experiments reported here. In (Steels and Vogt 1997; Vogt
1998a) the feature extraction function calculates the absolute peak values. Other
functions have been introduced for categorising spatial categories as in (Steels
1996d). Still other functions have been designed for use in the Talking Heads
experiments (Belpaeme, Steels, and van Looveren 1998; Steels and Kaplan 1999).
In the Talking Heads experiment as well as in this application the functions were
designed by hand. De Jong and Steels (1999) and Belpaeme (1999) have shown
that such functions can resp. be learned or evolved4.

3.4.2 Discrimination Games

In a language game each robot is interested in categorising one or more segments
from the context they constructed. The speaker is interested in the segment
which it wants to communicate and the hearer is interested in the segment(s)
that the speaker can possibly communicate. The segment that the speaker wants
to communicate is called the topic. For the hearer these segments are called
the potential topics. For each (potential) topic the robots individually play a
discrimination game.

As explained in the previous section, a segment is related to a feature vector.
This feature vector is a point in the feature space. The first step of the discrimi-
nation game is to categorise this feature vector with one or more categories that
the robot has stored in its memory and that resemble this point in the feature
space. A category is defined as some region in the feature space. A feature vector
is categorised with that category for which the feature vector falls within that
region.

4Note that Belpaeme calls the feature extraction function feature detectors.
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When the segments are categorised, the robots need to select the categories
of the topic that are not used to categorise any other segment in the context.
The process that does this is called discrimination, cf. (Steels 1996c). The
discrimination can have different outcomes. If one or more categories are found,
the discrimination is successful and hence the discrimination game is a success.
In this case, the resulting categories can be used in the naming phase of the
language game. If no distinctive category is found, this means that the repertoire
of categories in the robot’s memory is not sufficient to do the task. At the start
of each experiment, the repertoire of categories (or ontology) is empty. So, no
categorisation can be found and hence no discrimination game can be successful.
To overcome this problem in the future, the robot can expand its repertoire of
categories.

The complete task of categorisation, discrimination and adaptation is mod-
elled by a so-called discrimination game (Steels 1996c). The basis of the model
has not changed since its first introduction in 1996, but the implementation and
precise details have been adjusted ever since. The first robot implementation of
the model can be found in (Steels and Vogt 1997) and (Vogt 1998c). The model
exploits a selectionist mechanism of generation and selection of categories. This
results in the self-organisation of categories and has the properties of a dynamical
system.

Different types of methods for representation in the discrimination game have
been developed: the binary tree method (Steels 1996c), the prototype method
(De Jong and Vogt 1998; Vogt 1998a) and the adaptive subspace method (De Jong
and Vogt 1998; De Jong 2000). The prototype method and a variant of the
adaptive subspace method, which will be called the binary subspace method are
investigated in this thesis and shall be explained in this section. Before doing so,
a more general description of the discrimination game model is presented.

Following (Steels 1996c), the discrimination game can be defined formally as
follows: Assume that the robots can relate their feature vectors to categories and
suppose that the robots have categorised a set of categories Ck = {c0, . . . , cn−1}
for the feature vectors relating to segment Sk. Let St be the topic. The topic is
the segment for which the robots try to find distinctive categories. A category is
distinctive if it is related to the topic, but not to any other segment in the context
Cxt. The distinctive categories are temporarily stored in a distinctive category
set DC. If DC 6= ∅, the discrimination game is a success. The DC is passed to
the naming game model that the robots use to communicate. If DC = ∅, the
discrimination game fails and one or more new categories should be created. So,
there are three parts in the discrimination game:

1. The distinctive category set DC is constructed according to the following
relation:
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DC = {ci ∈ Ct | ∀Sk ∈ Cxt\{St} : ¬ci ∈ Ck} (3.4)

2. If DC 6= ∅, the discrimination game is a success. Possibly adapt the scores
of ci ∈ DC and pass the DC to the naming game model.

3. If DC = ∅, then create a new category as ill be explained below.

So, how are feature vectors categorised and how are categories created? The two
models that do this are explained hereafter.

The Prototype Method

The prototype method is the main method investigated in this thesis. In this
method the categories are defined in terms of prototypes. In the pattern recog-
nition literature, see e.g. (Banks 1990), a prototype is defined as “a single rep-
resentative sample” in the feature space. I.e. as a point in the feature space.
However, a category is defined as a region in the feature space. For a prototype,
this region can be defined by those points in the feature space that are nearest
to this prototype. So, a prototypical category can be defined as a region in the
feature space that is represented by a prototype.

The prototypical categories are represented by prototypes and some scores: c =
〈c, ν, ρ, κ〉, where c = (x0, . . . , xn−1) is a prototype in the n dimensional feature
space, and ν, ρ and κ are some scores. As mentioned, categorisation is the process
of finding categories for which the feature vector lies within the region that is
defined by the category. The categorisation of this is done with the 1-nearest
neighbour algorithm. The 1-nearest neighbour algorithm returns the prototype
that is nearest to observed feature vector.

It can be useful to define categories at different levels of generality or specificity.
If two segments are very distinctive, i.e. the distance between them in the feature
space is large, then these segments can be categorised using general categories.
However, if the two segments are relatively close to each other in the feature space,
the categories may need to be more specific. This means that the regions should
be smaller. When sensing a referent under different circumstances in different
language games, the extracted feature vectors of the segmented segments differ as
well. To select the categories as consistent as possible for various feature vectors
relating to some referent in different language games, a general category is most
useful. The region of a general category is larger, thus enhancing the chance that
different segments of a referent from different language games is represented with
the same categories. To enable discrimination under these different conditions



3.4 Grounded Language Games 73

and allowing both generality and specificity the categories are constructed in
different versions of the feature space5. Each version has an increasing resolution
of the feature space.

If the discrimination game is a failure, the ontology has to be expanded. Some
new prototypes will be constructed and stored in the robot’s memory. It is done
by exploiting one arbitrary dimension (or feature) of the feature vector in one
of the versions of the feature space. Suppose there are versions of the feature
space Fλ, where each λ designates the resolution of the feature space. In each
dimension of the feature space Fλ there are a maximum of 3λ exploitations, where
λ = 0, 1, 2, . . . . The choice of 3 is more or less arbitrary, but should not be too
large.

So, suppose that in the discrimination game, the robot tried to categorise
feature vector f = (f0, . . . , fn). New categories are created now as follows:

1. Select an arbitrary feature fi > 0.

2. Select the feature space Fλ that has not yet been exploited 3λ times in
dimension i for λ as low as possible.

3. Create new prototypes cj = (x0, . . . , xn−1) where xi = fi and the other xr

are made of already existing prototypes in Fλ.

4. Add the new prototypical category cj = 〈cj, νj, ρj, κj〉 to the feature space
Fλ. νj is a category score that indicates the effect of discrimination. ρj is
the effectiveness score that indicates the use of the category in the language
game. κj indicates how general the category is. The initial values of νj and
ρj are set to 0.01. κj is a constant, which is calculated as in eq. 3.7.

The reason to exploit only one feature of the topic, rather than to exploit the
complete feature vector of the topic is to speed up the construction of categories.

The scores are introduced to enable a better selection in the naming game.
The scores are updated after a discrimination game (ν) or a naming game (ρ) as
follows:

• The categorisation score ν is used to indicate how often the category is used
to distinctively categorise a feature vector. It is calculated according to the
following equation:

ν = ν + η · X (3.5)

5Note that the term specificity is defined differently in the next chapter. There it is defined
as a measure that indicates how well a robot names a referent. Here specificity is used in the
more intuitive and common sense.
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where

X =

{

1 if categorised distinctive
0 if categorised, but not distinctive

where η is a learning rate. The default value of the learning rate is set to
η = 0.99.

• The effectiveness score ρ is used to indicate the effective use in the language.
I.e.

ρ = ρ + η · Y (3.6)

where

Y =

{

1 if used in language game
0 if distinctive, but not used in language game

where η is the learning rate.

• Another score that is calculated is the depth score κ. It indicates how
general the category is. As mentioned, if possible it is preferable to use cat-
egories that are as general as possible. A category is as general as possible
if it is in a feature space S ′

λ with λ as small as possible. Because of the
resolution of the sensors, the resolution cannot increase in a feature space
with λ = 5, so that is the most specific feature space.

κM = 1 −
λ

5
(3.7)

This score implements a preference for the most general category, conform
(Steels 1996c).

• In the naming game, the three scores are taken together to form a meaning
score µ. Note that it is allowed to talk about meaning, since this score is
only evaluated in relation to a form.

µ =
1

3
· (ν + ρ + κ) (3.8)

The value of µ is averaged so that it can be scaled separately when using
it in the naming phase as will be explained in the next section.
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Because once the scores ν and ρ become greater than zero, they will never become
zero again. They can by way of updating (eq. 3.5 and 3.6) only approach zero
asymptotically. In order to give new categories a chance to be selected, their
initial values are not set to 0, but to 0.01.

There is another adaptation that is done with a prototypical category when
it has been successfully discriminated. If the category is used as the meaning
in a language game successfully. I.e. it has been the subject of a successful
communication, the prototype of the category is shifted towards the feature vector
that it categorises according to the following equation:

c′3 = c3 + ε · (ft − c3) (3.9)

where c′3 is the new vector representation of c3 after shifting this category with
a step size of ε towards ft. In the experiments ε = 0.1. This way the proto-
typical category becomes a more representative sample of the feature vector it
categorised.

Because the resolution of a sensor is limited six feature spaces F0 to F5 are
the only ones available. Another reason to keep the number of feature spaces
limited is to keep the computational efficiency within limits. Besides, as will
become clear in the experiments, F1 will usually be sufficient to discriminate.

The prototype method is a variant of an instance-based learning technique, see
e.g. (Aha, Kibler, and Albert 1991; Mitchell 1997). As mentioned, it uses the
k-nearest neighbour algorithm, where k = 1. Instance-based learning assumes a
set of training examples (prototypes) that consists of both positive and negative
examples of some categorisation. However, in the prototype method training
examples are added to the feature space when a categorisation failed. The vali-
dation of a positive or negative example is based on the discriminative power of
the categorised prototype. The adaptation of scores that help to select the dis-
tinctive categories in the naming phase is very much like the update of Q values
in reinforcement learning, see e.g. (Sutton and Barto 1998).

An example

The prototype method can be illustrated with an example. Suppose there is an
ontology of prototypes on F0 and F1 as displayed in figure 3.7 (a) and (b). In
figure (a) there is one prototype c0 = (0.20, 0.90). In figure (b) there are two
prototypes c1 = (0.25, 0.75) and c2 = (0.65, 0.75). Left of the division line in the
space is category of c1 and right is category c2. Suppose the robot has related
topic t with a feature vector ft = (0.30, 0.10) and it has another segment s in its
context related with feature vector fs = (0.15, 0.80)6. Then both ft and fs are

6Note that these vectors are made up to illustrate the example.



76 Language Games

0

0.5

1

0 0.5 1

W
L1

WL0

c0

x

(a) F0

0

0.5

1

0 0.5 1

W
L1

WL0

c1 c2

x x

(b) F1 - i

0

0.5

1

0 0.5 1

W
L1

WL0

c1 c2

c3 c4

x x

x x

(c) F1 - ii

0

0.5

1

0 0.5 1

W
L1

WL0

c1 c2

c3 c4

c5 c6

x x

x x

x x

(d) F1 - iii

Figure 3.7: These figures show feature spaces F0 (a) and F1 (b), (c) and (d), each

with their prototypes (x) as used in the example. The figures are displayed in two

dimensions for illustrative purposes; in the actual implementation the spaces have 4

dimensions.

categorised with {c0, c1}. Hence the categorisation of topic t is not distinctive.
So, the ontology has to be expanded.

The robot selects one dimension of the feature space to exploit. Suppose this
is dimension WL1. In this dimension, the topic has a feature with value 0.10.
The robot has to select a feature space on which there is still place in the se-
lected dimension. In F0 each dimension can be exploited 30 = 1 time. This has
already happened, so the robot checks if it can exploit the next space, F1. In this
space each dimension can be exploited 31 = 3 times. Dimension WL1 has only
been exploited once, so this dimension can still be exploited. New prototypes are
constructed with the points (x, 0.10), where x is filled in with the corresponding
co-ordinates of the already existing prototypes. If some dimensions are not ex-
ploited yet, the new prototypes will not become active until all dimensions of the
feature space are exploited. This yields two new prototypes c3 = (0.25, 0.10) and
c4 = (0.65, 0.10), see figure 3.7 (c). Since each dimension of F1 can be exploited
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Figure 3.8: A possible feature space F2. In this space each dimension may be ex-

ploited up to 9 times. Again for illustrative purposes the space is shown in 2 dimensions.

Note that the prototypes here are displayed as small points.

up to 3 times, the robot can exploit each dimension of this space only once more.
This has been done for one dimension in figure 3.7 (d).

When the robot needs to find distinctive categories in this new ontology based
on the same feature vectors as before, ft will be categorised with {c0, c3} and fs
with {c0, c1}. Yielding distinctive category set DS = {c3}. Now c3 may be used
in the language game as the meaning of the symbol that is communicated. If this
is done successfully, the category is shifted in the direction of the observation by
using the following equation (see also above):

c′3 = c3 + ε · (ft − c3)

So, in this case, c′3 = (0.255, 0.3).

Figure 3.8 shows a 2 dimensional version of a possible feature space F2. There
are an increasing number of categories possible at each increasing ’layer’. In
feature space F0 there is one place per dimension to be exploited, in F1 there
are 3 places etc. So, F0 has a maximum of 1 prototype, F1 has a maximum of
34 = 81 prototypes (recall there are 4 dimensions), in F2 there are 94 = 6, 561
possible prototypes, etc.
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Figure 3.9: Categories represented as binary trees. Every sensory channel (like WL,

ML and IR) is associated with a category tree. The root node of the tree is sensitive to

whole range of the sensory channel. The tree is incrementally constructed during the

evolution of discrimination games. Every time the discrimination game fails, two new

nodes may be constructed by splitting one node.

Binary Subspace Method

The prototype method will be compared with the binary subspace method. The
binary subspace method makes use of another way to make categorical distinc-
tions. It is based on the original model introduced by Luc Steels (1996c) that has
previously been implemented on the mobile robots (Steels and Vogt 1997; Vogt
1998c). In the original model categories are constructed from trees that make
binary divisions of only one dimension of the feature space. The categories that
are constructed may have one dimension, but can also be a conjunction of more
dimensions. Hence they do not necessarily cover the n dimensions of the feature
space. Figure 3.9 shows how the trees are constructed.

The binary subspace method combines the binary tree method with the adap-
tive subspace method (De Jong and Vogt 1998; De Jong 2000). In the adaptive
subspace method, the categories (or subspaces) are always in the n dimensions of
the feature space. In the binary subspace method, the co-ordinates of a feature
space Fλ are splitted in one dimension at a time. When all dimensions are thus
exploited, the first categories at this space are born.

Categorisation in the subspace is done by relating feature vectors to those
subspaces in which the feature vectors fall.

A subspace is defined as an n dimensional rectangle that is surrounded by their
boundaries in each dimension of the feature space Fλ. Note that this shape
of a subspace differs from the one introduced by (Oja 1983). Suppose there is
a lower boundary xi and an upper boundary yi in dimension i of Fλ. These
boundaries do not necessarily coincide with the boundaries of Fλ. A cate-
gory cj can be defined by these boundaries in each dimension of Fλ: cj =
〈x0, y0, . . . , xn−1, yn−1, νj, ρj, κj〉 for n dimensions. Like for the prototype method
νj, ρj and κj are scores.
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A feature vector f = (f0, . . . , fn−1) can be categorised with category cj if
xi < fi ≤ yi for all dimensions of the feature space.

At the start of the experiment the category of F0 is given. This category spans
the complete feature space. When a discrimination game fails, new categories
should be formed. This done by exploiting only one dimension every time the
game fails. The following paragraph describes how this is done step by step.
Suppose that f is the feature vector that has been the topic of the discrimination
game.

1. Select the category c = 〈x0, y0, . . . , xn−1, yn−1, ν, ρ, κ〉 that categorised f in
the feature space Fλ for which λ is greatest. This means that no categori-
sation is made in Fλ+1.

2. Select a dimension i of c that has not been exploited yet in feature space
Fλ+1 and for which fi > 0.

3. Create the following lower and upper boundaries: x′

i = xi, y′

i = xi +
1
2
· (yi−

xi), x′′

i = xi + 1
2
· (yi − xi) and y′′

i = yi.

4. If there are lower and upper boundaries xr
p and yr

p for some r in all other
dimensions p of feature space Fλ+1, then construct new categories by com-
bining all these lower and upper boundaries and adding scores. This yield
categories like cq = 〈xr

0, y
r
0, . . . , xk

n−1, y
k
n−1, νq, ρq, κq〉.

5. If there are no lower and upper boundaries in all other dimensions, then
add x′

i, y
′

i, x
′′

i , y
′′

i to the set of lower and upper boundaries in Fλ+1.

The binary subspace method differs from the binary tree method of Steels (1996c)
in that a category covers all the n dimensions of the feature space. Steels defines
categories in 1 to n dimensions, by taking conjunctions of the nodes in the binary
trees. Conjunctions can have nodes at different hierarchical layers. Processing
all these possible categories is computationally very costly. Suppose there are six
hierarchical layers in the tree (as in the prototype method, the binary subspace
method has six feature spaces) and 4 dimensions, which is completely filled.
Then there are 6 × 4 = 24 one dimensional categories. There are 62 × 3! =
216 two dimensional categories. There are 63 × 2! = 432 three dimensional
categories and 64 = 1296 four dimensional categories. This makes a total of 1968
possible categories to be explored. The binary subspace method only considers
n dimensional conjunctions of nodes each layered at the same layer in the tree.
This yields a maximum of only 6 categories to be explored.

The adaptive subspace method developed by Edwin de Jong also differs from
the binary subspace method (De Jong and Vogt 1998; De Jong 2000). Like in the
binary subspace method De Jong splits a category from feature space Fλ in Fλ

very similar to the binary subspace. However, De Jong’s agents directly create a
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new category, which is the former category splitted in one dimension. Every time
this is done, only two new categories are made. In the binary subspace method,
more categories may be made. Another difference is that De Jong lets his agents
do not create new categories every time the discrimination game fails, but it is
done after a fixed number of failures. The choice which subspace is splitted and
in which dimension is calculated from some statistics of previous failures to find
distinctions. For a detailed explanation of the adaptive subspace method see
(De Jong and Vogt 1998; De Jong 2000).

Unlike in the prototype method, once a category is made, it is static. I.e. it does
not shift in the feature space. Like the categories of the prototype method, the
binary subspaces are associated with some scores. These scores are the same as
for the prototype method.

One major difference of the binary tree, binary subspace and adaptive sub-
space with the prototype method is that there is not necessarily a categorisation
in each feature space Fλ where there are categories. In the prototype method,
the entire space is always covered once a category is there. This is not the case
in the other methods.

A more fundamental difference with the prototype method is that the bi-
nary subspace method, like the binary tree method and the adaptive subspace
method is biologically less plausible. Humans do not make binary distinctions
of the world. The feature space of observations is usually not divided in binary
distinctions.

The binary subspace method, like the adaptive subspace method (De Jong
2000) is a type of adaptive resolution generalisation. In these methods a multidi-
mensional space is divided in subregions based on some criteria in order to solve
some tasks. Examples of such learning techniques can be found in (Chapman
and Kaebling 1991; Moore and Atkeson 1995).

Summary

In this section the discrimination game model has been introduced. The aim of a
discrimination game is to find distinctive categories that categorise one or more
segments. Categories can be defined differently. In this thesis two methods are
compared. The prototype method defines a prototype as a point in the feature
space and a category is then defined as the region in the space where the points
are closest to the prototype. The binary subspace method defines a category as a
subspace that is constructed by splitting another space in two equal halves at one
dimension. Categories are structured in different versions of the feature space,
where each version has a different resolution. This allows making distinctions
that are more general or more specific.

The prototype method is used in almost all experiments. In one experiment
the binary tree method is used, and in still another experiment a fuzzy approach
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Figure 3.10: The binary subspace method splits the feature space at the lower layer

(i.e. λ is smaller) in each dimension at a time. The split divides the former subspace

in two equal halves in one dimension. As the plot in figure (b) did for c0 in figure (a).

A category is not formed until each dimension is exploited. If another split is made as

in figure (c), new categories are formed. Figures (d) and (e) are two subsequent splits

of category c3 from figure (c). The last split results in four new categories on F2. If a

split would be made on c1 in dimension WL1 of figure (c). Again four new categories

are constructed.
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of the prototype method is used. This latter method is explained in chapter 5.
The feature vector that relates to the topic is categorised with a category that

covers the feature vector. A category is distinctive if it is not related to any other
feature vector in the context than to the topic. If distinctive categories can be
found, the discrimination game is a success. In this case the distinctive categories
may be adapted, e.g. by shifting them, and one of the categories can be used as
the meaning in the naming phase. If the discrimination game is a failure, new
categories can be constructed.

3.4.3 Lexicon Formation

Now that the each robot has categorised the (potential) topic(s) distinctively, they
can communicate these distinctive categorisations. Communication is established
by the speaker and hearer. The speaker names the category. The hearer tries
to interpret this name. I.e. it tries to identify the uttered word-form so that it
corresponds to the categorisation of the topic. The topic is supposed to relate to
the referent that the speaker’s utterance stands for.

In some experiments the hearer already knows which topic this is prior to
the verbal communication. This means that there is some sort of joint attention
on the topic. This knowledge is exchanged from the speaker by means of extra-
linguistic communication. In other experiments the hearer does not know yet
what the topic is. The hearer then only has the uttered word-form and the
distinctive categories at its disposal. The availability of such information is a
source of discussions in the psycholinguistic literature, see e.g. (Barrett 1995)
and the discussion in chapter 1. Therefore it is interesting to investigate whether
and under what circumstances the robots can deal with these different types of
knowledge.

When the hearer interpreted the utterance, the language game is successful
when both robots communicated about the same referent. In case where the
hearer already had this knowledge at its disposal, this is the case. Otherwise, the
robots may evaluate whether they did so. This evaluation is called feedback. The
evaluation of feedback is, like joint attention, done by means of extra-linguistic
communication. Again, the availability of feedback to a language learner is of
much debate in the psycholinguistic literature, see e.g. (Bowerman 1988). So, is
this really necessary?

Both types of extra-linguistic information is subject of investigation of this
thesis. For this reason different types of language games have been developed:
the ostensive game, guessing game, observational game and selfish game.

When the experiments start, however, the robots have no language to their dis-
posal yet. They have to construct this. In the experiments the question of how
grammar is evolved is left aside, only a lexicon is developed. How are forms
associated with meanings? And how can both robots acquire a shared lexicon?
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To model this, the robots can adapt their lexicons. This lexicon development
is based on the three mechanisms that Luc Steels (1996b) proposed for lexicon
formation: individual adaptation, cultural evolution and self-organisation.

The previous section presented the discrimination game model by which the
first two steps (iconisation and discrimination) of the grounding problem is tack-
led. The model tries to find categories that relate to the topic, but not to any
other segment that has been observed in that context. Such a category can be
related to a form. If this is done, the category functions as the meaning of a
semiotic sign in the Peircean sense. When this form is either arbitrary or conven-
tionalised (e.g. through language) the sign becomes a symbol according to Peirce
(see e.g. (Chandler 1994)). Since it is assumed that meaning co-evolves with
language (chapter 1), the symbol is grounded in language and hence the form
will be conventionalised. The naming game model implements how the form is
conventionalised.

The lexicon formation is based on the naming game model introduced by
Luc Steels (1996b). The naming game implements the communication between
two agents that try to name the meaning of the referents they sensed in their
environment. One of the agents plays the role of the speaker and chooses a topic
from the segments that constitute the context. It searches its lexicon for a form-
meaning association of which the meaning matches the category of the topic.
The associated form is ‘uttered’ and in turn, the hearer tries to understand the
utterance. The hearer does so by searching its own lexicon for a form-meaning
association of which the form matches the utterance. If there exist such an
element, the hearer compares the associated meaning(s) with the category of the
topic. If there is a match and both the speaker and the hearer named the same
topic, the naming game is successful. Otherwise there is a failure. According to
the outcome of the game the lexicon will be adapted.

Different Language Games

One of the issues that will be investigated in this thesis is what type of extra-
linguistic information is necessary to guide a meaningful lexicon formation. As
mentioned above and in chapter 1, it is not clear what extra-linguistic information
infants have at their disposal when learning language. Do they establish joint
attention prior to the verbal communication? Or do they receive feedback on the
effect of a linguistic interaction? Or is neither at their disposal?

To investigate whether robots can develop a shared lexicon under these dif-
ferent circumstances four types of language games have been implemented. In
these language games different configurations of the availability of joint attention
and feedback have been implemented as shown in table 3.6. The different games
can be summarised as follows:

Ostensive game This game is conform the original naming game model (Steels
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Game Joint attention Feedback
ostensive Yes Yes
guessing No Yes
observational Yes No
selfish No No

Table 3.6: A schematic overview of the extra-linguistic information that is available

in the different language games.

1996b). The speaker informs the hearer prior to the linguistic communica-
tion what the topic is, e.g. by means of pointing at the referent. Hence joint
attention is established. It then produces a (linguistic) utterance, which the
hearer tries to understand. Feedback is evaluated to check if both robots
finally identified the same topic. This game has also been implemented in
(Steels and Vogt 1997).

Guessing game In the guessing game (Steels and Kaplan 1999), the speaker
does not provide the hearer with topic information. It produces an utter-
ance and the hearer has to guess which referent the speaker is naming. As
in the ostensive game feedback is evaluated to check if both robots finally
identified the same topic. The guessing game has first been implemented
in (Vogt 1998b) and will be the model of most experiments in this thesis.

Observational game This game is influenced by the work of Mike Oliphant
(1997). First joint attention is established, so the hearer knows in advance
which segment is the topic. Access to this kind of information is what
Oliphant calls observation. The speaker produces an utterance, which the
hearer tries to interpret. No feedback on the game’s effect is evaluated, so
the lexicon is adapted independent of the effectiveness of the game.

Selfish game The selfish game is to check if either joint attention or feedback is
really necessary. It is to show that lexicon formation does not work without
joint attention of feedback. So, without providing topic information, the
speaker produces an utterance. The hearer tries to interpret the utterance.
The robots adapt their lexicons despite the fact that they have no idea what
the other has been communicating (hence the selfish game).

The four games differ in the availability of joint attention and feedback as il-
lustrated in table 3.6. In most of the experiments reported in this thesis the
guessing game is applied. The remainder of this section explains the different
subparts of the naming: joint attention, production, understanding, feedback
and adaptation.
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The Lexicon

Each agent constructs a lexicon. How does the lexicon look like? A lexicon is a set
of form-meaning associations that an individual robot stores in its memory. The
lexicons of the two robots in the experiments can differ. They are shared when
the lexical entries are used such that both robots can communicate a referent
successfully.

So, the lexicon consists of elements of form-meaning associations. Each form-
meaning association FM is a tuple of a form F , a meaning M and an association
score σ. So, the lexicon L can be defined as:

L = {FM0, . . . ,FMN} (3.10)

where N is the size of L and form-meaning FMi = 〈Wi, Mi, σi〉. At the beginning
of an experiment, L = ∅. It is constructed during the experiment. The form F is
an arbitrary string of characters from the alphabet. The shape of a form is given
as a ’CVCV’ string where C is a consonant and V a vowel.

Note that there may be more entries with the same form or with the same
meaning. So, there may be a many-to-many relation between form and meaning.
The adaptation of the lexicon is done by form-invention, form-adoption (both
in which new FM associations are constructed) and the adaptation of scores.
During the experiments where thousands of games are being played the form-
meaning associations that have been effective in the past (i.e. their scores are
high) tend to be used more often than ineffective form-meaning associations. This
way a more or less coherent communication system emerges.

Joint Attention

As mentioned, the robots establish joint attention in two types of language games:
the ostensive game and the observational game. Joint attention means that the
two robots participating in a language focus their attention on the same topic.
Or more concrete, both robots know what the topic is. In the experiments it is
established prior to the verbal communication. To establish joint attention the
robots use what is called extra-linguistic communication. In human cultures, it
can be established by means of pointing, following eye-gaze and other means that
humans have at their disposal to communicate extra-linguistically.

Joint attention is modelled by comparing the feature vectors of the speaker’s
topic with the feature vectors of the segments in the hearer’s context. To allow a
single algorithm for the hearer’s understanding, the cases where there is no joint
attention is modelled as if there would be joint attention.

More formally, the availability of joint attention is modelled by calculating
a topic score εS for each segment S ∈ Cxt. The idea of the topic score is to
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estimate the likelihood that segment S is the topic. There are different ways
to calculate εS (e.g. (Vogt 1998b)). Here two methods are implemented: a
correspondence method and one simulating no joint attention. The methods are
defined as follows:

Correspondence:

εS =

{

1 if S corresponds to ts
0 otherwise

(3.11)

where ts is the speaker’s topic. This information is drawn from the topic
that the speaker observed.

Of course this method for calculating the topic score is very unlikely to exist
in nature. Agents usually are not capable inspecting the internal state of
other agents. However, to increase the reliability of the topic information,
establishing joint attention here is simulated by internal inspection.

No joint attention:

∀S ∈ Cxt : εS = Constant > 0 (3.12)

The first method is used in the ostensive and observational games. The latter
is used in the guessing and selfish games. Both joint attention (by means of
correspondence) and no joint attention are modelled by the topic score. This has
the advantage that the understanding phase of the naming game can be modelled
with one algorithm. As will be explained, for this ε must be greater than zero.
In (Vogt 1998a) ε was calculated using cross-correlations and using information
about the angle under which the topic was observed. Both methods work less
well than the correspondence method used in this thesis, because there was too
much stochasticity in the system.

In the experiments the hearer has to identify the topic of the speaker without
using verbal communication. Attempts to implement joint attention physically
on the mobile robots failed. A form of pointing has been implemented, but this
led to unsatisfactory results (Steels and Vogt 1997; Vogt 1998c). The simplistic
LEGO robots have no sophisticated means to establish joint attention without
using language. It is beyond the scope of this thesis to discuss why this is the
case. For more discussions on this technical issue, see (Vogt 1998a; Vogt 1998b).

To overcome this technical problem in the current implementation, it is as-
sumed that the robots can establish joint attention and it is simulated using a
trick. The robots inspect the feature vectors of each other, so that they can
compare them. The hearer compares the feature vector of the speaker with the
feature vectors of its own context. If a feature vector corresponds, the segment
that relates to this feature vector is assumed to be the topic. Two feature vectors
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correspond when they have a feature with value 1 in the same dimension. This
is conform the fact that the sensor at the same height as a light source reads the
highest intensity and hence this sensor corresponds to the light source.

The Speaker’s Production

Whether or not joint attention is established, the speaker will try to name the
topic. From the discrimination game, it has found a set of distinctive categories.
If the discrimination game failed, the speaker cannot name the topic. Otherwise,
it will select one of the categories and searches its lexicon if there is an entry that
is consistent with this category. If such an entry exists, the speaker can name
the topic. Otherwise, it has to invent a new form. This form will be associated
with the category and a new lexical entry is born. This form is then uttered, so
that the hearer can do its part of the naming phase.

So, when the speaker categorised the topic, which yielded a nonempty set of
distinctive categories, the speaker will try to name one of these categories. Which
category is selected may depend on several criteria and the selection method used.
One method has been implemented that could be called a lazy search method.
In this method the speaker orders the categories in linear order of decreasing
representation score µ. Then it tries to match these categories with a lexical
entry one by one until a matching association has been found.

Suppose that DC ′ = DC is the ordered set of distinctive categories, L =
{〈Fi, Mi, σi〉} is the lexicon, U = nil is the utterance (nil means that the utterance
has no value yet) and σmax = 0 is the maximum score. The algorithm, based on
(Steels 1996b) for finding a matching entry can be described as follows:

1. Set L′ = L.

2. If DC ′ 6= ∅ and U = nil, take out the first category ci from DC ′, set DC ′

to the remainder of this set and goto 3, else goto 5.

3. If L′ 6= ∅, take out the first element 〈Fj, Mj, σj〉, set L′ to the remainder of
this set and goto 4, else goto 1.

4. If Mj = ci and σj ≥ σmax, then U := Fj and σmax := σj. Goto 2.

5. If U = nil, goto 6, else goto 7.

6. Create new form F as an arbitrary string of consonant-vowel-consonant-
vowel with a certain probability, set U := F , M := c (where c is the first
element of DC) and σ := 0.01. Add the new entry 〈F, M, σ〉 to L. Goto 7.

7. Send U to the hearer. Stop.
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Or in words: As long as there are distinctive categories, the speaker tries to name
the first (and best) distinctive category. It searches its lexicon for a form-meaning
association for which the meaning matches the distinctive category. If there are
more such associations, it selects the entry for which the association score is
highest. If there are no such associations the speaker takes the next distinctive
category and repeats the above, else it continues as follows. If a no lexical entry
is found, a new form may be invented with a certain probability (this is discussed
in more detail when the adaptation is discussed). If a new form is invented, a
new lexical entry is added to the lexicon and this entry is selected. The form of
the selected entry is uttered.

Note that as soon a distinctive category will be used in a language game where
it relates a form with a referent, this distinctive category is called the meaning.

The Hearer’s Understanding

In the understanding phase, the hearer tries to select a lexical entry that fits the
utterance best. This way it is able to select which topic it ’thinks’ the speaker
meant. When the hearer receives an utterance that is relevant (i.e. not nil), it
tries to interpret the utterance. It does so by searching its lexicon for associa-
tions that fit the utterance. From the associations found and that are consistent
with the distinctive categories of the potential topic(s) the most effective one is
selected. The effectiveness is based on information about the likelihood of the
potential topic, the effectiveness of the meaning in the past and the effectiveness
of the association in the past. The most effective entry determines the hearer’s
selection. If no such entry exists, a new entry must be made. This is done in the
adaptation phase as will be explained below.

The hearer’s understanding is a little bit more complex than the production.
It first of all depends on what knowledge the hearer receives about the topic
other than the linguistic exchange. Secondly, it may depend on how effective a
distinctive category has been in the past. And finally, it depends on how effective
a certain form-meaning association has been.

Suppose that D = DCp is the set of distinctive category sets of potential topics p.
Each potential topic p has a non-zero topic score εp. And suppose that U = nil is
the utterance received from the speaker, t = nil is the topic, L′ = L is the lexicon
and P = nil is the best selection so far. The hearer’s understanding algorithm
is based on the stochastic naming game model (Steels and Kaplan 1998) and can
be described as follows7:

1. If L′ 6= ∅, then select first element 〈Fi, Mi, σi〉. Else goto 8.

2. If Fi = U , then goto 3, else goto 1.

7Note that Steels and Kaplan (1998) lets the hearer construct a matrix from which similar
decisions are made.
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3. Set D′ = D. Goto 4.

4. If D′ 6= ∅, then select first element DCp from D′ and goto 5, else goto 1.

5. If DCp 6= ∅, then select first element cj from DCp and goto 6, else goto 4.

6. If cj = Mi, then calculate Σ = w1 · εp + w2 · µj + w3 · σi, where the wk are
weights. Goto 7.

7. If Σ > Σmax, then set P := 〈Fi, Mi, σi, p〉 and Σmax := Σ. Goto 5.

8. If P 6= nil, then t := p where p is part of P . Stop.

In the experiments the weights are set to w1 = 1, w2 = 0.1 and w3 = 1. This way
the meaning score µ has little influence on the selection process. Only when either
µ is very large, or when there is a conflict between the topic scores and association
scores of different elements, the meaning scores influence the selection process. So,

the hearer looks for the topic that can be related with a form-meaning association
that best fits the expressed form and a distinctive categorisation of a potential
topic. The language game may be evaluated by means of feedback. Whether
or not feedback is actually incorporated depends on the type of language game
being played. To have a consistent implementation, however, there is always a
feedback model as explained hereafter.

Feedback

It might seem obvious that an agent has to know whether the language game it
is participating is effective in order to learn a language: it needs feedback. What
type of feedback is present is an important issue in the psycholinguistics, see e.g.
(Bowerman 1988). Is the feedback of a language game about its effectiveness or
not? Is it only positive or is it negative as well? In the experiments reported
here, the feedback gives information on the language game’s effectiveness. Both
positive as negative. Since the robots should be able to determine this feedback
themselves (possibly with each other’s help), some mechanism has to be developed
to achieve this.

Feedback has been implemented by means of correspondence. These both meth-
ods work similar to the methods explained used for joint attention. Both methods
are used to provide feedback in the ostensive and guessing games, provided that
both robots activated a form-meaning association. The observational and selfish
games do not use such feedback. However, for consistency in the implementation,
no feedback is implemented similarly. Instead of a topic score ε, a success score
ε is computed. This success score indicates the likelihood that both agents have
identified the same topic.
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Correspondence The language game is successful when the confidential factor
ε = 1.

ε =

{

1 if the two topics corresponds
0 otherwise

(3.13)

No feedback

ε =

{

1 if both robots have selected a lexical entry
0 otherwise

(3.14)

The above methods implement feedback in terms of success. In the case of no
feedback, the success is based on the ability to select a form-meaning association.
This could be called feedback, but the feedback meant in this thesis is in terms
of the actual success of a language game, i.e. both robots should have identified
a symbol that has the same form and that stands for the same referent. So, what
are the outcomes of the feedback using the correspondence criterion? If the topic
is related to the same referent that the speaker intended, the language game is
successful and ε = 1. If it is not, there is a misunderstanding (or mismatch in
referent) and ε = 0. The outcome of the evaluation will be available to both
robots.

Besides the evaluation of the success, there are other types of ’feedback’ in
the system. First, if the speaker cannot produce an utterance, the hearer need
not to do anything, except skip the current language game. The speaker can
easily determine its own shortcomings. Second, sometimes the hearer cannot
understand the speaker. This is because it does not recognise the uttered form in
the current context. Either it does not have the form in its lexicon, or its meaning
does not match one of the distinctive categories. In this case, the speaker must
be informed that the language game is a failure. The third and most common-
practice is that the hearer did interpret the form in the context. However, it
may have misinterpreted to what referent the speaker’s utterance referred. So,
both agents have to find out that they both identified the same topic. Attentive
readers will recognise that this is technically the same problem as when the hearer
when the speaker and hearer need to establish joint attention on the topic.

Why not use language as a means of providing feedback? Since language is
the issue of learning, it does not seem to be the most reliable source of attention
mechanism. If the robots do not know the language yet, how can they use
language as a source of feedback? Therefore a non-linguistic means is preferable.
Such means have already been defined for joint attention.

Like was the case with joint attention, one attempt has been made to imple-
ment this by means of physical pointing (Vogt 1998a). Since this method did not
work well, the technical problems have been set aside and providing feedback has
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been simulated assuming the robots can do it properly. The methods used are
the same as in the case of joint attention.

The lexicon is adapted according to the outcome of the game as will be ex-
plained hereafter.

Adaptation

The naming game may fail in various ways. Both at the production level as at the
understanding level. Especially in the beginning when there are no or few lexical
entries. In these cases the robots have to adapt their lexicons. They may have
to invent new word-forms or they may need to adopt a word-form from the other
robot. In order to increase the chance that effective lexical entries will be selected
more often than ineffective ones, the association scores have to be adapted. This
can happen when the language game is a failure, but it should also happen when
the language game is a success. It is important to realise that the robots adapt
their lexicons individually.

As made clear before, there are several possible outcomes of a language game.
First, the game can already fail during categorisation. This will put pressure
to the agent to increase its repertoire of categories as explained in section 3.4.2.
Another failure could be due to the fact that the speaker does not have a form
association matched to category to be named. In this case the agent can invent
a new form to associate with the category. If the hearer does not understand the
speaker, this can mean that it does not have a proper form-meaning association.
The expressed form can be adopted and associated with one or more categories.
When there is a mismatch in reference and when the language game was a success,
the association scores are updated. When all this is not the case, the language
game is a success. The adaptation is based on (Steels 1996b), although the
updates of the association scores is a little bit different.

No lexical entry speaker: The speaker has no form associated with the
categories it tried to name. In this case, the speaker may invent a new form
as an arbitrary string of characters. It does so with a creation probability Ps

that is kept low to slow down the form creation rate. In most experiments
Ps = 0.02. This way the lexicon will become less ambiguous. The invented
form is associated with the category that has the highest meaning score µ.
The new lexical entry is related with an association score σ that is set to
0.01. (Not to 0.0, because then it may never be selected, as explained in
section 3.4.2.)

No lexical entry hearer: The hearer has no association in its lexicon where
the form is associated with a meaning that is consistent in the current
context. The hearer now may adopt the form from the hearer to associate
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it with a segment of which it has a non-zero topic score (εt > 0). In this
case the most likely segment is chosen, i.e.

εt = max
S

(ε) (3.15)

If there are more than one segments for which eq. 3.15 holds, then one
segment is selected at random. This is e.g. the case in the guessing game,
where all segments have equal topic score. The meaning of the selected
segment is then associated with the word-form and the lexical entry is
related to an association score σ = 0.01.

Mismatch in reference: The hearer misinterpreted the speaker’s utterance.
I.e. the topic’s of both robots do not coincide. In the case that both
robots selected a form-meaning association, but when the topics did not
coincide, at least according to their own evaluation, the robots decrease the
association score σ of the used association:

σ := η · σ (3.16)

where η is the learning rate. In some experiments the hearer also adopts
the form with another segment.

Communicative success: Both robots communicated the same referent and
hence the language game was a success. The used association is strength-
ened while association scores of other form-meaning associations are later-
ally inhibited. Let FM′ = (F ′, M ′, σ′) ∈ L and FM = (F, M, σ) ∈ L be
form-meaning associations. Here FM′ are the form-meanings to be adapted
and FM is the association used in the communication. The scores are up-
dated as a walking average:

σ := η · σ + (1 − η) · X (3.17)

where

X =

{

1 if FM′ = FM
0 if (FM′ 6= FM) ∧ ((F ′ = F ) ∨ (M ′ = M))

In all other cases, i.e. when ((F ′ 6= F ) ∧ (M ′ 6= M)), nothing happens.
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The adaptation scheme thus implements generation, cultural evolution and
selection. Generation is part of the adaptation through invention. Cultural evo-
lution is implemented by form adoption. Whereas the selection is influenced by
the excitation and inhibition of the association scores. The seemingly effective
associations are excited and the ineffective ones are inhibited.

The learning of the lexicon for each individual is based on reinforcement learn-
ing, see e.g. (Sutton and Barto 1998). In reinforcement learning, a task is learned
according to the reward that is evaluated from the effect of some action. In the
naming game, the action is the communication, the reward is based on the effect
of the communication and it is evaluated with the feedback.

3.5 Coupling Categorisation and Naming

This chapter presented the language game model. It explained sensing, segmen-
tation, feature extraction, categorisation, discrimination and lexicon formation
in detail. The different processes that make up the language game are, together
with the data flow illustrated in figure 3.11. This section explains how the cou-
pling of the different aspects of the language game model work together in order
to develop a shared and grounded lexicon.

It is important to realise that in an experiment the robots play a series of language
games. Typically there are thousands of language games played in one experi-
ment. The robots play language games at different locations in their environment
under different conditions. The different conditions are caused by changing light
conditions, different energy levels and wear. Under these different conditions,
the robots acquire a different sensing of the light sources. Although different
sensations of a light source can be categorised with one category, the different
sensations induces different categorisations. The number of different (distinctive)
categorisations in an experiment can be very high.

In order to have an efficient communication system, the number of forms that
are used should not be too large. Ideally, there is a one-to-one mapping between
referent and form. As explained, the categories that are used in the language
games make up the meaning of the symbols. They interpret the sensing of the
referent and are associated with a form. Since there are many meanings used
in the language games, while there are only four referents (light sources) in the
environment, there are one-to-many mappings between referent and meaning. So,
to come to an ideal one-to-one mapping between referent and form, there should
be a many-to-one mapping between meaning and form.

The way the lexicon formation is modelled, the many-to-one relations be-
tween meaning and form are allowed. Although the speaker invents a one-to-one
mapping between meaning and form, the hearer may adopt a (possibly already
known) form with more than one categories it has related to the sensing of a
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referent. This way the many-to-one relations are made. However, there may also
emerge one-to-many mappings between meaning and form.

In different language games, one meaning can be associated with different
forms. The two robots have different categorisations of the world. Partly because
they create different categories and associations, but also because in a language
game, they view their world from different locations. Suppose that one robot
in a language game is at a different location than in previous language games,
and suppose that the other robot is in a location it has visited before. The first
robot is likely to have a different categorisation of a light source than before, so
it may use a different form than in other language games. But if the other robot
views the light source from more or less the same location as before, it would
prefer the form used in the other language games. It may not know the new
form yet and might associate this one with the meaning it already had. another
reason for this one-to-many mapping is that the hearer adopts a word-form with a
categorisation of an arbitrary selected segment. It may well be that this category
is already associated with another word-form. Logically, if there may be both
one-to-many and many-to-one mappings between meaning and form, it is likely
there exist many-to-many mappings.

The many-to-many mappings makes the system more complex. Especially
when one realises that the mappings differ per robot. The reinforcement type of
learning (selection and adaptations depending on the rewards) allows the robots
to converge a system where the effective associations are used more often. The
robots have mechanisms to select associations that have been most effective in
the past. This selection is based on the scores which are adapted according to
the rewards that are given to the agents. The rewards are based on successful
language games. Since a language game is successful when both robots commu-
nicate the same referent, the forms that are exchanged will be selected more and
more to relate to the same referent. This is so, because in the different language
games, the robots have different but returning locations. Once a language game
has been successful the used associations for the robots are reinforced. In an-
other language game, where one robot is at the same location, while the other
is not, the latter can learn that the form that is communicated relates to this
new situation. If this newly learned association is applicable in a later language
game, this game may be successful. Hence this association is reinforced. The
more these associations are reinforced, the better the robots can deal with the
different categorisations in different locations.

When an association is used successfully this association is reinforced, whereas
lateral associations are inhibited. So, there will be a competition between the
different form-meaning associations. This appears to antagonise the force of
the dynamics explained above. The adaptations are mainly made at the form-
meaning layer. Nevertheless, it will be shown that the robots are capable to deal
with this. Because hearer processes the data in different directions, cf. figure
3.11, the selection it can make often depends on the availability of a distinctive
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category rather than on the selection preference in its lexicon. This is especially
a strong principle when the robots use joint attention. The selection based on
the scores is more important when it is not available. In this case the robots
are depending on the rewards (feedback) given. Since both joint attention and
feedback is provides information about the topic of the language games, the
tendency to use a minimal set of forms to name a referent emerges.

As will be shown in the experimental results, the robots do not develop a one-
to-one relationship between the referents and the forms. However, the results are
pretty good. In the most successful experiments (see chapter 6) there is almost
a one-to-few relationship between referent and form.

So, there is a strong level of co-evolution of meaning and form. Since there is
a one-to-many relation between referent and meaning, it is necessary to have a
damping mechanism between meaning and form. The dynamics of the cultural
interactions between the robots and the joint attention or feedback mechanisms
(actually a part of the cultural interactions) are the damping mechanisms that
allows the ’self-organisation’ of a shared and grounded lexicon.
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Chapter 4

Experimental Results

Now that the model has been described, it is time to present experimental results.
The results will be presented in three forthcoming chapters including this one.
The current chapter presents the complete outline of one experiment that will
form the basis with which the results of most other experiments will be compared.
This experiment will be called the basic experiment and implements the guessing
game.

The next chapter will show how some parameters and methods influence the
language game. Some experiments will be discussed in which the quality of the
communication completely breaks down, but most experiments will show which
parameter settings and methods improve the language game.

Before the experiments are discussed some methodology and measures have to be
defined. This is done in the next section. The physical recording of the sensory
data is discussed in section 4.2. Section 4.3 presents the basic experiment. Both
the effectiveness and evolution will be discussed. A summary is given in the final
section.

4.1 Measures and Methodology

4.1.1 Measures

As in any empirical investigation, measures are needed to monitor the effective-
ness of the system. For the experiments presented here seven measures have been
proposed, each measuring a certain aspect of the system. Three measures moni-
tor the categorisation: discriminative success, distinctiveness and parsimony. The
other four measures are involved with the quality of the communication system:
communication success, actual success, specificity and consistency. All measures
are values between 0 and 1; 0 means complete failure and 1 complete success.

The measures distinctiveness, parsimony, specificity and consistency were in-
troduced by Edwin De Jong (2000). These measures are based on the entropy
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measure taken from information theory (Shannon 1948). Entropy measures the
uncertainty about a set of elements. The higher the entropy, the higher the
uncertainty introducing chaos. Low entropy means order and less uncertainty.
Information theory defines entropy as follows:

Let X be a random variable with a set of possible outcomes AX =
{a1, . . . , an}, having probabilities PX = {p1, . . . , pn}, with P (x =
ai) = pi, 0 ≤ pi ≤ 1 and

∑n
i=1 Pi = 1. Then according to (Shannon

1948), the entropy H of X is defined by:

H ≡ −
n

∑

i=1

Pi · log Pi (4.1)

with the convention for Pi = 0 that −0 · log 0 = 0. The information
theoretic entropy used here should not be confused with entropy in
physical systems, as in the second law of thermodynamics, although
there is a relation in that both forms of entropy measure disorder.
(De Jong 2000, p. 76)

All measures that are used can now be described as follows:

Discriminative Success To monitor the ability of the robots to discriminate
a segment from other segments in the context, discriminative success (DS)
has been introduced (Steels 1996c). At each instance, the discriminative
success measures the average success of an agent to discriminate over the
past 100 language games. Although a robot may play more discrimination
games than language games, it is opted to measure the success over 100
language games for simplicity. So, if during 100 language games a robot
played 120 discrimination games, the discriminative success measures the
average success of those 120 discrimination games. On the other hand, of
there are only 80 discrimination games played, the discriminative success
monitors the success of these 80 games as a function of the 100 language
games. So, the discriminative success monitors the evolution of categorisa-
tion, although its information is not always equally reliable. Note that the
discriminative success is calculated for each individual robot.

Distinctiveness “Intuitively, distinctiveness expresses to what degree a mean-
ing identifies the referent” (De Jong 2000). For this we can measure how the
entropy of a meaning in relation to a certain referent H(ρ|µi) decreases the
uncertainty about the referent H(ρ). For this we can calculate the differ-
ence between H(ρ) and H(ρ|µi). Here ρ are the referents ρ1, . . . , ρn and µi
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relates to one of the meanings µ1, . . . , µm for robot R. The distinctiveness
DR can now be defined as follows:

H(ρ|µi) =
n

∑

j=1

−P (ρj|µi) · log P (ρj|µi) (4.2)

dist(µi) =
H(ρ) − H(r|µi)

H(ρ)
= 1 −

H(ρ|µi)

H(ρ)
(4.3)

DR =

∑m
i=1 Po(µi) · dist(µi)

m
(4.4)

where H(ρ) = log n and Po(µi) is the occurrence probability of meaning µi.
The use of Po(µi) as a weighting factor is to scale the importance of such a
meaning to its occurrence. In (De Jong 2000) this has only been done for
specificity and consistency, because there the occurrence of meanings and
referents was a normal distribution.

Parsimony The parsimony PR is calculated similar to the distinctiveness:

H(µ|ρi) =
m

∑

j=1

−P (µj|ρi) · log P (µj|ρi) (4.5)

pars(ρi) = 1 −
H(µ|ρi)

H(µ)
(4.6)

PR =

∑n
i=1 Po(ρi) · pars(ρi)

n
(4.7)

with H(µ) = log m. Parsimony thus calculates to what degree a referent
gives rise to a unique meaning.

Communicative Success The communication success (CS) is calculated sim-
ilar to the discrimination success. communicative success is the average
success in communication over the past 100 games. It must be noted that
when a language game ends in communicative success, the robots not nec-
essarily communicated the same topic. The robots considered the language
game successful as a result from the feedback. Since the feedback is not al-
ways sound, the communicative success does not always say anything about
the robots ability to communicate about a certain referent.
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Actual Success In order to say more about the actual success of a language
game, when the communicative success is not the ideal measure, the mea-
sure actual success (AS) has been introduced (Vogt 1998a). The actual
success measures the success of a language game as if it were observed by
an objective observer. The objective observer may say that the language
game is successful when it is so according to the correspondence criterion.
I.e. when the topic of both robots correspond to the same light source.
This method is not completely sound, because at larger distances to a light
source the correspondence criterion is not sound. But in most cases it suf-
fices. The actual success measures the average success over the past 100
language games. When feedback is provided by the correspondence crite-
rion, the actual success is the same as the communicative success.

Specificity “The specificity of a word[-form] is ... defined as the relative de-
crease of uncertainty in determining the referent given a word that was
received” (De Jong 2000). It thus is a measure to indicate how well a word-
form can identify a referent. It is calculated analogous to the distinctiveness
and parsimony. For a set of word-forms σ1, . . . , σq, the specificity is defined
as follows:

H(ρ|σi) =
n

∑

j=1

−P (ρj|σi) · log P (ρj|σi) (4.8)

spec(σi) = 1 −
H(ρ|σi)

H(ρ)
(4.9)

SR =

∑q
i=1 Po(σi) · spec(σi)

q
(4.10)

where H(ρ) = log n is defined as before and Po is the occurrence probability
of encountering word-form σi.

Consistency Consistency measures how consistent a referent is named by a
certain word-form. It is calculated as follows:

H(σ|ρi) =
q

∑

j=1

−P (σj|ρi) · log P (σj|ρi) (4.11)

cons(ρi) = 1 −
H(σ|ρi)

H(σ)
(4.12)
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CR =

∑n
i=1 Po(ρi) · cons(ρi)

n
(4.13)

where H(σ) = log q and Po(ρi) is defined as before.

Distinctiveness, parsimony, specificity and consistency are all calculated every
200 language games. Obviously calculations can only take place when the pairs
referent - meaning or referent - word-form are used. This happens either when
the discrimination game is successful (influencing distinctiveness and parsimony)
or when a robot produced or understood a communication act (influencing speci-
ficity and consistency)1.

4.1.2 Statistical Testing

Every experiment (unless otherwise mentioned) consists of 10 runs in which ei-
ther 5,000 or 10,000 language games are played. When appropriate, the results
are presented in a plot that displays the average evolution of the experiment.
However, to save space, most results are presented in a table where the global
averages of an experiment are given. With a global average is meant that the
average measure of each complete run (5,000 or 10,000 games) is averaged over
the 10 runs. This average is given with its standard deviation of the population.
When comparing to other experiment, the results are usually displayed in a bar
chart. In addition, statistical significance testing is done by these comparisons.

All statistical significance testing is done using the two-tailed Mann-Whitney
U Test, also known as the Wilcoxon rank sum test. Applying the Mann-Whitney
U Test requires that the population does not show a normal distribution. In-
vestigations of the distributions revealed that the populations were not normally
distributed.

The null-hypothesis of the test may be rejected when p < α for some low α. In
all testing, the null-hypothesis states that two populations of measurements are
the same, with the alternative hypothesis that they are not the same. For stating
that one result is significantly better than another, the distributions of the two
populations of measurements need to be similar. This has not been observed,
so the only inference one can make of a low p-value is that the two populations
are not the same. However, if one measurement is higher than another, the
assumption will be made that this is the case if a p-value is low. The value α will
not be filled in, the reader may decide him/herself whether or not the difference is
significant. For readers unfamiliar with statistical testing, the literature usually
takes α = 0.05, which becomes for a two-tailed test: α = 0.025. The used method
and tables are taken from (Aczel 1989).

1Note that this does not necessarily mean that the language game was successful.
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Other methods will be used to evaluate an experiment’s success. These meth-
ods include semiotic landscapes, competition diagrams and others, and will be
introduced with their initial appearance.

4.1.3 On-board Versus Off-board

In the original experiments all the processing, including the meaning and language
formation, was done on-board the robots (Steels and Vogt 1997). But, since the
robots failed to enhance the lexicon due to the lack of on-board memory and
because the robots’ batteries only work for one hour while the experiments take
much more time, a large part of the processing is done off-board on a personal
computer. The sensory information that the robots detect during sensing is sent
to the PC by the radio link. After the robots recorded the sensory information of
a language game, segmentation, categorisation and naming are further processes
on the PC.

There are many advantages for off-board processing:

1. Larger internal memory.

2. No loss of data during change of batteries.

3. Faster processing.

4. Repeatable experiments to compare parameter settings and methods more
reliably.

5. Debugging.

After approximately one hour of experimenting, the robot’s batteries die. The
robots have no persistent data storage on-board. So, when the batteries are
empty and the robot shuts down, the memory built up disappears unless it is
saved off-board first. Of course, the robots may be powered by a cable, but in
practice this proves to be rather cumbersome. The advantage would be that a
serial cable can be attached to monitor the internal dynamics of the robots during
a game, but this could also be done using radio communication.

The recording of one language game when the robots need to look for each
other takes approximately 1.5min. Recording a minimum of 5,000 language games
takes therefore 125 hours, which, assuming that there are 5 effective experimental
hours a day2, takes 25 days or 5 weeks. If nothing goes wrong, naturally!

This period can be reduced to 5 days if the researcher brings the robots together
him- or herself after which the robots play a series of, say 10 games in a row.

2Perhaps some robotics researchers laugh at this positive estimation, but in good days this
is manageable.
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Now suppose that one wants to tune a parameter by varying this parameter 5
or 10 times. Or that one wants to change a method, or what if the researcher finds
a bug in its program. For all these reasons off-board processing is the outcome.
Another important advantage is that one can use the same recordings over and
over again across different experiments, so comparing different experiments is
more reliable.

Debugging is a good reason to process data as much as possible off-board as
well, it saves huge amounts of time. Many more advantages can be found, but
the biggest have been stated. However, if one divides a system in on-board vs.
off-board processing, then one should be careful to define the division line. The
experiment should not loose its embodied and situated character, otherwise one
is better off using simulations.

4.2 Sensory Data

As mentioned in chapter 3 the sensory data of the sensing during a language game
is recorded to further process the game off-board. For convenience the sensing is
segmented in advance, using the method described in chapter 3. The same is done
for the feature extraction. The data set thus consists of the contexts described
by the feature vectors of the two robots participating in the experiment. The two
contexts that relate to one language game will be called a situation.

For obvious reasons of time, a few data sets of only 1,000 situations have been
recorded. One of these sets is used for the experiments of this chapter, the others
will be presented in the next chapter. As will become clear soon, an experiment
requires approximately 3,000 language games before the communication system
becomes more or less stable. In most experiments 5,000 games are played. In
these experiments the 1,000 recorded situations will be used over and over again.
Some people may ask if the reuse of situations will bias the system. But it is un-
likely that two language games in the experiment are the same. Every language
game, one situation is selected. One of the robots is then assigned randomly
to play the role of the speaker. The speaker then selects randomly one of the
segments to be the topic. Since, on the average, each context consists of approx-
imately 3-4 segments (1017 in the first data set to be precise), a situation can be
used in, say, 7 different ways. Assuming perfect randomness of the system, each
possible setting (situation, role assignment and topic choice) has been explored
only once after approximately 7,000 games, which justifies this method.

The data set is first run through linearly, i.e. the system that runs the ex-
periment reads the data set in recording sequence. The situations are stored in
a list and each situation is then selected in random order.

The 1,000 situations have been recorded as described in chapter 3. The record-
ing of each data set took approximately 8 hours of work, spread over two days.
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r0 r1
〈|Cxt|〉 3.33 ± 1.07 3.54 ± 1.21

Ur 0.81 ± 0.27 0.78 ± 0.27

Table 4.1: The average context size 〈|Cxt|〉 and average potential understandability

Ur of the recorded data set.

Before the results of the cognitive processing is presented, it is useful to look at
some statistics of the basic data set. Some additional statistics of the basic data
set are presented in appendix C. This appendix shows the distribution of the
feature values measured by the robots. This distribution shows one reason why
it seems impossible that a real-world environment can be simulated.

Table 4.1 shows the average context size 〈|Cxt|〉 of each robot together with its
standard deviation. In addition, this table shows the potential understandability
Ur of each robot. The potential understandability of a robot is a measure that
indicates how well a robot can be understood by another robot according to
their context sharing. Suppose that robot r has segmented context Cxtr,l =
{S1,r,l, . . . , Sn,r,l} for situation l, then the understandability Ur for n situations is
calculated as follows:

Ur,l =

∑n
i=1 ui,l

n
(4.14)

where

ui,l =

{

1 ifSi,r,l v Cxtr′,l (r 6= r′)
0 otherwise

(4.15)

Ur =

∑L
l=1 Ur,l

L
(4.16)

where the symbol v is used to denote the relation whether the segment on the
left hand side of v corresponds to one of the segments in the context of the other
robot. L is the total number of situations recorded. So, the global potential
understandability Ur is the average of the average potential understandability
per situation. In the table this average is given with its standard deviation.

The potential understandability is lower than 1, because the two robots do
not always share a similar context. That this happens has already been discussed
in the preceding chapter.

What can be expected in the experiments when observing the statistics of this
data set? The first thing that can be said is that the a priori probabilities that
both robots select the same topic based on the average context size is:
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Par Value
δ 0.10
η 0.99
Ps 0.02
Ph 1.00

Table 4.2: Parameters of the system. The parameters include the step-size δ by

which the categories shift towards an observation, the learning rate η controlling the

adaptation of scores, the creation probability Ps by which the speaker may invent new

word-forms, the adoption probability Ph by which the hearer may adopt a new word-

form when it does not find a matching word-form with an associated meaning it also

categorised, and the success threshold ΘF by which the success of a language game

may be accepted.

P =
〈|Cxtr0|〉 + 〈|Cxtr1|〉

2
·

1

〈|Cxtr0|〉
·

1

〈|Cxtr1|〉
= 0.29

So, if the robots perform better than 30 % in their communicative success, they
are actually learning a meaningful language. The second observation that can
be made is that it is impossible to reach a communicative success of 100 % since
the robots are in principle not capable of understanding each utterance given the
current context setting. They are not likely to perform better than approximately
80 %, as has been calculated from the potential understandability. Third, it is
likely that the robots will learn to name L0 better than others, since this light
source is detected most often. Given these expectations and conclusions it is time
to see how the robots do in the language formation.

4.3 The Basic Experiment

This first experiment will be referred to as the basic experiment. It is called so
because this experiment will serve as the basic experiment from which parameters
and methods are changed to investigate their influence. That it is not the best
experiment will be shown in subsequent chapters.

The experiment is a guessing game with feedback obtained by means of corre-
spondence (see section 3.4.3).

Table 4.2 shows the parameter settings of the most important variables that
have been introduced in the previous chapter. Unless otherwise mentioned, the
parameters are not changed in the different experiments.
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4.3.1 The Global Evolution

The results of the experiment are shown in figure 4.1. Note that the actual suc-
cess is not shown. This is because the actual success is calculated under the same
criteria as the feedback of the language games, namely the correspondence crite-
rion. Therefore the actual success is equal to the communicative success. In the
experiments where the feedback is provided using the correspondence criterion,
the plot of the actual success will not be provided.

In figure 4.1 (a) the evolution of the communicative success is shown. The
communicative success first increases rapidly towards a value of 0.2 after 500
language games, then the communicative success slowly grows to a value of 0.45
after approximately 5,000 language games. The low success is partly due to the
relatively poor performance the robots’ physical behaviour. This poor behaviour
causes the robots to acquire a incoherent context, so a completely successful
system cannot emerge. However, the potential understandability predicts a max-
imum success 80 %. So this cannot explain why the success stays around 40
% in the last 3,000 games. Note however that the success is still increasing,
but as will be shown in section 4.3.5, the success stabilises around 55 % after
approximately 8,000 games. Although the communicative success is low, some
important observations can be made when a closer look is taken at the evolution
of the communication system. This is done from section 4.3.3.

Figure 4.1 (b) plots the discriminative success of the two robots r0 and r1.
As can be seen, the discriminative success grows to a value around 95 %. This
success rate is reached quite rapidly. Already after approximately 500 language
games a success larger than 90 % is achieved. That the discriminative success
does not converge to 100 % is due to the fact that: (1) The hearer does not play
a discrimination game in all language games and the discriminative success is a
function of the language games. And (2) a success-rate of 100 % can never be
reached. This latter finding is due to the fact that on the average about 0.5 % of
the segments in one context are the same.

Figure 4.2 shows the discriminative success of an experiment where all pos-
sible configurations are used in the discrimination games. The robots interacted
as if they were playing language games, only they did not communicate. The
speaker only categorised its selected topic, the hearer categorised all its detected
segments. Note that more discrimination games are played than when the robots
also communicate since in that case the hearer only plays a discrimination game
when it receives an uttered word-form. Furthermore, since each agent plays a
discrimination game every ‘language game’, the discriminative success is inde-
pendent of the language games. The average distinctive success over 10 runs of
5,000 language games is 0.984±0.001 for robot r0 and 0.987±0.000 for r1. Due to
limitations of the implementation is difficult to extract all possible configurations,
so these experiments are not used for language formation.
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Figure 4.1: The results of the basic experiment showing (a) the communicative

success, (b) discriminative success, (c) specificity, (d) distinctiveness, (e) consistency

and (f) parsimony. Objective success is not shown, because in this experiment it holds

no value (see text).
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Figure 4.2: The discriminative success of 10 runs of 5,000 language games in which

only discrimination games were played (i.e. without communication). The discrimina-

tion games here considered all possible configurations of categories in their contexts.

Figures 4.1 (c) and (e) show that the specificity and consistency is rather
good. So, when a communication act establishes, whether or not it is successful3,
the robots’ utterances specify the referents pretty well and they are also pretty
consistent in naming the referent. So, in principle they mastered a good commu-
nication system.

The meanings that are used almost uniquely identify a particular referent.
This can be seen in figure 4.1 (d), which shows the distinctiveness of the two
robots. When the robots are able to discriminate a segment corresponding to
some referent, they do so rather parsimonious (i.e. they tend to use the same
meanings), but not very good. The parsimony (figure 4.1 (f)) is around 0.85.

So, when the robots are successful in communicating and categorisation, they
do so with high accuracy and invariance. Table 4.3 shows the average (Avg)
scores of the different measures over 10 runs of the complete experiments. All
scores given with their standard deviation of the averages over the population
of 10 runs. In forthcoming experiments tables and bar charts with the average
scores will be the main comparison source. Plots like in figure 4.1 will only be
used when it is useful to make a certain point.

3A communication act is established when the speaker produced an utterance and when the
hearer found a matching WM association. This is independent of successful communication.
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Score Avg
CS 0.351 ± 0.010
DS0 0.916 ± 0.004
DS1 0.920 ± 0.004
D0 0.956 ± 0.002
D1 0.955 ± 0.002
P0 0.852 ± 0.004
P1 0.851 ± 0.002
S0 0.822 ± 0.017
S1 0.817 ± 0.011
C0 0.816 ± 0.008
C1 0.811 ± 0.007

Table 4.3: The table listing the average scores for the different measures. The suffix

0 or 1 indicates from which robot the score is (R0 or R1). The second column gives

the global average of the experiment, together with its standard deviation over the

population of 10 runs.

In figure 4.3 the communicative success of one run is shown. It is obvious
that this run shows a different evolution than the averaged evolution as has been
shown in figure 4.1. The next section will discuss the evolution of the run for
which the communicative success has just been shown.

4.3.2 The Ontological Development

It is interesting to see how the ontology of prototypical categories develop and
evolve in time.

Figure 4.4 shows the evolution of prototypes in dimension WL0 of feature
spaces F1 to F4. Similar development is observed for the other dimensions.
Recall that each feature space Fλ allows a maximum of 3λ exploitations in each
dimension. The first exploitations in the different feature spaces are constructed
quite rapidly. It is interesting to note that only the prototypes of feature space
F1 are continuously changing (figure 4.4 (a)). This means that they are used
successfully to name a segment and shift towards the feature they categorised.
The lower and upper exploitations remain close to 0 and 1 resp., the middle values
shift toward values somewhere in the middle between 0 and 1. The categories
have the tendency to move towards what could be called the central tendency of
the features for which the prototypical categories have been used successfully in
the language games.

At the other feature spaces from figure 4.4, an increasing amount of proto-
types are constructed, but once they are introduced they hardly change. Appar-
ently, these prototypical categories are not often used successfully in the language
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Figure 4.3: The communicative success of one run. The evolution shows a fast

increase towards 30 %, after which it slowly grows to 50 % at the end. The evolution

further shows a lot of fluctuations. Apparently the robots learn to communicate with

ups and downs. A lot of these fluctuations are caused by polysemy and synonymy in

the system as will become clear hereafter.

games. So, the robots appear to be sufficiently effective with the categories con-
structed in feature space F1. This does not mean that in a more complex envi-
ronment, the further refinements would not be effective.

Table 4.4 gives a sample of some meanings that are present in the competition
diagrams. An additional legend can be found in appendix D. Each meaning is
a set of categories of which the values are given in a vector notation. So, the
category is a 4 dimensional prototype of the (4 dimensional) segment. The first
dimension corresponds with sensory channel WL0 (the lowest light sensor), etc.
The subscript index indicates feature space at which the categories are stored.
Most prototypes have a value of 1 (or 0.99) at the dimension that corresponds to
the referent for which they are mostly used.

There are some exceptions, like for M6, M37, M90, M393 and M394, which
have all values of (almost) 0. These meanings are used in the beginning of the
experiment in which a certain feature space is explored. The relating categories
were distinctive, despite the low values in each dimension, because the other
segments in the context were categorised with other categories at sensory channels
that had higher values in another dimension.
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Figure 4.4: The development of prototypes in dimension WL0 of feature spaces F1

to F4. Note that the x-axis shows the number of language games and the y-axis shows

the value of the prototype in dimension WL0. Similar evolutions are observed in the

other dimensions of the feature spaces.

An interesting meaning is M67, which has low distinctiveness. This meaning
is used both in relation to light sources L0 and L1. Table 4.4 explains why. The
prototype has high values for both dimension WL0 and WL1. If a light source is
sensed from a large distance, the sensory channel adjacent to the corresponding
sensory channel, both sensory channels may detect intensities close to each other,
conform the characteristics shown in chapter 2. After feature extraction, the
feature vector has high values in these dimensions. Hence meaning M67 might
be activated.

Meanings M53, M55 (both L0), M18, M30 (L1), M5, M20, M27 (L2), M58 and
M61 (L3) all have values of 0.99 or 1.00 in the corresponding dimensions. So, the
discrimination process clearly selects the invariant property of correspondence.
The meanings that have values of 0.99 in one dimension of their prototypes are
used successfully to categorise a feature vector that has a value lower than 1
in this dimension. In such cases the prototypes evolve to a value lower than 1
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M5 (0.02, 0.01, 1.00, 0.02)1

M6 (0.04, 0.00, 0.00, 0.00)2

M18 (0.56, 0.99, 0.02, 0.02)1

M20 (0.02, 0.01, 1.00, 0.44)1

M27 (0.02, 0.31, 1.00, 0.44)1

M30 (0.02, 0.99, 0.02, 0.02)1

M37 (0.00, 0.00, 0.00, 0.00)3

M53 (1.00, 0.01, 0.02, 0.02)1

M55 (1.00, 0.31, 0.02, 0.02)1

M58 (0.02, 0.01, 0.30, 0.99)1

M61 (0.02, 0.01, 0.02, 0.99)1

M67 (1.00, 0.99, 0.02, 0.02)1

M90 (0.00, 0.00, 0.01, 0.00)5

M393 (0.00, 0.00, 0.00, 0.01)4

M394 (0.00, 0.00, 0.00, 0.01)5

Table 4.4: The legend of some of the meanings represented by their prototypes. The

subscript indicates the feature space Fλ at which the prototypes are stored. The given

meanings are taken from the ontology after 5,000 language games.

since it shifts towards the feature vector. If this prototype would be used only
to categorise feature vectors with value 1 in some dimension, this dimension will
end up with value of 1.

4.3.3 Competition Diagrams

Up to now only superficial measures have been presented, which already gave use-
ful information on the quality of the emerged communication system. Although
the communicative success is low, the system is performing better than chance
and a reasonable system seemed to have emerged. There is another way of looking
at the system that emerged, namely by inspecting so called competition diagrams.
A competition diagram takes one entity at its basis (e.g. a referent) and shows
which elements of another entity (e.g. meanings or word-forms) compete to mean
or name this basis.

Figure 4.5 shows the competition diagram with the referents at the basis and
the meanings as the competitors, or in short the referent-meaning (RM) diagram.
All plots in this figure show the competition diagrams of robot r0 for each referent
L0, L1, L2 and L3. Each plot shows the relative frequency of the co-occurrence
of the meaning with the referent, where the referent is taken as the basis to which
the frequencies are compared. These relative frequencies are calculated every 200
language games. A co-occurrence of meanings and referents do not imply they
were successfully used. It is obvious in the figure that although each referent has a
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Figure 4.5: Competition diagrams referent-meaning (or RM diagram).

clear winning meaning, each referent has been categorised by different meanings.
Hence there is a one-to-many relation between referent and meaning.

All frequently used meanings are active at feature space F1, see also table
4.4. It appears that mostly, the discrimination is successful using meanings from
this feature space4. Although this is not shown here, meanings from a feature
space with λ > 1 tend not to be used much. Obviously they may just as well be
distinctive, but they are not used in the communication, otherwise they would
move in the feature space. That this is not the case is observed in figure 4.4.
So, at higher feature spaces there are more prototypes, but they are selected
less frequently. This makes their competition for the referent harder and less
successful.

The occurrence frequency of meanings M53, M30, M5 and M61 constitute the
parsimony of the system. It can be inferred that referents L0, L1 and L3 have a
relative high parsimony, whereas L2 has relative low parsimony. The higher the
parsimony the better a referent is categorised by a single category.

4Note that categories from feature space F0 cannot be distinctive unless there is only one
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Figure 4.6: Competition diagrams (a) to (d) meaning-form (MF), and (e) form-

meaning (FM).
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Figures 4.6 (a) - (d) show the meaning-form competition diagrams (MF diagrams)
of the winning meanings in the referent-meaning competitions. Figure (a) shows
the competition of meaning M53. The word-form huma clearly wins the com-
petition right from the beginning. Little competition is given by xomu, poma,
lyzu and kyga. Similar competitions can be seen with meanings M30 and M5
(figures 4.6 (b) and (c)). So, every meaning shows one-to-many relations between
meaning and form . This is highest in for M30 and M61. Such one-to-many re-
lations are fed by mismatches that arise in the communication. The mismatches
cause word-form adoption, so that a meaning can be associated with several
word-forms. The mismatches are mainly due to the rather high level of one-to-
many relations between referent and meaning as shown in the referent-meaning
diagram.

The dynamics on the association scores allow the different other lexical el-
ements a chance to compete. Lateral inhibition of competing associations is a
main ingredient of the self-organising effect that one element wins the competi-
tion. Note again that occurrence in the competition diagram does not equal a
language game’s success.

Meaning M61 (figure 4.6 (d)) shows a different competition than M53, M30
and M5. Initially word-form kyga wins the competition. This word-form is
also the winning competitor for M5, so there is representational polysemy in the
system. After game 1750 or so, word-form lyzu starts to win the competition
for M61 and kyga is then solely used for M5. Thus the lexicon is somewhat
disambiguated. Disambiguation is established by excitation of scores of successful
association and the lateral inhibition of competing associations.

Figure 4.6 (e) shows the opposite competition of form huma with its associated
meanings, i.e. it shows the form-meaning competition for huma. Again there
is a clear winner, namely M53 as would be expected. Furthermore some small
competition is observed from other meanings. Notably is meaning M30, which is
‘the best of the rest’. M30 is winning competitor referring to L1 (see figures 4.5
(b) and 4.6 (b)). In figure 4.6 (b) huma also wins the competition of the meanings
that are not used for L1, compare figure 4.5. The form huma is also used for
naming M5, M30 and M61, although in a lesser extend. So, there is a one-to-many
relation between huma and some meanings, and there is polysemy is present for
huma. Polysemy means that there are one-to-many relations between the form
and referent. Polysemy is one of the causes why the communicative success is
lower than the potential communicative success.

In figure 4.7 some different competition diagrams are shown. Figure (a) shows
the referent-form competition for L0. The synonymy (one-to-many relation be-
tween referent and form) is high, as can be inferred from the low relative fre-
quency of winning word-form huma and the competing elements at the bottom

segment in the context.
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Figure 4.7: Competition diagrams (a) referent-form, (b) form-referent, (c) and (d)

meaning-referent. Meaning M53 (c) uniquely refers to referent L0.
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of the plot. Note that not all competitors are shown in this plot. There are
quite some more, but these have lower frequencies than the ones that are shown.
The synonymy is a result of the relatively low parsimony (i.e. one-to-many re-
lations between referent and meaning) combined with the one-to-many relations
between meaning and form. Naturally, synonymy is an antagonising force against
the communicative success.

Polysemy of the word-form huma is also shown in figure 4.7 (b). At first there
is competition between all referents. After 1,000 language games, the tendency
to use huma for naming L0 wins the competition. Thus influencing the speci-
ficity positively. However, the polysemy antagonises the communicative success.
Polysemy is caused by a combination of one-to-many relations between form and
meaning and one-to-one relations between meaning and referent, cf. figure 4.7
(c).

Distinctiveness is high, as can be seen in the meaning-referent diagram for
M53 (figure 4.7 (c)). The relative frequency in using M53 for referring to L0
goes to 1 where it remains. Some meanings have lower distinctiveness like M61
(figure 4.7 (d)), which after its introduction around language game 1,200 keeps
on competing between L0 and L1. That this competition has little influence in
the global distinctiveness of robot r0 is seen in figure 4.1 (d). This is so because
the occurrence frequency of M67 is relatively low.

4.3.4 The lexicon

One way of inspecting the resulting lexicon is by looking at the competition
diagrams. Another way of presenting the lexicon is by a table. In such tables
word-meaning associations of the two robots are given. Although such tables give
good information about an individual’s lexicon, it provides difficult-to-read and
incomplete information about its structure in the language using society. Similar
tables can display the ontology of the robots in relation to their use for referents.
The tables of the lexicon and ontology are given in appendix D.

Semiotic Landscape

Still another way the lexicon can be presented is by a semiotic landscape as
in figure 4.8. In a semiotic landscape the semiotic relations between referent,
meaning and form are displayed for the two robots. The connections are weighted
by their co-occurrence frequencies, like given in the tables (see appendix D).
Entries with very low frequencies are left out for clarity. When no connections
are drawn, these associations have frequencies lower than 0.01.

The figure clearly shows that winning associations (bold connections) always
make closed couplings, thus constituting the successfully grounded and shared
symbols. The associations also show coherent connections of referent and form
between both robots. This way the sign can be said to be conventionalised. Hence
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LEGEND:

WINNING ASSOCIATION

WINNING ASSOCIATION ON ONE SIDE
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Figure 4.8: The semiotic landscape of one of the experiments.

it becomes a symbol. Another interesting observation that can be made is that
word-forms like huma, kyga and xomu (only for r0) show one-to-many relations
between form and meaning, but they show hardly any polysemy. Ideally a figure
should emerge where for each referent there is a closed graph where no polysemy
or synonymy is shown. In such a graph the referents are orthogonal to each other.

Most word-forms that show one-to-many relations between form and meaning
also show some polysemy and incoherence. A word-form is incoherent when one
robot uses it to name another referent than the other robot. Incoherence can
be seen for the word-forms wosa and vyqa. Such incoherence can be caused by
language games that are evaluated to be successful inappropriately or that the
meanings have no other associations5.

Lexical and Ontological Growth

How does the lexicon and ontology grow through time? Is the growth incremental
as has been observed in studies on language acquisition and as is likely to have
happened in language evolution (Aitchison 1996)? Incremental growth is typically
illustrated with an S-shaped logistics curve as shown in figure 4.9.

Figure 4.10 shows a similar evolution of growth. These figures show the growth
of elements that have been used successfully in the language games averaged over

5Recall that co-occurrence does not imply a successful language game.
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Figure 4.9: The course of knowledge development as observed in psychological and

evolutionary data.
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the ten runs. After a short while the number elements start to grow rapidly
until the growth seems to stabilise a bit. It is shown that the lexicon growth of
successfully used forms ends up with a lower amount of elements than is shown
in the previous section. Some of the elements of the lexicon discussed in the
previous section have not been used successfully.

The number of meanings that are used keep on growing, although slower than
in the beginning. Figure 4.10 (b) actually shows that the 8 word-forms that
have been used successfully are associated with approximately 100 meanings. So,
every word-form is associated with on the average 12.5 meanings. The semiotic
landscape shown in above shows that this need not be a big problem.

4.3.5 More Language Games

The experiment introduced was done with 10 runs of 5,000 language games. Most
experiments that are discussed have 10 runs of 5,000 language games, but what
happens when the experiment is run for a longer time. Figure 4.11 shows the
results when the robots play 10,000 games each run (again for 10 runs). As is clear
the system keeps on improving slightly. The communicative success for instance
increases towards a value of 0.5. Also the specificity is increasing continuously.
So, the communication system seems to keep on learning, but slowly.

It is unknown exactly when the slight growth stops, but the system does seem
to stabilise towards the end. As will be shown in later chapters, some experiments
will stabilise before 10,000 games are played.

4.4 Summary

This chapter introduced the first experimental results in detail. The experiment
that has been presented here in detail will be used as the basic experiment from
which parameters and methods are varied and with which the results of other
experiments shall be compared. The experimental results of the forthcoming ex-
periments will not be presented at the same level of detail. For most experiments
only the global averages will be given. When appropriate, however, the results
will be presented in more detail.

The basic experiment used a data set that has been recorded in advanced
and that is used to process in different runs under different random seeds. The
results have been presented with several measures, notably the communicative
success, discriminative success, distinctiveness, specificity, parsimony and consis-
tency. Although the communicative success is rather low, it is higher than the
a priori communicative success. Furthermore, inspecting the other measures, it
appeared that the robots did learn a reasonable communication system. Com-
petition diagrams showed how the robots evolve to select preferred elements of
their ontology and lexicon to name the referents. The semiotic landscape showed
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Figure 4.11: The evolution of the basic experiment with runs of 10,000 language

games.
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that one-to-many relations between referent and meaning need not be a prob-
lem as long as the polysemy is low. However, the system still carries quite some
polysemy and synonymy.

The next chapters will show if and how a better communication system may
emerge. First the impact from different methods and parameter settings chapter
5. Chapter 6 reports some optimised systems.



Chapter 5

Varying Methods and Parameters

The previous chapter extensively presented the basic experiment. The results
were not very satisfying, although closer investigation revealed not so bad results.
In this chapter, variants of the basic experiment are investigated and compared
with this experiment.

What is the impact on categorisation and lexicon formation when a different
categorisation mechanisms is used? What influence has the physical conditions
on the symbol grounding? What is the impact from applying joint attention
and/or feedback? How do various parameter settings of the word-form creation
probability and learning rate influence the experiments? And, what if the robots
also adopt word-forms when there is a mismatch in referent? These questions
will be addressed in this chapter.

To answer these questions, a set of experiments have been carried out. Each
experiment is done with 10 runs of 5,000 language games, as in the basic experi-
ment. Unless otherwise mentioned, the basic data set is used in these experiments.
Each section of this chapter relates to one of the questions and it presents some of
the experiments. The sections introduce the problem addressed. They describe
the difference(s) of the experiments, usually in relation to the basic experiment.
Then the experimental results are given, which is followed by a short discussion
of these results.

The next section investigates three variants of categorisation in the discrimina-
tion games. In section 5.2, the physical conditions are varied. The four differ-
ent types of language games introduced in chapter 3, the guessing-, ostensive-,
observational- and selfish game, will be investigated in section 5.3. Section 5.4
investigates the observational game in more detail. In section 5.5 the creation
probability is varied. The learning rate is varied in section 5.6. Additional word-
form adoption is investigated in section 5.7. The chapter finishes with a summary.
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5.1 Impact From Categorisation

In the basic experiment the categories are prototypical as introduced in section
3.4.2. When a category is used as a meaning that a robot successfully uses in a
language game, the value of the category shifts towards the feature value of the
relevant sensory channel. What happens if the categories do not shift towards
these feature values?

Categorisation is implemented such a that feature vector is always categorised
with the prototypes that are closest in each feature space. It has been argued
that categorisation is not so clear-cut, but that there may be fuzzy boundaries
between adjacent categories (see e.g. (Aitchison 1987; Lakoff 1987)). Especially
around the boundaries of a category’s sensitivity, the certainty of whether a
feature vector belongs to one category or another becomes smaller. For instance,
something that looks like a cup might be categorised by another person as a vase
or bowl as has been shown by (Labov 1973). Family resemblance (Wittgenstein
1958) is another example of such fuzziness. These are examples at a higher level
of categorisation, but the same may hold at the lower level of categorisation.

These two questions are investigated in this section, together with the binary
subspace method (see section 3.4.2). The results are compared with the basic
experiment.

5.1.1 The Experiments

There are the following experiments (all are variants of the basic experiment, and
thus implement the guessing game):

NS No shifting categories. Once a prototypical category is introduced, its value
does not change through time. Hence the categories are static.

FS Fuzzy sets. Categories may overlap each other at their boundaries. In this
experiment, a feature is categorised with those categories that are closer
than a certain minimal distance, and if no such category exists, the feature
is categorised with the category that is closest to the feature value.

More formally, a category ck can be defined by region in a feature space
Fλ. The category ck can be described as ck = 〈ck, dk, νk, ρk, κk〉, where
ck = (x0, . . . , xn−1 is a prototype in the n dimensional feature space Fλ,
dk = 1

2
· 3−λ is a distance based on the feature space in which the prototype

is stored and νk, ρkandκk are scores as described in chapter 3. The distance
dk is based on an equal subdivision of the number of exploitations that are
done in the feature space Fλ.

A feature vector is f is categorised with ck if its distance to ck is shortest,
or if in each dimension i the distance between fi and xk,i is smaller than
dk, i.e. |fi − xi| < dk.
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B NS FS BIN
CS 0.351±0.010 0.349±0.017 0.357±0.024 0.264±0.041
DS0 0.916±0.004 0.933±0.007 0.875±0.014 0.893±0.005
DS1 0.920±0.004 0.935±0.006 0.894±0.013 0.895±0.003
D0 0.956±0.002 0.959±0.000 0.956±0.001 0.922±0.005
D1 0.955±0.002 0.959±0.000 0.956±0.001 0.933±0.003
P0 0.852±0.004 0.841±0.005 0.875±0.003 0.856±0.004
P1 0.851±0.002 0.835±0.006 0.875±0.002 0.858±0.007
S0 0.822±0.017 0.813±0.022 0.843±0.022 0.841±0.045
S1 0.817±0.011 0.810±0.015 0.846±0.024 0.852±0.040
C0 0.816±0.008 0.793±0.007 0.835±0.011 0.791±0.016
C1 0.811±0.007 0.793±0.007 0.832±0.008 0.789±0.023

Table 5.1: The results of the experiments on categorisations. The columns give the

averaged results with their standard deviation of the basic experiment (B) compared

with experiments NS, FS and BIN.

Note that in this way a feature vector may be categorised with more than
one category in each feature space. If the vector is closest to the prototype
of one category, but if it falls inside the region of another category as defined
by dk, it is categorised in two or more ways. It is also important to realise
that, like in the prototype method, whenever there exists a prototype in
some feature space Fλ, a feature vector can be categorised in this space.

So, instead of one possible categorisation in each feature space, a feature
vector may have several. This increases the chance that a referent is cat-
egorised more parsimoniously and thus increasing the communicative suc-
cess. Note that the discrimination game is unaltered.

BIN Binary subspace method. See section 3.4.2.

5.1.2 The Results

The results compared with the basic experiment are given in figure 5.1 and table
5.1. These results give the global averaged results of the communicative success,
discriminative success, distinctiveness, parsimony, specificity and consistency.

NS Experiment NS shows that there are hardly any significant differences com-
pared to the basic experiment. The discriminative success is about 1.5 %
higher with a significance of p = 0.0052. The parsimony and consistency
appears to be lower with a p-value of resp. p = 0.0432 and p = 0.0354. All
other differences have no significance at all. So, although one might expect
larger differences they have not been observed. If there is a function for
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Figure 5.1: The average scores of the experiments discussed in this chapter: static

categories (NS), fuzzy sets (FS) and binary subspaces (BIN) compared with the basic

experiment (B).
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shifting the categories it will be for increasing parsimony and consistency,
but this has not been observed with much certainty.

FS The results of the FS experiments show that although there are more possible
meanings, the discriminative success is lower than in the basic experiment
(p = 0.0000). The communicative success shows an insignificance difference
(p = 0.1230). However, one run showed an exceptional small communicative
success, namely 0.23. When throwing away this run (which is statistically
valid) the average communicative success becomes 0.371 ± 0.025 which is
different with a p-value of p = 0.0504. So, although this looks better, it is
hard to say whether the communicative success of this experiment is better.

The distinctiveness is equal to the basic experiment. The specificity seems
to be higher than in the basic experiment and the consistency seems to be
lower, but these differences are insignificant (p = 0.2176 and p = 0.1230
resp.). The parsimony however is slightly higher (0.02) with a significance
of p = 0.0008.

So, although the discriminative success is lower than in the basic experi-
ment, the fuzzy set approach does not appear to influence the quality of
the communication system that emerges.

BIN When examining the BIN experiment, a first thing that strikes is the lower
discriminative success (p = 0.0004). This lower discriminative success is
because it increases slower (figure 5.2 (b)). It finally increases to the same
level as in the basic experiment (see figure 4.1 at page 107).

The communicative success stays well behind the communicative success
of the basic experiment (p = 0.0016). It is not directly clear why the
communicative success is about 8.5 % lower. The communicative success
appears to stop learning after 1,000 language games, although it seems to
increase slowly again after 4,000 games (figure 5.2 (a)). The consistency is
about 0.025 lower than in the basic experiment (p = 0.0354), but parsimony
is ±0.005 higher (p = 0.0524). Because the p-values are relatively high, it
is difficult to assign meaning to these differences.

Most significant difference is the distinctiveness, which is ±0.03 lower with
a significance of p = 0.0002. In contrast to previous plots that have been
shown the distinctiveness does not grow towards a value of 1, but it stabilises
around 0.97 (figure 5.2 (c)). So, it seems that the meanings less reliably refer
to the corresponding referents, thus indicating more one-to-many relations
between a meaning and the referents. Specificity is higher than in the basic
experiment indicating that polysemy is less. This observation, however, has
a low significance: p = 0.1904. Hence lower distinctiveness might explain a
lower communicative success, since a word-meaning no longer refers to one
referent, which it does when D = 1.
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Figure 5.2: The evolution of the some measures for the binary subspace method.

5.1.3 Discussion

When the prototypes do not shift towards the central tendency as is the case
in experiment NS, the communication system that is developed is qualitatively
about the same. So, in the current set up, the dynamics of categories does not
add any other functionality than possibly a more realistic model.

There is psychological and linguistic evidence that categories overlap making
way for a fuzzy approach to categorisation. An experiment has been done where
categories can overlap near their edges (or even near their centre when they are
very close to each other). The discriminative success is significantly worse than
in the basic experiment and the communicative success improves slightly but this
is not very significant. It was predicted that parsimony and consistency would
improve since the robots get a better chance to choose meanings or word-forms
more consistently. This however, has only been observed for the parsimony; the
difference in consistency was insignificant.

The binary subspace method is performing worse than the basic set-up, which
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is a bit surprising. The communicative success is lower than chance and the
discriminative success is lower than originally. The latter observation has much
to do with a slow start. In the prototype method if an agent has constructed
a category at a particular feature space, the agent can categorise every segment
at this layer and sensory channel. This is because a feature is categorised with
the category that is closest to the feature value. In the binary subspace method,
this is not the case because each category has a fixed size and a feature space Fλ

needs not to be covered completely with categories. Since a feature value must
be within the sensitivity of an existing category, a segment may not always be
categorised. At a later stage, the feature spaces are covered to a higher degree,
so the discriminative success increases towards the end.

The system’s distinctiveness is significantly different, but for the other mea-
sures parsimony, specificity and consistency the differences are much less signifi-
cant or maybe not at all. So, in the binary subspace method more one-to-many
relations between referent and meaning emerge than in the prototype method.

5.2 Impact From Physical Conditions and In-

teractions

In the basic experiment, the robots decided to stop after two rotations based
on finding a maximum intensity of infrared on the left back infrared sensor.
Another method described is letting the robots align each other using infrared
taxis (section 2.3). Besides longer experimental time (due to more error-prone
physical behaviour) the taxis has no influence on the grounding process, since
the taxis is applied after the sensing. Two experiments are done where taxis is
used to align the robots. In the first experiment it was observed that the gearing
of the robots were worn off. In the second experiment the gearing were replaced
by new ones. These experiments show how co-ordination abilities and physical
fitness may influence the quality of interactions.

In (Steels and Vogt 1997) the robots did not rotate twice aligning back-to-back
while doing the sensing, but only once aligning face-to-face. This experiment has
been repeated to see what the differences are.

The adaptation of an agent to its environment and the agent’s ability to
detect the environment with enough precision is likely to be very important. In
one experiment the environment and robots are changed such that the resolution
of the robots’ sensing decreases.

In all the experiments so far there were constantly 4 light sources present in
the robots’ environment. What happens when in each situation there are only
3 light sources present, while the robots’ niche has 4 light sources? The last
experiment of this section investigates this.
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5.2.1 The Experiments

The experiments of this section all investigate the impact from physical inter-
actions and -conditions on the robots’ ability to ground a lexicon. Again all
the experiments are variants of the basic experiment and hence implement the
guessing game. The following experiments are defined:

WOG Worn-off gearing. In this experiment the gearing of the robots were com-
pletely worn-off. As a result the robots had difficulties in rotating during
the sensing task. Taxis is applied to re-align the robots after sensing.

NG New Gearing. The robots in this experiment are equipped with brand new
gearing. Like in WOG, taxis is applied to re-align the robots.

A Acceleration. In the original implementation the robots rotate only once start-
ing face-to-face (Steels and Vogt 1997) rather than rotating twice and start-
ing back-to-back. When the robots rotate once they immediately start the
sensing and first have to accelerate, thus the spatial view initially is some-
what warped. When rotating twice they start sensing when the rotating
robot faces its opponent. This way the robot is already moving at a con-
stant speed, whereas in the original implementation the robots first have to
accelerate.

RD Reducing distinctiveness. In this experiment the difference in heights were
reduced to 1.9 cm instead of 3.9cm. This way the environment is reduced.
Figure 5.3 shows the characteristics of the sensors as measured for different
distances when facing a light source. It is obvious that the further a robot
gets away from the light source, the closer the different sensor readings are.
Furthermore, it should be clear that when the distance between robot and
light source is larger, correspondence between sensor and light source is
unreliable. Hence, the feedback mechanism is unreliable. Interesting to see
is that when the robot is close to the light source the non-corresponding
sensors hardly sense light, but up to 40 cm the intensities increase. This is
because at close distance the light source is invisible for these sensors and at
larger distance the divergent light emission falls on the sensors. Naturally
it is expected that the robots have more difficulty in discriminating and
identifying the light sources.

DE Dynamic environment. In this experiment there were only three light sources
present in every recorded situation. The height of the light sources were the
same as in the basic experiment. After every few games, one of the light
sources was removed and the one that was already out of the environment
has been placed back. Whereas in the other experiments all light sources
stayed roughly at the same place, the position of the light sources changed
in this experiment as well. This way a dynamic environment was created.
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Figure 5.3: The characteristics of sensors s0, s1, s2 and s3 of robot r0 while looking

at light sources (a) L0, (b) L1, (c) L2 and (d) L3. The light sources are placed at

heights with a difference of 1.9 cm in between. Note that the characteristics of L3 may

be inaccurate since the characteristics is quite different from all other characteristics.

5.2.2 The Results

For all the experiments, different sensory data had to be recorded. Investigating
the sensory data revealed the statistics given in table 5.2.

Looking at this table, one can already see some interesting results. The WOG
experiment reveals highest potential understandability. It also has a context size
closer to 4 than in the other experiments. Apparently, the robots detect the four
referents better when they rotate slower.

The NG experiment reveals data similar to the basic experiment. This is not
surprising, since the only methodological difference with the basic experiment is
taxis, which should not influence the grounding. Moreover, the basic experiment
is recorded immediately after this experiment, so the physical condition of the
gearing were similar.

Experiment A has lower understandability. Apparently the warping during
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Exp #Sit 〈|Cxt|〉r0 〈|Cxt|〉r1 APS (%) Ur0 (%) Ur1 (%)
B 1017 3.33 3.54 29.1 81.1 78.0

WOG 606 3.64 3.83 26.8 89.7 82.4
NG 934 3.28 3.49 29.6 80.9 77.9
A 1360 3.55 3.35 29.0 72.2 76.4

RD 953 3.53 3.48 28.5 63.9 67.9
DE 980 2.86 2.90 34.7 75.7 73.8

Table 5.2: The statistics of the sensory data of the experiments investigating the

physical interactions and conditions. The columns display the experiments (Exp), the

number of situations recorded (#Sit), the context size of robots r0 and r1 (〈|Cxt|〉r),

the a priori success (APS) and the potential understandability of the two robots (Ur).

The basic experiment (B) is added for comparison.

acceleration has some influence.
RD has most influence on the data. Although the context size is similar (and

thus the a priori success), the potential understandability is much lower. It seems
there is more confusion.

Making the environment dynamic (DE) has a logical consequence that the
context size is almost 3, making the a priori success ±35%. The understandability
is lower than in the basic experiment.

So, how does the ontology and lexicon evolve in these experiments? The results
are shown in figure 5.4 and table 5.3.

WOG The WOG experiment is in most ways similar to the basic experiment.
Only the discrimination game is more successful (approximately 2 %, p =
0.0004). Specificity is higher and consistency is lower, but their significance
is low (p = 0.1704 and p = 0.2798 resp.).

So, although the gearing of the robots were really at their ends, the com-
munication system that emerges is not worse than the basic experiment.
Question is if this result is biased by the fact that this data set only con-
sists of 606 situations rather than 1,000. Table 5.4 presents the results of
the basic experiment using 606 situations taken from the basic data set
used. The table shows that using only 606 situations does not alter the
results of the basic experiment very much, so the smaller data set does not
really bias the experiment.

NG When the robots have new gearing, the communicative success is 2.8 %
better than the basic experiment. However, its significance is low (p =
0.1230). It is also better than the taxis experiment with old gearing with
a significance of p = 0.0752. The discriminative success is more or less
equal compared with the basic experiment and is ±2.5 % lower for the old
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Figure 5.4: An overview of the results of the experiments presented in this section.

Experiments WOG, NG, A, RD and DE are compared with the basic experiment (B).
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B WOG NG
CS 0.351±0.01 0.350±0.00 0.379±0.013
DS0 0.916±0.00 0.945±0.00 0.918±0.003
DS1 0.920±0.00 0.944±0.00 0.917±0.003
D0 0.956±0.00 0.956±0.00 0.959±0.000
D1 0.955±0.00 0.960±0.00 0.960±0.001
P0 0.852±0.00 0.852±0.00 0.864±0.001
P1 0.851±0.00 0.880±0.00 0.858±0.002
S0 0.822±0.01 0.849±0.00 0.837±0.014
S1 0.817±0.01 0.869±0.01 0.824±0.018
C0 0.816±0.00 0.802±0.00 0.803±0.006
C1 0.811±0.00 0.828±0.00 0.794±0.004

A RD DE
CS 0.331±0.00 0.281±0.00 0.372±0.018
DS0 0.883±0.00 0.913±0.00 0.927±0.005
DS1 0.891±0.00 0.917±0.00 0.932±0.003
D0 0.957±0.01 0.954±0.00 0.959±0.000
D1 0.956±0.01 0.955±0.00 0.958±0.000
P0 0.861±0.01 0.823±0.00 0.858±0.003
P1 0.855±0.00 0.822±0.00 0.847±0.001
S0 0.826±0.00 0.829±0.01 0.807±0.009
S1 0.823±0.00 0.840±0.01 0.812±0.007
C0 0.818±0.00 0.778±0.00 0.814±0.008
C1 0.809±0.00 0.778±0.00 0.812±0.008

Table 5.3: The global averaged results of the experiments concerning physical con-

ditions and interactions.
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Score Avg
CS 0.354±0.016
DS0 0.794±0.009
DS1 0.816±0.008
D0 0.959±0.000
D1 0.960±0.001
P0 0.869±0.004
P1 0.877±0.002
S0 0.849±0.019
S1 0.853±0.007
C0 0.820±0.014
C1 0.831±0.014

Table 5.4: The results of the basic experiments using only 606 situations from the

basic data set.

gearing (p = 0.0008). There are no significant differences when comparing
the distinctiveness, parsimony, specificity and consistency with experiments
B and WOG. So, using new gearing does not influence the ability for the
robots to construct ground a language very much.

A The acceleration experiment seems to have little effect on the results. The
discriminative success is about 3 % lower, which is significant (p = 0.0000).
Also the communicative success is lower: 2 %, but with p = 0.0770. All
other differences are insignificant. So, the onset of acceleration cannot be
observed as an important difference.

RD Reducing the environmental distinctiveness has great impact on the lexicon
grounding. The communicative success is around the a priori value; its
significance in comparison to the basic experiment is p = 0.0000. The
discriminative success is similar to the basic experiment.

The distinctiveness seems approximately the same as in the basic experi-
ment, but its p-value is p = 0.0114, which is not very high. So, it seems
likely that the two experiments yield different distinctiveness, but its dif-
ference is not large (≤ 0.002). Since the difference is so small, no further
implications will be made.

Besides the specificity which does not show a significant difference, the par-
simony and consistency (p = 0.0068 and p = 0.0028 resp.) are significantly
different and lower than in the basic experiment. Obviously this has to with
the large overlap in the sensory characteristics. Recall that these results
are difficult to interpret, since the method for evaluating the feedback and
thus the communicative success is unreliable due to the new characteristics
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of the sensors.

DE When changing the environment dynamically, the communicative success
is about 2.5 % higher than the a priori value. It is about 2 % higher
than in the basic experiment, but this is not very significant (p = 0.0892).
Distinctiveness, specificity, parsimony and consistency show no significant
difference with the basic experiment. Discriminative success looks higher
than in the basic experiment, but its significance is low: p = 0.0630.

5.2.3 Discussion

Clearly the quality of the physical behaviour influence the lexicon grounding.
This is best illustrated by the fact that the potential understandability in most
experiments is only around 80 %. However, it is difficult to investigate the impact
structurally when the physical behaviour of the robots are difficult to control.
This is because the robots physically behave reactively.

For example experiments WOG and NG are qualitatively more or less sim-
ilar to the basic experiment. Differences in discrimination success in the taxis
experiment with old gearing may lie in the fact that this was the first experiment
after the sensors have been calibrated. It is not unlikely that the accuracy of the
sensors become less reliable through time.

The experiment where the robots rotate only once (A) and where there are
only three referents present (DE) are also qualitatively similar as the basic experi-
ment. So, the slow onset of movement has little impact on the robots performance
in these experiments. Furthermore, the robots seem to be well capable of dealing
with a dynamic environment. Although the a prior success is higher, the robots
appear to perform as if there are four referents. All these experiments show that
the data recording can be repeated without influencing the experiments very
much.

When the environment is changed such that it is less distinctive the performance
is significantly worse than the basic experiment. Surprisingly this does not hold
for the discrimination success. It seems to have more impact on the ability to
provide reliable feedback. However, the results might indicate the importance of
agents’ physical adaptation to their environment as a basis for language origins.

Physical interactions are also a part of how joint attention and feedback can be
provided to the agents. However, these processes additionally require cognitive
capabilities. Experiments investigating the influence of these interaction strate-
gies are presented in the next section.
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5.3 Different Language Games

This section investigates the impact from joint attention and feedback on the lex-
icon formation. The non-linguistic information used by human language learners
is very much debated in the literature, see e.g. (Bowerman 1988; Barrett 1995).
The experiments presented here will show that the availability of joint attention
and feedback has much influence on the grounding process. The games investi-
gated are the guessing-, ostensive-, observational- and selfish game.

5.3.1 The Experiments

The four different language games have been introduced in section 3.4.3. The
properties of the four different language games are summarised in table 5.5.

Exp Game Joint attention Feedback
ii ostensive Yes Yes
xi guessing No Yes
ix observational Yes No
xx selfish No No

Table 5.5: A schematic overview of the experiments discussed in this section. The

table gives the properties of the different language games.

Note that the guessing game (experiment xi) is the basic experiment. All exper-
iments use the basic data set as sensory data. I.e. the same sensory data that
has been used in the basic experiment and most other experiments.

5.3.2 The Results

In the experiments where no feedback is used, the communicative success is dif-
ferent than the actual success. Therefore the results (figure 5.5 and table 5.6)
employ the actual success for the first time. From the actual success, it becomes
clear that the selfish game xx does not work. Although the other measures have
similar values as the guessing, the actual success is 5 % lower than the a priori
success and about 11 % lower than the basic experiment (p = 0.0000).

The ostensive game and the observational game appear to be much better
than the guessing game. This increase in the performance is measured by the
actual success1, which is almost 30 % (!) better (p = 0.0000). However, the
specificity is much lower: 0.18 for experiment ii and 0.14 in ix (p = 0.0000).

1The communicative success of the observational game is much higher because this is mea-
sured when both robots ‘think’ they are successful. This happens when both robots identified
a form-meaning association consistent with their categorisation. It is independent of whether
both robots referred to the same referent.
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Figure 5.5: The results of experimenting with the different types of language games.

Note that the first plot (a) shows the actual success, while the communicative success

is plotted in the last figure (f).

This low specificity indicates that the lexicon is not stable and it must bear much
polysemy.

The difference in consistency of the observational game is insignificant (p > 1).
The consistency of ii is hardly different than the basic experiment. Note that
the standard deviations of experiment ix is about 0.1 for both the specificity
as the consistency. The results of the experiments vary a lot from run to run.
The worst run has a consistency of 0.401, whereas the best one has 0.856. The
basic experiment had all its values in between and a standard deviation of 0.007.
Similar findings are also valid for ii that has standard deviation of about 0.05 for
the specificity and 0.03 for consistency.

The discriminative success of ix and ii is slightly higher than the basic exper-
iment (p = 0.0000), but this has to do with the higher communicative success,
which influence the discriminative success. The differences of D and P are both
small and insignificant.

5.3.3 Discussion

When looking at the results, some important observations can be made. A lan-
guage game needs some extra-linguistic information. As expected, no effective
lexicon gets off the ground in the selfish game.

It seems that in the guessing game, a more informative lexicon emerges. It
is more informative because the specificity and consistency are higher than in
the ostensive- and observational games. More information seems to have a cost
in these experiments, namely a lower actual success. The actual success of the
games that incorporate joint attention, on the other hand, is high. This also has
a cost, namely a lower specificity.
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xx xi ii ix

CS 0.818±0.006 0.351±0.010 0.671±0.004 0.847±0.003
AS 0.241±0.008 0.351±0.010 0.671±0.004 0.667±0.003
DS0 0.912±0.004 0.916±0.004 0.935±0.002 0.937±0.001
DS1 0.915±0.005 0.920±0.004 0.936±0.002 0.941±0.004
D0 0.959±0.000 0.956±0.002 0.959±0.000 0.960±0.000
D1 0.958±0.000 0.955±0.002 0.960±0.000 0.960±0.001
P0 0.866±0.002 0.852±0.004 0.856±0.001 0.858±0.002
P1 0.860±0.003 0.851±0.002 0.851±0.002 0.851±0.000
S0 0.808±0.031 0.822±0.017 0.647±0.046 0.684±0.144
S1 0.810±0.031 0.817±0.011 0.647±0.045 0.688±0.132
C0 0.814±0.005 0.816±0.008 0.823±0.037 0.772±0.117
C1 0.812±0.005 0.811±0.007 0.821±0.026 0.787±0.099

Table 5.6: The experimental results of the selfish game (xx), the guessing game (xi),

the ostensive game (ii) and the observational game (ix).

0.8
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M1

R1 R2

M2

F2

0.70.5

Figure 5.6: The semiotic landscape of one agent in the example that is described in

the text.

To understand why the experiments that use joint attention have higher actual
success and lower specificity (and to some extend consistency), it is instructive
to look at an example: Suppose a robot has a (part of a) lexicon as in figure 5.6.
If the robot is a speaker and R1 is the topic, it would select F2 as the utterance
independent of the type of game2. If R2 is the topic, it would also select F2.
Remember that the robots select the associations that have highest scores.

Suppose that this robot is a hearer, and it hears F2. If the robot plays a
guessing game, it would select M1 and consequently R1 will be its topic. If
however, the speaker intended to name R2, the game is a failure; there is a
mismatch in referent. The score σM1F2 between M1 and F2 is decreased.

But now suppose that the robot plays observational- or ostensive games. If
the speaker’s topic is R2, the hearer will also have R2 as its topic, conform

2Remember that the guessing game is compared with both the ostensive and observational
game, since what is important is the joint attention.
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the joint attention principle. If the hearer now hears F2, it will select M2 as its
meaning (since this categorises the only potential topic) and the language game is
a success. Not only communicative, but also actual. Now the scores are adapted
as follows: σM2F2 is increased and σM1F2 is decreased.

If such games will continue for a while, there will ideally emerge a preference
where R2 is named with F2 and R1 with F1. But if, at some point before this
happens, the robot is again the speaker and it chooses to name R1. It will still
choose F2 to name M1. If a guessing game is played, there is a reasonable chance
that the game ends in failure. The hearer (i.e. the other robot not shown in the
figure) will have a similar but not equal competition of association scores and
it might already be at the point where F2 will preferably be interpreted with
meanings categorising R2. So, the speaker will decrease σM1F2. When, on the
other hand, an observational game is played, and the robot names R1 with F2, it
is very likely that the game will end in success. This is because the hearer knows
what the topic is. So, if it as an association where F2 relates to some meaning
M which categorises R1, the game is a success. As a consequence the association
score σM2F2 of the speaker increases again, whereas competing association scores
decrease. The attempt to disambiguate F2 in favour of R2 has to start again.

This way the observational game allows more polysemy, yielding lower speci-
ficity. The same argument holds for the ostensive game. Since the robots easily
establish actual success this way, the actual success is relatively high. So, it seems
that establishing joint attention decreases the pressure to exploit the complete
space of possibilities during selection. This is not surprising since joint attention
makes linguistic communication redundant.

5.4 The Observational Game

In the previous section, an experiment with the observational game has been
presented. It has been observed and explained that the specificity is low. So, the
lexicon is unstable and allows much referential polysemy and some synonymy.
But since the actual success is high, it is interesting to see whether it is possible
to achieve good results for specificity and consistency as well.

While looking for working implementations it also has been found that lateral
inhibition is a crucial source of lexicon development. This is conform findings of
(Oliphant 1997; Steels 1999; De Jong 2000; Kaplan 2000). To investigate this a
variant of the observational game of the previous section is presented in which
lateral inhibition is absent.

5.4.1 The Experiments

The experiments are compared with the observational game.
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ix ixp ixli

CS 0.847±0.003 0.827±0.005 0.830±0.001
AS 0.667±0.003 0.657±0.005 0.651±0.002
DS0 0.937±0.001 0.960±0.001 0.937±0.003
DS1 0.941±0.004 0.963±0.001 0.936±0.003
D0 0.960±0.000 0.960±0.000 0.960±0.001
D1 0.960±0.001 0.961±0.001 0.961±0.000
P0 0.858±0.002 0.853±0.001 0.830±0.001
P1 0.851±0.000 0.848±0.001 0.827±0.000
S0 0.684±0.144 0.927±0.002 0.617±0.094
S1 0.688±0.132 0.927±0.002 0.622±0.095
C0 0.772±0.117 0.838±0.003 0.709±0.114
C1 0.787±0.099 0.839±0.003 0.707±0.112

Table 5.7: The results of the variants of the observational game.

ixp Creation probability. In all experiments up to now, the word-form creation
probability has been Ps = 0.02. In this experiment Ps = 0.4. This way the
speaker is less modest in inventing new word-forms when it cannot produce
an utterance.

ixli Lateral inhibition. In this experiment lateral inhibition of the association
scores is not used. So, when an observational game is considered successful
by the robots. This happens when either robot performed a communication
act, and hence it need not be actually successful. In that case, only the
’winning’ association score is increased. All other scores are unaltered. For
the rest this experiment is equal to experiment ix.

5.4.2 The Results

The results are presented in table 5.7 and figure 5.7, where experiments ixp and
ixli are compared with the observational game (ix) presented in the previous
section.

For experiment ixp the communicative success and actual success are more
or less similar as in the experiment of the previous section, and so are the dis-
tinctiveness and parsimony. The difference in consistency is not very significant
(p = 0.1432). The discriminative success is about 2.5 % higher when Ps = 0.4
(p = 0.0000). This however, is an artefact of the method for calculating the
discriminative success. Because the speaker invents forms more often, the hearer
plays discrimination games more often. Recall that the hearer only categorises
when it receives an utterance. Since the discriminative success is a function
of language games rather than of the discrimination games, the discriminative
success is higher.
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Figure 5.7: The results of experimenting with different observational games.
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Figure 5.8: The form-referent competitions of experiments ix (preceding section)

and ixp for some form.

More important for experiment ixp is the increase of specificity by 0.24 (p =
0.0000). Apparently the system reduces polysemy when Ps is higher. This is
nicely shown by the form-referent competition diagrams of the two experiments
(figure 5.8). These diagrams show the competition for a word-form that is used
very frequently in both experiments. The two diagrams clearly show the difference
between experiment ix and ixp. The word-form of experiment ix is used for
all four referents almost equally often. The word-form displayed for ixp clearly
evolves to name L0 pretty stable and specific.

The experiment where lateral inhibition is absent, also most measures are similar
to ix from the previous section. However, both specificity and coherence is lower
than in experiment ix. Hence when there is no lateral inhibition, more polysemy
and synonymy emerges in the system.
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5.4.3 Discussion

When the creation probability is higher, specificity is also higher. This can be
explained as follows: When Ps is low, and the speaker cannot name some meaning,
the probability is high that it will not invent a new word-form. This leaves the
meaning unassociated, which increases the likelihood that the meaning will be
associated with an already existing word-form. This may happen in a later game
by means of word-form adoption when the robot is hearer. This way the word-
form increases its amount of one-to-many mappings and apparently its polysemy
as well. When the Ps is higher, this effect is less. Thus increasing the specificity.

It is interesting to note that the high average actual success is likely to be
mainly caused by the joint attention mechanism and the easiness of establish-
ing communicative success when joint attention is used. Note that, like in the
ostensive game, joint attention makes the linguistic communication redundant.
The ostensive game does not differ very much from the observational game. The
feedback that it provides is more or less the same information that is provided
by the joint attention mechanism.

Recall that the potential understandability is approximately 79 %. When
multiplying this value with the average communicative success of approximately
83 %, this yields 66 % which corresponds nicely to the average actual success.
So, it appears that the difference between communicative success and actual
success is caused by the inability of the robots to construct a coherent context as
explained in chapter 3. This indicates that there are still other mechanisms that
are responsible for the imperfect communication.

The observational game is inspired by the experiments done by Mike Oliphant
(Oliphant 1997; Oliphant 1998; Oliphant 2000), although they are not exactly
the same. A big first difference is inherent on the use of robots.

Oliphant’s agents have access to both the signal and the meaning of it during
a language game, which he calls observation. The learning mechanism tries to
converge an ideal communication system based on the word-meaning associations.
This is also done in our experiments. However, the robots have, in principle, no
access to the meaning of a signal other than to its referent. Another difference
is in the learning algorithm (or the update of the scores). Where Oliphant uses
a.o. Hebbian- and Bayesian learning, a different update rule is used here.

It is clear that the robots can ground a reasonable communication system
with a reasonable success without the availability of feedback. This, however
only works when joint attention is established and the word-form creation rate
is sufficiently high. This confirms the work of Mike Oliphant (1997) and Edwin
De Jong (2000). De Jong also showed in simulations that the naming game needs
no feedback on the effect of a game. Like Oliphant (1997), Luc Steels (1999)
and Frédéric Kaplan (2000) De Jong argues that lateral inhibition is an essen-
tial ingredient for the success. The experiment without lateral inhibition again
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confirmed this finding. Without lateral inhibition all competing associations can
be strengthened in successful games. So, the competition between form-meaning
associations is less effective. It is left as an exercise for the reader to invent an
example.

5.5 Word-form Creation

As has been observed in the previous section, the word-form creation probability
Ps may have an enormous impact on the lexicon formation. In the basic experi-
ment Ps = 0.02, which is a setting based upon earlier experiments (Vogt 1998a).
In this section, the influence if the word-form creation probability is investigated
more structurally.

5.5.1 The Experiments

The creation probability is varied over 11 experiments.

Ps Ps is varied from 0.0 to 1.0 with intermediate steps of 0.1. The experiments
further implement the guessing game and is therefore a variant of the basic
experiment.

5.5.2 The Results

The results are shown in figure 5.9. It is trivial that the communicative suc-
cess, specificity, distinctiveness, consistency and parsimony are 0 when Ps = 0.
When no word-forms are created no communication can take place. All men-
tioned measures are only calculated when linguistic communication took place.
The discriminative success is approximately 50 % because only the speaker now
performs a discrimination game and the discriminative success is calculated as an
average discriminative success per language game. Since the robots can in prin-
ciple discriminate almost perfectly (see figure 4.2, page 108), the discriminative
success is almost 50 %.

Figure 5.9 shows that there is hardly any difference in the experiments when
Ps is varied between 0.1 and 1. The discriminative success and specificity are
slightly increasing, as it appears monotonically. The communicative success also
seems to be increasing, but it also shows some local minima and maxima. It seems
that when Ps = 0.9, the communicative success is highest, but when Ps = 0.4,
the communicative success is second best. There does not seem to be a relation.
distinctiveness, consistency and parsimony seem to be indifferent for the variation
of Ps.

When 0.1 ≤ Ps ≤ 1.0, then the system outperforms the basic experiment.
Although distinctiveness, parsimony and consistency are more or less the same
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Figure 5.9: The results of a series experiments where creation probability Ps is varied

from 0 to 1 with steps of 0.1.
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Figure 5.10: The lexicon growth for different values of the creation probability Ps,

which is varied from 0 to 1 with steps of 0.1.

as in the basic experiment; the communicative success is about 5 - 9 % higher,
discriminative success is 4 % higher and specificity is approximately 0.09 higher.
All these differences are significant (p = 0.0000).

It is interesting now to see how the number of words grow in the communica-
tion system. Figure 5.10 shows the growth of the number of word-forms that are
used successfully in the experiments. It is clear that the number of word-forms
grows faster when the creation probability increases. Recall that the number of
word-forms in the basic experiment grew to only 8 word-forms. When Ps = 0.1
this already increases to 25 word-forms, and when Ps = 1.0 there emerge more
than 80 word-forms. As a comparison, the basic experiment finished with 12
word-forms. Remember that there are only 4 referents in the robots’ environ-
ment!

5.5.3 Discussion

The small differences between the results when Ps = 00.1 and Ps = 1.0 has also
been observed in simulations on the naming game (Kaplan 2000).

From figure 5.10 it can be inferred that the rate of synonymy thus increases
very much, although this is not obvious from the consistency3. However, the

3Recall that consistency is weighted over the frequency of occurrences of referent-word-form
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robots do significantly better in learning to commentate than when Ps = 0.02
as in the basic experiment. This may be a side effect of the fact the agents
optimise their lexicons for word-meaning associations rather than word-referent
associations. When there are more word-forms, there is less need for many-to-
many relations at the form-meaning level. But due to the fact that there is a
high level of one-to-many relations between referent and meaning, synonymy is
also relatively high.

As also observed in the previous section, the specificity is higher when Ps

is higher. This is not surprising, since there are more word-forms to name the
different meanings, thus decreasing the level of one-to-many relations between
form and meaning. And since the different meanings are distinctive to a high
degree, these word-forms refer to a unique referent more and more. A higher
creation probability also yields a higher communicative success. The cost however
of a higher creation probability is that there are more word-forms to name the
same number of referents.

5.6 Varying the learning rate

The adaptation scores are adapted using a walking average. These scores are
adapted for the category scores ν, the effectiveness scores ρ and the association
scores σ (chapter 3). The formula by which the scores s are adapted is repeated
here for clarity:

s = η · s′ + (1 − η) · X (5.1)

where η is the learning rate and X is the success factor. The type of score is
dependent on the game being played and so is X. This equation is used to update
category-, effectiveness- and association scores.

In the basic experiment, the learning rate has been set to η = 0.99. This score
has been chosen to be this value based upon early experiments, which was before
the current implementation has been finished. What would happen if η is varied.

5.6.1 The Experiments

The experiments implement the guessing game.

η Learning rate. The learning rate is varied from 0.0 to 1.0 with steps of 0.1.

5.6.2 The Results

Figure 5.11 shows the results of these experiments. The experiments where η = 0
and η = 1 perform very poor, poorer than in the basic experiment (p = 0.0000

pairs.



150 Varying Methods and Parameters

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
S

Experiment

(a) CS

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D
S

Experiment

(b) DS

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S

Experiment

(c) S

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

D

Experiment

(d) D

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C

Experiment

(e) C

0

0.2

0.4

0.6

0.8

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P

Experiment

(f) P

Figure 5.11: The results of a series of experiments where the learning rate η has

been varied from 0 to 1 with intervals of 0.1.
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Figure 5.12: The evolution of the communicative success when (a) η = 0 and (b)

η = 1. It is clear that the communication system is not learned.

in both cases). If η = 0, the scores are completely dependent from the previous
language game where the element is used. When η = 1 the scores are not updated
at all. Obviously, taking only the last game into account, the robots cannot learn
the communication system properly. Neither can it be learned when the scores
are not updated. The communicative success when η = 1 is about 5 % lower
than when η = 0 (p = 0.0000). So, taking only the last game into account is
better than doing nothing. Figure 5.12 shows that these communication systems
no longer learn after game 500. That some games are successful is caused by the
fact that form-meaning associations do get formed as normal and the rest is more
or less coincidence.

When η = 0.1, the communicative success is higher than in the basic exper-
iment (p = 0.0000), but it is lower than when 0.2 ≤ η ≤ 0.9 (p = 0.0000 when
compared to η = 0.2). Furthermore, in this experiment the discriminative suc-
cess and specificity are lower than when 0.2 ≤ η ≤ 0.9 (again p = 0.0000 when
compared to η = 0.2). Figure 5.13 shows however, that the communication is
learned when η = 0.1 as well as when η = 0.2. It only takes longer, so the global
averages are lower. Strangely enough the discriminative success and specificity
are also lower when η = 0.1 than when η = 0.0.It is not understood why this is
the case.

Figure 5.11 (a) shows that when 0.2 ≤ η ≤ 0.9 the communicative success
seems to be increasing slightly. Differences, however are hardly significant. When
comparing the case where η = 0.2 with η = 0.9, the difference has a significance
of p = 0.0892. Nevertheless, the increase really appears to be there.
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Figure 5.13: Comparing the communicative success, specificity and discriminative

success in the cases where η = 0.1 and η = 0.2.
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5.6.3 Discussion

The results showed that a successful lexicon cannot be learned when the scores
are not adapted. Neither can it be learned when the memory of a past interaction
lasts only one re-occurrence of the association.

It is surprising that the system develops more or less equally well when η = 0.2
than when η = 0.9. In the first case the last few interactions have much more
influence on the selection than the complete history of interactions. When η = 0.9
the vice versa is true. It is not clear why this is the case.

The results of this section show that the difference between the weight with
which past success influences the experiment is high. When the learning rate η

varies between 0.1 and 0.9 the success of the language games is higher than when
η = 0.99. In that case the system is too much based on the past and as a result
the system learns too slow.

5.7 Word-form Adoption

In the basic experiment the hearer only has to adopt a new word-form when it
cannot find a matching form-meaning association. This happens when either the
form is unknown to the hearer or when its meaning(s) do not match a distinctive
category of a possible topic. In the Talking Heads, a word-form may also be
adopted when there is a mismatch in referent (Steels 1999). I.e. when the hearer
did find a matching form-meaning, but the thus identified topic does not cohere
with the speaker’s topic. Intuitively, this strategy seems to be beneficial. If the
hearer misinterprets the speaker, it should learn what the speaker meant.

5.7.1 The Experiments

Three experiments are done that investigate the impact from the extra word-
form adoption. All experiments implement the guessing game. It differs from the
basic experiment in that the uttered word-form is adopted by the hearer when the
language game ends in a mismatch in referent. In that case the hearer identifies
a topic. How this topic is selected is subject to variation. If this topic is not the
same as the hearer identified before, the word-form is adopted according to the
rules explained in section 3.4.3.

The three experiments vary in the way the topic is selected:

R Random. The topic is selected at random, like is the case when the hearer
adopts a word-form in the basic experiment.

T Correspondence. The topic is identified via the correspondence criterion, like
is done when joint attention is established. This is only done when there is
a mismatch in referent.
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R T TT
CS 0.416± 0.051 0.415± 0.014 0.398± 0.004
DS0 0.958± 0.001 0.953± 0.002 0.957± 0.001
DS1 0.958± 0.002 0.953± 0.002 0.959± 0.002
D0 0.960± 0.000 0.956± 0.001 0.959± 0.000
D1 0.960± 0.000 0.956± 0.002 0.960± 0.000
P0 0.837± 0.001 0.826± 0.003 0.831± 0.001
P1 0.836± 0.002 0.825± 0.004 0.828± 0.001
S0 0.705± 0.075 0.660± 0.062 0.669± 0.023
S1 0.711± 0.071 0.659± 0.063 0.683± 0.016
C0 0.825± 0.025 0.833± 0.007 0.825± 0.013
C1 0.825± 0.023 0.834± 0.010 0.838± 0.016

Table 5.8: The results of the experiment where the robots also adopt word-forms

in case of a mismatch in the language game. In experiment R the hearer’s new topic

is selected at random. Topic information is used in experiments T (only in case of

mismatch) and TT (any time).

TT Double correspondence. Like in experiment T, but now the hearer uses the
correspondence criterion every time it adopts a word-form. This is conform
the Talking Heads (Steels 1999).

5.7.2 The Results

The results in table 5.8 and figure 5.14 show that the communicative success is
5 to 6 % higher than in the basic experiment. These differences are significant
with p-values of p = 0.0040, p = 0.0188 and p = 0.0400 for R, T and TT resp.4.
In all cases the discriminative success is about 3 % higher with a significance of
p = 0.0000 for all experiments.

Consistency is about 0.01 higher, but these results are insignificant. Dis-
tinctiveness is nearly the same as in the basic experiment. The parsimony is
approximately 0.02 lower; differences with significance of p = 0.0000, p = 0.0504
and p = 0.0400 for R, T and TT resp.. The specificity is 0.10 to 0.17 points lower
(p = 0.0004, p = 0.0078 and p = 0.0000 resp.). So, although the communica-
tive success increases in comparison to the basic experiment, the cost appears
to be a higher level of referential polysemy. This is not really a surprise, since
the robots now construct more form-meaning associations with already existing
word-forms. Thus representational polysemy increases, and apparently also the
referential polysemy.

The above comparisons are made in contrast to the basic experiment When
comparing the results with each other, the differences have a significance with

4Note that only 9 runs of 5,000 language games have been run in experiment TT.
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Figure 5.14: The results of the experiments varying the word-form adoption strategy.
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p-values that are higher than p = 0.4894. Hence no significant differences are
observed.

5.7.3 Discussion

According the communicative success, the results improve when the hearer uses
more opportunities to adopt existing word-forms. However, this strategy has a
negative side effect. When word-forms are adopted when there is a mismatch in
referent, this means that the hearer already had a lexical entry with this form.
Hence the level of representational polysemy increases. In turn this increases the
chance for referential polysemy when the different meanings categorise different
referents.

Remains the question which experiment has performed best. Intuitively, one
would say TT, then T and finally R. However, the results indicate otherwise. But
since the observed differences are insignificant, no such conclusions can and shall
be made. In more complex environments it is not unlikely that the (halfway)
random strategies (R and T) will fail.

5.8 Summary

Starting from the basic experiment introduced in chapter 4, this chapter has
been used to investigate different interaction and learning strategies as variations
on the basic experiment. Some variations have not shown much difference in
performance whereas others have.

In section 5.1 the influence of different categorisation schemes have been intro-
duced and it appeared that the scheme applied in the basic experiment worked
more or less the best. This categorisation scheme will be used in this chapter.

Varying physical interaction schemes on the robots contributed mainly in
strategies that had negative influence on the performance (section 5.2). Although
the significance was small, the case where taxis has been applied when the robots
had new gearing appeared to be best.

In section 5.3 the influence of joint attention and feedback has been explored.
It appeared that when joint attention was applied the success rate increased
enormously. However, the cost was a lower specificity.

When investigating the observational game in more detail, the specificity could
improve under a higher word-form creation probability Ps.

This latter finding has also been observed when the creation probability has
been varied in the guessing game (section 5.5). It appeared that the previously
used probability of Ps = 0.02 was much too low. When this parameter varied
between 0.1 and 1.0, not many differences are found in the success, but the lexicon
grows drastically when Ps is high.



5.8 Summary 157

Like the creation probability, the learning rate η has been investigated on
its impact. The experiments revealed that the adaptation of scores is crucial.
Furthermore, the scores should be adapted fast enough (the initial value of η =
0.99 was much too slow), but not too fast.

Besides varying the mentioned parameters, three different word-form adop-
tion schemes have been investigated. When the hearer is allowed to adopt the
speaker’s utterance when the hearer misinterpreted the utterance (i.e. when the
hearer’s topic referred to a different light source than the speaker’s topic), the
results were observed to work best. The topic with which the utterance may be
adopted can be selected at random or by the criterion of correspondence.

Naturally, more parameters and methods could be investigated. Some of these
variations have been investigated, but did not reveal interesting results and have
been left out this thesis for clarity. For additional analyses of parameters and
methods that are involved in the language games, see (De Jong 2000; Kaplan
2000).
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Chapter 6

The Optimal Games

In the previous chapters various aspects of the different language games have
been investigated. Chapter 4 introduced the basic experiment. Variations that
have been investigated in chapter 5 indicated some possible improvements on the
basic model. This chapter combines some proposed improvements in the most
interesting language games: the guessing game and the observational game.

The first set of experiments that will be investigated involves the guessing
game. Although not most successful at first sight, the guessing game scenario is
an important scenario that is also applied in the Talking Heads experiment. To
enable a fruitful discussion with the Talking Heads experiments, this scenario is
investigated first and in most detail. This experiment is investigated in section
6.1.

The observational language game is explored as a second experiment in section
6.2. The results of this experiment in the previous chapter were very promising,
and it is possibly a very common strategy in language development.

Instead of doing 10 runs of 5,000 language games, each experiment is done with
10 runs of 10,000 language games. This will make it harder to compare these
experiments with previous experiments. On the other hand the resulting systems
can be investigated more reliably, because many systems were still learning after
5,000 games.

6.1 The Guessing Game

6.1.1 The Experiments

The two experiments presented in this section implement the guessing game.
The basic experiment has been optimised by changing the following strategies
and parameters:

• The categorisation is unaltered, i.e. the prototype method is used, because



160 The Optimal Games

Type of change Value
Data-set new gearing

Ps 0.1 and 0.4
η 0.9

Adoption strategy random

Table 6.1: The set-up of the optimal guessing game.

no drastic improvements have been observed in the other methods and the
implemented method is relatively fast.

• The physical interaction is improved by applying new gearing on the robots.
Although the differences were not very significant, the results were better
than the basic data set.

• The creation probability is set to Ps = 0.4 in one experiment (P.4) and
Ps = 0.1 in another (P.1), because these values revealed most promising
results in section 5.5.

• Learning rate η is set to η−0.9. A value that holds a relatively long history
of interactions. It allows sufficiently fast learning.

• Word-forms are adopted under all proposed circumstances. I.e. when novel
word-forms are encountered, or the matching meaning does not match the
relevant topic. The topic with which the form is adopted is selected at
random, since no overt differences have been observed in the experiments
of section 5.7.

The differences are summarised in table 6.1. Instead of 10 runs of 5,000 games,
10 runs of 10,000 games are played. The two experiments of this section are now
defined as above with the two variants:

P.1 Word-form creation probability Ps = 0.1.

P.4 Word-form creation probability Ps = 0.4.

6.1.2 The Results

The experiments are done with 10 runs of 10,000 guessing games. Figures 6.1
and 6.2 show the evolution of the qualitative measures and the averaged results of
both experiments are shown in table 6.2. The two experiments are qualitatively
very much the same. Except the specificity differs from each other significantly
p = 0.0000. The specificity in experiment P.1 is 0.075 higher as in the basic
experiment (p = 0.0000). In P.4 the specificity is even 0.12 higher. As discussed
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Score P.1 P.4
CS 0.624±0.008 0.628±0.001
DS0 0.972±0.001 0.976±0.001
DS1 0.972±0.001 0.977±0.001
D0 0.979±0.000 0.979±0.000
D1 0.979±0.000 0.979±0.000
P0 0.864±0.001 0.864±0.001
P1 0.859±0.000 0.859±0.000
S0 0.898±0.005 0.941±0.002
S1 0.894±0.005 0.940±0.003
C0 0.860±0.001 0.860±0.002
C1 0.857±0.002 0.860±0.001

Table 6.2: The averaged results of the optimal guessing game experiment.

in the previous chapter, the higher specificity has to do with the higher Ps. When
comparing the evolutions of the specificity in figures 6.1 (c) and 6.2 (c), it is clear
that the specificity in experiment P.1 is still increasing towards the end. So the
difference becomes less near the end.

Clearly the communicative success approaches the potential understandability
of 80 % in both experiments. After 10,000 games, the CS is approximately
75 % on the average. The discriminative success is on the average about 97
%, thus approaching 100 % at the end of the experiment. On the average the
distinctiveness is about 0.02 higher than in the basic experiment. Parsimony is
only a little higher than in the basic experiment (0.861 vs. 0.851). Consistency
is about 0.045 higher than in the basic experiment. All these differences have a
significance of p = 0.0000.

So, the system finally becomes very good in constructing a lexicon by which
the robots can communicate about the things they detect in their environment.

The run that will be discussed in more detail below resulted in the lexicon that is
displayed in the semiotic landscape shown in figure 6.3 and is taken from exper-
iment P.1. This figure shows the connections with a strength that represents the
frequency of connections that are successfully used. Ideally, the connections be-
tween referent-form-referent would be orthogonal. I.e. the couplings of a referent
and its form should not cross-connect with other referents.

This orthogonality criterion is achieved for mety, luvu and possibly zigi.
The word-forms kate and demi have cross-connections, but these are relatively
unimportant because they have low frequencies. More referential polysemy is
found for sema and tyfo. As will be shown in the discussion, tyfo gets well
established to name L1 almost unambiguously. sema however, provides some
instability in the system.
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Figure 6.1: The evolution of the optimal guessing game experiment P.1.
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Figure 6.2: The evolution of the optimal guessing game experiment P.4.
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Figure 6.3: The semiotic landscape of the optimal experiment with Ps = 0.1.

Comparing this landscape with that of the basic experiment (figure 4.8 at
page 118), the system shows more orthogonality and there are less word-forms.
L0 and L2 have synonymous connections, but these are not a big problem, since
the different forms are most frequently used to name one referent, i.e. they show
low polysemy.

One important result of experiment P.1 is that the number of word-forms the
agents use successfully in the language is much lower than in P.4. The robots
used 16 word-forms successfully at the end vs. 34 in P.4 (figure 6.4 (a), solid lower
line). Furthermore, the number of word-forms does not grow after approximately
3,500 games, whereas the vocabulary size increases until the end when Ps = 0.4.
The number of word-forms that have been created by the robots is only slightly
above the number of word-forms that have been successfully used. Apparently
the robots tend to have more time to adopt word-forms correctly when Ps = 0.1.

The one-to-many relations between form and meaning of both systems is high
as can be derived from figure 6.4. Figure 6.4 (b) shows the ontological growth
of categories that are distinctive and of those that are successfully used in the
communication (as indicated by (CS)) for creation probabilities Ps = 0.1 and
Ps = 0.4. The total numbers of distinctive categories that the agents categorised
are ranging from 2,600 for P.1 and 3,100 for P.4. The number of meanings
(categories that are used in communication) they successfully use is around 500,
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be distinctive.

which is substantially lower than the number of concepts that could be used.
So, the number of successfully employed concepts is roughly 15× higher than
the word-forms that are used when Ps = 0.4 and it is 31× higher when Ps =
0.1. It appears that in case when the creation probability is lower, the robots
have more time to associate existing word-forms with meanings rather than to
create new ones. This way the amount one-to-many relations between form and
meaning increases as a possibly beneficial side effect. The cost of this is that there
appears to be a higher level of polysemy. To see whether this is problematic, it is
instructive to look at the various competition diagrams of experiment P.1. This
is done in the discussion that follows.

6.1.3 Discussion

The results make clear that with the current settings and strategies, the robots
construct a communication system that meets its limits. The communicative
success is in the end nearly as high as the potential understandability.

Both the discriminative success and distinctiveness are very close to 1, and
the specificity is also close to 1. So, when a robot uses a symbol successfully,
it almost always refers to the same referent. The polysemy is very low. The
parsimony and consistency are somewhat lower. Hence, there are some one-to-
many relations between referent and meaning and between referent and form in
the system. The semiotic landscape already showed that most of the synonymy
does not necessarily mean that the communication is difficult. Usually, the hearer
can rather easily interpret any speaker’s utterance. The landscape also shows
that a one-to-many relationship between form and meaning does not necessarily
mean polysemy. Moreover, it is beneficial, since it antagonises the one-to-many
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mapping of referent to meaning for a great deal. This is nicely illustrated by the
following discussion of some competition diagrams that are taken from the same
run as the semiotic landscape. The discussion also explains some of the dynamics
of the language games.

One-to-many Relations Between Form and Meaning

Figure 6.5 shows various competition diagrams of robot r0, relating to referent
L1 in one of the runs of experiment P.1. Figures (a) and (b) show the referent-
form competition. In figure (a) the co-occurrence frequencies of referent and
form independent of their success are displayed. Figure (b) shows the successful
co-occurrence of referent and form. Very infrequent occurrences are left out for
clarity. Where figure (a) shows that form tyfo clearly wins the competition,
figure (b) shows that in successful games, this form is nearly used uniquely1.
Hence light source L1 has very little synonymy.

Although there is hardly any synonymy, there is substantial conceptual syn-
onymy. This is nicely shown in the referent-meaning diagram for L1 (figure 6.5
(c)). Two meanings are used rather frequently, M24 and M70. When looking at
the form-meaning diagram for word-form tyfo (figure (d)), a similar competition
is observed. The frequent meanings that co-occur with tyfo are M24 and M70.
So, the lexical one-to-many relations between form and meaning antagonises out
the negative side effect of the one-to-many relations between referent and mean-
ing, yielding almost one-to-one relations between form and referent. So, there is
little synonymy and polysemy.

That there is hardly any polysemy can be seen in figures 6.5 (e) and (f).
These figures plot the form-referent diagrams for used (e) and successfully used
(f) co-occurrence frequencies. Although some polysemy can be observed, it is
hardly present in successful games after, say, 4,000 language games.

Table 6.3 shows the legend of some of the meanings that are discussed. Note
that most meanings are uniquely used to stand for a particular referent. So, there
are mostly one-to-one relations between meaning and referent, which drives the
distinctiveness near 1, cf. figure 6.6.

Polysemy and Lexical Dynamics

That relations and competition between referent, meaning and form are not al-
ways as nice as in the case above is shown in figure 6.7. The competition is
taken from the same run as the semiotic landscape and the previous example, so
Ps = 0.1.

Figure 6.7 (a) shows the referent-form diagram of successful co-occurrences of
referent L2 with some forms. After an initial period in which tyfo is used, the

1Note that this diagram is the same for robot r1, since it shows successful co-occurrences
only. By definition of the success, they must be the same for both robots.
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Figure 6.5: Some competition diagrams of robot r0 in one run of experiment P.1.

Figures (a) and (b) show referent-form competitions for L1, (a) show its use and (b)

shows the successful use. Figure (c) shows the referent-meaning competition for L1

and (d) shows the form-meaning competition for tyfo. Both figure (c) and (d) show

the use. Figures (e) and (f) show the form-referent diagrams for tyfo, where (e) shows

its use, and (f) its effective use.
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M-5 (0.96, 0.01, 0.03, 0.05)1

M-15 (0.96, 0.60, 0.03, 0.05)1

M-19 (0.53, 0.19, 0.71, 0.20)0

M-24 (0.38, 0.99, 0.03, 0.05)1

M-33 (0.03, 0.01, 0.03, 0.96)1

M-37 (0.03, 0.01, 1.00, 0.96)1

M-49 (0.03, 0.01, 1.00, 0.46)1

M-50 (0.03, 0.01, 0.28, 0.96)1

M-70 (0.03, 0.99, 0.03, 0.05)1

M-72 (0.03, 0.01, 1.00, 0.05)1

Table 6.3: The legend of some meanings of robot r0 in the optimal guessing game

as represented by their prototypes. It should be clear that the meanings mostly bare

the invariant property that the sensory channels have values (near) 1 corresponding to

the referents they are used for which has values in the middle. This meaning acts at

feature space F0, which can only be distinctive if there is only 1 referent in the context

of a language game. This meaning is mainly used to categorise L0, although not very

frequently. The semiotic landscape (figure 6.3 shows that M19 (in the upper half) is

also used to categorise L2. Another interesting meaning is M-37, which has high values

in dimensions WL2 and WL3. It has been used most frequently to categorise L2 in the

beginning of the experiments. Later it has been used less frequently. M-49 shows that

the sensory channel WL3 adjacent to the corresponding sensory channel WL2 reads

relatively high values when the robot detects L2. This can be inferred from the fact

that both dimensions WL1 and WL3 have high values. That this does not happen all

the time is shown with M-72, which has low values in each dimension that does not

correspond with L2.
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Figure 6.6: Meaning-referent competition of r0 for meanings M70 and M72.

diagram is dominated by a competition between luvu and kate. It appears as if
luvu is the most dominant of the two. To investigate this competition in more
detail, one should look at the referent-meaning diagram (figure 6.7 (b)).

The referent-meaning diagram shows that there appear to be two meanings
which are used more or less equally frequent: M49 and M72. There are more
meanings that compete at the bottom of the graph. Apparently there is a strong
one-to-many relation between referent and meaning.

Figures (c) and (d) show the MF diagrams of the two dominant meanings. It
should be clear that a weighted superposition of the two diagrams resemble the
referent-form diagram very much. Hence these diagrams also show the dynamic
competition between luvu and kate. So, the synonymous referent-form com-
petition cannot directly be explained by the fact that L2 is categorised by two
meanings. These meanings themselves show similar mappings between referent
and meaning. This is not so odd, since light source L1 (figure 6.5) was not named
with two forms, whereas it is related with two meanings.

The apparently unstable competition returns in the form-meaning diagrams
of the two relevant forms (figures 6.7 (e) and (f)). luvu, which appears to be
the most dominant form for L2, evolves in a competition between M49 and M72.
The competition for kate appears to be more chaotic. This is probably due to
the fact that kate is used infrequent in the period where it shows most chaos
(between game 6,000 and 7,000).

It is difficult to tell exactly what factors cause the dynamic competition.
There are many factors that can influence the dynamics of language games that it
seems impossible to explain what happened. The most important factors are the
adaptation of association scores, its lateral inhibition, the one-to-many relation
between referent and meaning, the different ontologies and lexicons of the robots,
the different contexts and situations, language game failures and possibly many
more. The observed dynamics are probably caused by an interaction between
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Figure 6.7: Various competition diagrams of r0 concerning light source L2. The

referent-form (a) and form-referent diagrams (g) and (h) display competitions of suc-

cessful occurrences. All other diagrams show competitions of used occurrences.

these factors.

So, although it is not completely understood, here follows a possible explanation.
In the periods where kate is more (or even most) dominant in the competition,
M49 appears to be the most dominant meaning in the form-meaning competition
for kate and least dominant for luvu. Check the periods around games 4,000
and 8,000. This is also observable in the MF competition for M49.

If one looks at the meaning-form competition for M72, kate is the dominant
form in the period between 3,000 and 4,000, just before it becomes dominant
for M49. In this period, the other robot (r1) must have acquired kate and uses
it also to name L2. Through the linguistic interactions it is not unlikely that
our robot (r0) starts to use kate also successfully for M49. The association
scores are laterally inhibited, so when kate is successfully used to name M49,
this association is strengthened, but the associations between kate and M72,
and luvu and M49 are inhibited.

If such dynamics continues, there will be a break point where there is a trade
off between the dominant associations. At that point, kate may become dominant
M49, and luvu becomes dominant for M72. This dominance is very stable until
the end of the run where kate starts to win again. A short while after luvu

became dominant for M72, it also started to win the competition for M49.
It seems as the dominance for one meaning is taken over by the dominance for

the other meaning. This take over is antagonised with the take over of another
form for the first meaning. This in turn can feed the competition similarly; thus
a vicious circle emerges.

To finish the discussion, look at figures (g) and (h). These figures show the
form-referent diagrams of successfully used occurrences of luvu (g) and kate (h).
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Type of change Value
data-set new gearing

Ps 0.4
η 0.9

Adoption scheme N.A.

Table 6.4: The set-up of the optimal observational game.

Clearly these forms are specifically used to name L2. So, there is huge competition
showing one-to-many relations between referent and meaning, meaning and form,
and form and meaning. However, there is little polysemy. Note by the way that
kate is not used successfully at all around game 7,000.

6.2 The Observational Game

6.2.1 The Experiment

The final experiment that will be reported is the experiment in which there is
joint attention, but no feedback available to the agents. Hence the robots play
observational games. The experiment takes the same improved parameters as
the guessing game, see table 6.4. However, it only investigates form creation
probability Ps = 0.4. Note that the robots have no extra word-form adoption,
since for this mechanism the robots have to know whether they mismatched in
referent. For this they would need feedback, which the observational game lacks.
Besides the robots know already what the topic is, so they will not be able to
find a mismatch in referent.

6.2.2 The Results

The results of this experiment are shown in figure 6.8 and table 6.5. As the figure
and table make clear, the global measures have similar results as the guessing
game. Except the actual success is about 6 % higher than the communicative
success of this experiment (p = 0.0000). Note that the actual success of the
guessing game is the same as its communicative success, because the feedback of
the guessing game is provided by the correspondence criterion.

6.2.3 Discussion

Apparently the observation game yield better results than the guessing game. It
seems that the robots are better at developing a lexicon when they know what the
topic in advance rather than when they need feedback to guide their success. If
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Figure 6.8: The results of the optimal observational game.

Score Avg
CS 0.879±0.005
AS 0.698±0.003
DS0 0.973±0.000
DS1 0.974±0.000
D0 0.979±0.000
D1 0.979±0.000
P0 0.873±0.001
P1 0.867±0.001
S0 0.946±0.004
S1 0.946±0.005
C0 0.860±0.006
C1 0.862±0.006

Table 6.5: The averaged results of the optimal observational game experiment.
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Figure 6.9: Referent-form diagrams of the observational language game.

the guessing game would not be able to construct a similar system is not proven.
However, it would certainly take longer (compare figures 6.2 with6.8).

Does the observational games yield a similar evolution of word-form and
meaning? To see this, one can investigate the various competition diagrams.
The referent-form competition diagrams (figure 6.9) shows the successful co-
occurrences of one of the runs of this experiment.

For three out of four referents there are clear winning word-forms, although
light sources L0 and L3 both show a short period where another word-form takes
over. L2 does not show a clear winning word-form. Two word-forms are used
with almost the same frequency. One of these word-forms keni is used to name
both L2 and L3. Hence there is apparently some polysemy, see also figure 6.10.
This has not been observed at this level in the guessing game.

Figure 6.10 shows that there is some polysemy, especially for keni. So, it would
be interesting how the competition around keni evolves. It is good to begin with
some referent-meaning diagrams of both robots for light sources L2 and L3 (figure
6.11). From these figures it is clear that for L2 there is a high level of one-to-many
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Figure 6.10: Form-referent diagrams of the observational games.
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mappings between referent and meaning, whereas L3 does not show this very
much. Striking is that it is almost equally strong for both robots. Apparently,
the synonymy in the lexicon reflects itself on these one-to-many relations between
referent and meaning for both robots. It is not unlikely that one of the robots
took over these one-to-many relations in its effort to disambiguate the synonymy
initiated by the other.

For robot r0 there are basically three meanings that compete for light sources
L2 and L3. The meaning-form competitions of these meanings are shown in
figures 6.12 (a) to (c). Meaning M-12, which is used to categorise L3 almost
unambiguously, has very little synonymy and keni clearly wins the competition.
This is not very surprising, since L3 is both categorised parsimonious and named
consistent. The two meanings of L2 (M-28 and M-36) reveal more one-to-many
relations between meaning and form. For M-12, keni is most frequently used
and for M-36 this is xihu. In both cases the other name is also competing for
these meanings, i.e. xihu is also competing for M-12 and keni for M-36. This
competition, however is at a low level. The polysemy of keni is also found back
at the lexical level (i.e. in the one-to-many relations between form and meaning),
cf. figure 6.12 (d).

Another striking observation when comparing the competition of this experiment
with the competition in the guessing games is that at the bottom there is more
and stronger competition here, compare e.g. figures 6.7 (a) and 6.9. Apparently,
the observational game strategy is pretty well at developing a coherent lexicon,
however the lack of directive feedback allows quite some synonymy.

So, although the update principle of the scores works relatively good (conform
the naming of referents L0 and L1), the system still allows both many-to-many
relations at each level of comparison, except between meaning and referent, which
is almost one-to-one. Recall that the association scores are updated according
to an association’s use, since the robots consider themselves to be successful
whenever they communicated an association. Apparently the use alone cannot
disambiguate very strong competitions that are structurally present in the com-
munication.

6.3 Summary

In this chapter the experiment has optimised two games: the guessing game and
the observational game. Several parameters and methods that were found to
improve the system in the previous chapter were combined in these experiments.

The optimised experiments revealed that the robots are well capable of devel-
oping an ontology and lexicon by which they can communicate pretty well. The
important features of the optimised experiment are: (1) using new gearing, (2)
adopting word-forms additionally when the robots misidentified the topic, (3) a
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Figure 6.11: Referent-meaning competition for L2 and L3 of robots r0 and r1.
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Figure 6.12: Meaning-form competition of robot r0 for (a) M-12, (b) M-28 and (c)

M-36. Figure (d) shows the form-meaning competition of keni.
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different learning rate and (4) a higher creation probability.
Further it has been shown that the robots learn the communication system

almost up to its potential when they play an observational language game, a
result that is not yet reached in the guessing game.

Establishing joint attention prior to the linguistic communication, however,
has a cost. The lexicons that emerge under this condition show a higher level of
synonymy. It seems that the pressure to disambiguate is too small because the
joint attention makes communication more or less redundant.

The results of the experiments reported here shall be discussed more thor-
oughly in the next chapter.



Chapter 7

Discussion

Up to now this research is presented first by describing the model, followed by the
presentation of a series of experiments. The model is built such that the robots
can engage in language games, for which the physical interactions have been pre-
programmed. The language games consists roughly in four parts: (1) the robots
detect their surroundings, (2) the sensing is categorised, (3) the speaker names
one topic and the hearer tries to understand the speaker’s utterance, and (4) the
robots adapt their ontologies and lexicon.

An important feature of the experiment is that the robots do not have any
prior knowledge about the ontology or lexicon. They only have knowledge how
they can communicate and how they can invent, adopt and select ontological and
lexical items that enables them to develop a coherent communication system.

The main questions raised in the introduction of this thesis were:

1. Can the symbol grounding problem be solved with these robots by con-
structing a lexicon through individual adaptation, (cultural) interaction
and self-organisation? And if so, how is this accomplished?

2. What are the important types of extra-linguistic information that agents
should share when developing a coherent communication system?

3. What is the influence of the physical conditions and interaction on devel-
oping a grounded lexicon?

Question (1) can reasonably be answered with yes, at least within the current
application and experimental set-up. There are some drawbacks on this answer,
because some important assumptions have been made and the physical capabil-
ities of the robots prevent to enable perfect sensing and communication. The
two assumptions were that the robots could establish joint attention and provide
feedback on the outcome of a language game. Previous experiments on physical
pointing revealed that this method does not work with the currently used robots
(Vogt 1998a), and hence the robots still need to have a way in doing so. In the
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experiments the robots were able to inspect each other’s internal feature vectors.
This way the robots were able to construct a shared and grounded lexicon. The
symbol grounding problem has been solved in the experiments reported by a
number of subtasks as will be discussed in the next section.

The answer to question (2) is not complete, because not all possible forms
of information have been investigated. Nevertheless, some important forms have
been found. It appeared that establishing joint attention is very important in
the development of a coherent lexicon. When joint attention is not established,
feedback plays a crucial role.

The last question is harder to answer, because not all experiments yielded
astonishing results. However, there are some important conclusions that can
be drawn. The sensing and segmentation, resulted in set of situations in which
approximately 20 % did not have a coherent context. So only 80 % of the language
games the robots could establish communicative success, because in the other
cases the hearer did not detect the topic that the speaker was communicating.
The impact from varying physical conditions has not been shown convincingly in
all proposed directions. Although, they indicated some influences.

This chapter will discuss the results in more detail, and will compare the find-
ings with the literature. Section 7.1 will discuss how the grounding problem is
solved. The effect of joint attention and feedback will be the topic of section
7.2. The experimental results will be discussed around psychological issues about
joint attention and feedback in language learning. The influence of the physical
interactions will be discussed in section 7.3. Especially the robots’ adaptation to
the environment (or vice versa) is the key issue. In section 7.5 the results will be
compared with other experiments on grounding language, especially the Talking
Heads (Belpaeme, Steels, and van Looveren 1998) and the work of Billard and
Hayes (1997).

7.1 The Symbol Grounding Problem Solved?

The key problem that had to be solved for physical robots to develop a shared
lexicon about the things they detect is the symbol grounding problem (Harnad
1990). The problem is how seemingly meaningless symbols can become meaning-
ful in the real world. In chapter 1 three sub-problems of the grounding problem
have been identified from (Harnad 1990). These sub-problems are:

1. Iconisation.

2. Discrimination.

3. Identification.



7.1 The Symbol Grounding Problem Solved? 183

The three sub-problems will be discussed in more detail below. Solving the
symbol grounding problem is known under the roboticists as a fundamentally
hard problem, see e.g. (Pfeifer and Scheier 1999). It is especially hard, because
the robots have different sensings of some real world object when detected under
different circumstances. It appears to be very hard to acquire invariant categori-
sations of these different sensings.

The symbol grounding problem has been attacked with a semiotic view to-
wards symbols (or signs). In this Peircean view a symbol is a semiotic sign where
its form is either arbitrary or conventionalised. The sign is a triangle of which the
edges resemble a referent, a meaning and a form. It has been argued that a robot
can ground a symbol when a semiotic triangle can be constructed successfully.
Its success is measured with the success of a language game, but it can also be
measured otherwise. When the symbol is used successfully in a language game,
the form is said to be conventionalised.

In the experiments the real world consists of light sources about which the
robots try to construct a lexicon. The word-forms and referents are the overt
part of the symbols that the robots ground. The covert part is a hybrid chain of
internal and possibly external structures from which the meaning is constructed.
Part of these structures are activated by the robot’s sensing. The sensing is
segmented and feature vectors are extracted. These feature vectors are then
categorised. The robots were able to successfully incorporate the distinctive cat-
egories that constitute the meaning in language use (i.e. in naming the referents).
It should be clear that when the robots communicate successfully, the utterance
refer to one of the light sources their environment. Whether or not this justi-
fies to conclude that the robots have meaning in the philosophical sense where
meaning is often ascribed in terms of intentionality and consciousness remains a
philosophical question. Technically, the robots closed the semiotic triangle (or
square) and conventionalised the form. Hence the physical symbol grounding
problem is solved by these robots.

7.1.1 Iconisation

Iconisation is the first step in solving the symbol grounding problem. It is related
to the following question: How does the analogue sensation of a referent project on
an internal representation of the robot? This representation is still sub-symbolic.
Iconisation is solved in the presented application through sensing, segmentation
and feature extraction. Segmentation of the raw sensory stimuli results in a
set of segments that are supposed to relate to sensed real world objects. The
segments consist of for noise filtered raw sensory data. Feature extraction result
in a vector of features that describes each segment with invariant properties of
the sensing of a real world object. This latter process is very crucial for the result
of the grounding problem. Although this issue has not been a key issue in this
dissertation, the problems became clear during the development of the system.
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First of all, the segmentation process has to identify those regions that are
interesting and should relate to the sensing of a referent. Ideally, segmentation
should identify each referent that could be detected. The robots move around
in their environment and the lighting conditions may change or something can
obscure (a part of) the environment. Therefore, the sensing of the different robots
are not likely to be identical and neither are the different sensings in different
situations. A rather simplistic segmentation scheme has been used, which is prone
to errors.

Segments are identified when the sensor value of a certain sensor exceeds a
pre-determined noise value. But when, for instance, two light sources are detected
shortly after each other with the consequence that one or more sensors did not
get back to drop below the noise value, the two light sources will be taken as one
segment. This is one of the reasons why the robots do not establish a coherent
context. “Why not identify only the top of the peaks? This way you solve this
problem.” is an often heard remark. However, the sensors are not extremely
reliable and show fluctuations during the sensing of a region of interest, resulting
in local maxima when looking for real maxima. Thus yielding the same problem of
context incoherence. One region of interest may be segmented in several regions,
making it hard to solve discrimination and identification. Increasing the noise
level would cause the robots to miss light sources that are further away.

When a segment is found the sensory data of such a segment is transformed
into a multidimensional feature vector, where each dimension corresponds to
one sensory channel. This is done by means of feature extraction. The feature
extraction is done by a real valued function from the sensory channel space to
the feature space. The feature space is typically taken as a real valued domain
between 0 and 1 in all dimensions. The goal of this feature extraction is (1)
to reduce the amount of sensory data and (2) to extract information that is
ideally invariant in the different situations. In the current implementation, all
maxima that are found for the different sensory channels inside a segment are
normalised to the maximum intensity of the sensory channel that has the highest
maximum intensity in this segment. The absolute maximum of a sensory channel
in a segment tells the observer to which light source the segment corresponds.
Applying the feature extraction to this sensory channel results in a feature with
a value of 1. Application to the other sensory channels yield values lower than
1. After feature extraction, the segment can be described with a low dimensional
vector with a value of 1 where the sensory channel has the highest intensity. The
other features have, depending on the distance of the robot to the corresponding
light source, a value between 0 and 1. This is most often close to 0.

So, the segmentation and feature extraction is an important pre-process in the
process of solving the grounding problem. This is a widely accepted phenomenon
that is applied both in (computer) vision (Cotter 1990) and speech perception
(Damper 2000). Cotter notices the fact that in a survey amongst different animal
species, the optic pathways where the initial filtering takes place differ in details,
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although there are fundamental similarities:

Such differences-differences in size of the pathways and development
in nuclei in visual centres-represent variations on a theme that are
due to the evolution of the visual system, the accentuation of specific
sensory systems and ultimately the attainment of a specific ecological
niche by individual species. (Cotter 1990, p. 11)

This makes it plausible that pre-processing of visual stimuli is very important
for categorisation. Furthermore, it sheds light on the nature of embodiment.
Different ways of sensing yield different categorisations. Obviously, the feature
extraction functions could be evolved genetically as is shown in (Belpaeme 1999),
and once primitive functions are present, the feature extraction functions could
also be developed onto-genetically into more complex ones as shown by De Jong
and Steels (1999).

Although its importance, the segmentation and feature extraction is not a key
issue of this thesis. The segmentation and sensory channels are relatively simple
and not very well developed.

7.1.2 Discrimination

The second part of the solution of the grounding problem is discrimination. Har-
nad (1990) applies the notion of discrimination to the level of sensing. According
to Harnad, discrimination should find out how the perception of something differs
from the perception of something else. This can already be done at the percep-
tual level. This perceptual level can be compared to the sensing, segmentation
and feature extraction in the current application. Although some of the discrim-
ination is already done with segmentation and feature extraction, it is mainly
pursued at the categorisation level. Segmentation yields the different sensings
of the different referents. The feature extraction describes what properties the
different segments have. However, it is only at the categorisation level that the
model proposed tells the robots how the different segments differ.

In the current thesis, discrimination is solved by modelling discrimination
games (Steels 1996c). In a discrimination game, an individual robot categorises
the feature vectors that relate to the segments. Then the agents select categories
that can distinguish a segment from the other segments in the context. So, the
resulting distinctive categories only are distinctive in contrast to the context.
This is conform a pragmatic approach. As a consequence, part of the meaning
is in the robot’s environment, making it a situated approach (Clancey 1997).
Since the meaning is constructed based on the robot’s experience, it is embodied
(Lakoff 1987). This dialectic approach favours what Jordan Zlatev (1997) called
situated embodiment. It is also an argument for talking about the physical symbol
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grounding problem rather than the physical grounding problem (Brooks 1990) or
the symbol grounding problem (Harnad 1990).

So, discrimination already starts at the segmentation level. At this level the
different interesting regions are identified, thus distinguishing one region from
another. However, this does not answer the question how one segment is different
from another. This can be answered more constructively at the categorisation
level.

The first step of the discrimination game is categorising the feature vectors of
the segments. The main method that has been used was the prototype method.
Here the categories are represented by prototypes, and the feature vectors are
categorised with those prototypes that are nearest to the feature vectors in the
different feature spaces. The categories are organised in different feature spaces
to allow categories that resemble more generalised and specialised samples of a
feature vector.

The second step in the discrimination game is to extract the categories that
distinguish one segment from the other segments in the context that a robot has
constructed in a language game. This phase is the actual discrimination.

Initially, there are no categories at all. When the discrimination fails, new
categories are created for which the features of a feature vector acts as exem-
plars. These prototypical categories are organised hierarchically in the different
versions of the feature space. Each version of the feature space has a different
resolution, thus allowing generality and specificity of the categories. In (De Jong
and Vogt 1998) no such hierarchical layering was imposed and the robots had
great difficulty in developing a coherent communication system.

The categories have been made dynamic in the sense that the prototypes move in
the feature space and thus their sensitivity range changes in time. It is thought
that this would let the prototypical categories evolve towards a more represen-
tative sample of the feature vectors that have been extracted. In turn, this is
supposed to increase the quality of the categorisation and discrimination. The
experiment where this dynamical mechanism has been left out showed that this
does not necessarily contributes to a higher performance. This, however, may
be due to the simplicity of the robots’ visual environment. Perhaps in a more
complex environment it may well be very beneficial to have dynamically changing
categories.

The feature vectors that the robots extract from the segments are categorised
in each feature space with that category that is nearest to the feature vector.
The prototypes of a feature space cover the entire space. This has the advantage
that whenever there is a category in some feature space the feature vector will
be categorised. When the categories are constructed with the binary subspace
method, or in the binary tree method (Steels 1996c) as is the case in the Talking
Heads, a category is only activated when the feature vector to be categorised
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falls inside the sensitive region of a category. This is because these categories do
not necessarily cover the entire feature space. Furthermore, the binary category,
once established, is not dynamic, i.e. its sensitivity does not move. Whether
these are problems is not really shown. The fact that in the prototype method
explored here, the robots can exploit more categories in the discrimination games
increases the chance of success. This is probably the main reason why this system
outperforms the experiment incorporating the binary subspace method.

Although it might be beneficial allowing fuzzy boundaries on the categories’
sensitivity, this has not been observed in the experiment which investigated this.
No big and significant differences have been observed, except in the discrimination
success, which was slightly lower. The reason for this can be found in the fact
that in the fuzzy approach a feature vector can be categorised in more ways
than in the non-fuzzy prototype method. This increases the probability that
more feature vectors share the same categories. Hence discrimination would be
more difficult. Applying the fuzzy boundaries in more complex environments,
might still be beneficial, but the problem in applicability lies in the increase of
computational power.

The discrimination works well. In the basic experiment the discrimination success
was already approximately 92 %. It has been argued in chapter 4 that the
discrimination success did not go to a 100 % because: (1) A success-rate of 100
% simply cannot be reached. (2) The discrimination success is partly a function
of the number of language games and the hearer does not play a discrimination
game every language game. When the speaker did not utter a word-form or
when the hearer does not know the word-form no discrimination game is played.
These reasons are confirmed with the results of letting the agents only playing
discrimination games. It appeared now that the average discrimination success
rose to 98.7 %.

The meanings that emerge are used very distinctive. In all experiments the
distinctiveness is higher than 0.95 and usually ends up with a value of 1. So,
when a distinctive category is used in the communication it refers to the same
referent with a high certainty. It is well shown in the meaning-referent competi-
tion diagrams that after a very short period, the meanings that are used in the
language refer to the same referents about 100 % of the time. The parsimony,
however is lower. The probability that when trying to categorise a referent with
a previously used category is around 0.85. It can be explained by the fact that in
different situations the segments differ and hence are categorised differently, thus
yielding a strong one-to-many relationship between a referent and the distinctive
categories.

In these experiments, the categories all bear the invariant property that the
dimension of the feature vector with value of 1 corresponds to a unique refer-
ent. In the Talking Heads invariance is filtered out using the notion of saliency.
However, as the statistics of the sensory data revealed (appendix C), saliency
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does not guarantee to find the invariance. This is because another dimension of
the feature vector might have a value very close to 1, which may not be most
salient. However, there may be selection criteria in the discrimination or naming
game that allows a more controlled categorisation of invariant properties of the
different feature vectors. A possible mechanism preference could be the selec-
tion of categories that have maximum values at their sensory channels. However,
this would require to implement more knowledge on the categorisation, which is
against the non-nativist approach that is pursued. On the other hand, selection
for maximum intensity is so simple and uniform that such a selection principle
could have evolved genetically. Still another selection criterion may be how well
a feature vector correlates with a prototype. I.e. an agent may prefer those cat-
egories of which the extracted feature values best resemble the categories. This
way a prototype effect (Rosch, Mervis, Gray, Johnson, and Boyes-Braem 1976)
could be modelled. Naturally, these different criteria could be combined yielding
a hybrid mechanism.

According to Harnad (1990), one of the aims of discrimination is to reduce the
amount of symbolic structures that relates to a certain referent. As figure 6.4
showed, the number of distinctive categories that have been proposed can in-
crease up to more than 2,500 for categorising 4 referents! Although it has not
been shown in this thesis, it has been observed that when counting all different
(non distinctive) categories that has been proposed before discrimination was
applied, more than 5,000 (sometimes even 10,000) categories were constructed.
So, the discrimination already yields a substantial reduction in the amount of
categories that relate to the different segments. The naming phase further re-
duces the number of categories to, say 500 meanings that are used successfully
in the communication. Of these 500 meanings, most are rarely used, while a
few are used most frequently as observed in the various competition diagrams.
It should be clear that discrimination games alone cannot solve the grounding
problem sufficiently. Still too many distinctive categories are categories for the
four referents.

7.1.3 Identification

A final process in symbol grounding is identification. Identification is reduc-
ing the symbolic structures relating to a segment even more than is the case in
discrimination yielding invariant symbols. As argued before, the identification
process of symbol grounding takes place at the language level. In other appli-
cations or types of problem solving, identification may take place at a different
level depending on the type of problem to be solved. For planning a path, for
instance, a robot also has to identify symbols with which it can reason. Then
identification succeeds when the robot successfully incorporates the symbols to
plan a path. In language this is at the communication level. When a language
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game is unsuccessful, at least one of the robots failed to identify the referent and
it is not sure which robot failed to do so. Therefore, identification is successful
when the language game is a success.

It is at the identification level that a distinctive category becomes a meaning.
As argued, a meaning is some categorisation that is used in language. It is a part
of the symbol that has been defined in semiotics. There the meaning is the sense
that is made of the symbol. According to Wittgenstein (1958) the meaning can
only be interpreted by its use in language. Therefore, it should be related with a
form that can be used in a language game. This trinity (referent, meaning and
form) is what Peirce called a symbol.

The basic experiment already showed that the robots solved the grounding
problem in successful language games. They successfully identified symbols that
stand for a referent. However, there was still quite some polysemy. Although
higher than the a priori success, the communicative success-rate was relative
low. In chapters 5 and 6 it has been shown that the success could increase and
thus identification improved. The main factors that improved the success were:
assuming joint attention, increasing the form creation rate and learning rate, and
assuming a different form-adoption scheme.

The influence of the form creation probability (Ps) has been shown in section
5.5. It appeared that increasing the creation probability increased the success
in communication. It also increased the specificity, i.e. the likelihood that when
a word-form is used it would refer to the same referent it previously referred to
increased. Increasing the creation probability, however revealed a major draw-
back: the number of word-forms used increased proportionally up to 83 when
Ps = 1.0. This sums up to more than 20 word-forms per referent, which is not
very efficient. The point is that a high creation probability decreases the amount
of many-to-many relations between meaning and form, which in turn increases
the specificity because the meanings uniquely refer to a particular referent. This
is nice, but it increases synonymy. The number of word-forms used are much
lower when Ps = 0.1 and the communicative success is not much lower than
when Ps = 1.0 (only a few percent, but significantly). Now only 25 word-forms
are used, yielding slightly more than 6 word-forms per referent.

When, in addition, the hearer is allowed to adopt the speaker’s word-form
when it misinterpreted the speaker’s utterance, the success grows even more and
the number of word-forms used decrease even more. In the optimal guessing
game experiment (Ps = 0.1), where also the learning rate is different from the
basic experiment, the number of word-forms used are 16, most of them used
rarely. Inspecting the experiment more closely, there are only 6 word-forms that
are used frequently. The communicative success grows up to approximately 75
% after 10,000 language games. So, it seems that adopting the word-forms after
misinterpretation is one of the necessary factors of the model. Furthermore, in
less reliable robots, a modest creation probability is very useful: It allows the
word-forms to be associated with more meanings, thus increasing the amount of
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Figure 7.1: The semiotic square of the language games.

one-to-many relations between form and meaning. The adaptation of the asso-
ciation scores and lateral inhibition causes improved selection and through self-
organisation a more coherent and invariant lexicon emerges. This way referential
polysemy and synonymy remain low.

A high learning rate, controlling the adaptation of the association scores,
increases the influence of past success and has low influence on failures. When
the learning rate is too high (η = 0.99), the system does not find a suitable
equilibrium in the scores. Failures are not punished and will be made again, thus
the success does not increase. Lateral inhibition is small and the lexicon does not
converge well enough to an attractor. A suitable lexicon also does not emerge
when the learning rate is too low, i.e. when η ≤ 0.1. If there is no word-form
adoption when the hearer misinterpreted the speaker, the self-organising effect
that the score adaptation should control does not reveal itself.

So, identification in the language games takes place at the language level. The
invariance of the symbols are therefore to be found in the consistent use of these
symbols in the language. This way the ambiguous categorisation of the various
sensings of some referent is disambiguated in the successful use of the symbols in
the language games.

7.1.4 Conclusions

The hybrid processes of sensing, segmentation, feature extraction, categorisation,
discrimination, naming and feedback transforms the symbol grounding in the
formation of a semiotic coupling (or structural coupling) between the robots’
environment, their internal states and their mutual interaction. Some of the
lexicons that result from the experiments have been plotted in semiotic landscapes
showing the structural couplings that emerged. These landscapes showed that
the many-to-many relations between form and meaning can serve cognitive agents
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to decrease the amount of polysemy and synonymy that is necessary to ground
their sensing of the environment invariantly.

The meaning of the utterances are always in contrast to the rest of the con-
text as a result of the discrimination game. However, the experiment with only
three of the four light sources present in every situation showed that the robots
acquired a lexicon similarly to the basic experiment. Hence the system learns to
communicate about the four referents in their world, while only sensing three in
their environment. Nevertheless, the use of the language depends on the situation
that the agents are in.

So, the symbol grounding problem is solved by a hybrid of relative simple
mechanisms: sensing, segmentation, feature extraction, categorisation, discrim-
ination, naming and feedback. The principles are based on interactions of the
agents with their environment and each other, individual adaptation and self-
organisation. A complex structure of couplings emerges from the co-evolution of
language and meaning, and can well be used to communicate about the agents’
environment. Summarising, the three phases of the symbol grounding problem
are modelled by the following:

1. Iconisation: Sensing, segmentation and feature extraction.

2. Discrimination: Discrimination game.

3. Identification: Naming and adaptation.

One of the main findings was that the robots tend to categorise the various
sensings of a particular referent differently. Thus yielding one-to-many relations
between referent and meaning. This is not problematic as long as this is cancelled
out by one-to-many relations between form and meaning. This results in low, or
ideally no polysemy and synonymy as illustrated in figure 7.2 (a). The proposed
model is pretty well capable of doing just this. Figure 7.2 shows how a symbol
thus can be visualised by a set of semiotic triangles. These types of symbolic
structures may well explain the notions of family resemblance (fig. 7.2 (b)) and
object constancy (fig. 7.2 (c)).

Family resemblance (Wittgenstein 1958) is the observation that seemingly
different things are called the same without being ambiguous, like the meaning
of games. Where soccer and chess are typical games, a game like swinging is
not typical. Swinging lies near the border of the ’conceptual space’ of games. It
has no direct resemblance with games like soccer and chess (referents R1 and R2
fig. 7.2 (b)), but it has some resemblance with other games that in turn do have
resemblance with soccer and chess. Such categorisation process can be explained
with the one-to-many relations between form and meaning. The word games is
associated with different meanings of soccer, chess and swinging. The successful
use of these meanings in different situated language games allows the system to
emerge a family of resemblance.
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Figure 7.2: Illustration of three semiotic relations between referent R, meaning M

and form F. Figure (a) shows how one-to-many relations between referent and mean-

ing cancels out synonymy and polysemy by one-to-many relations between form and

meaning. Figure (b) shows how the model may explain family resemblance. The ovals

should be interpreted as venn-diagrams of the meanings M1 and M2. In figure (c) the

continuum of possible sensings P of referent R are displayed as a rectangle. Some part

of the rectangle may be interpreted by M1 and another by M2. When both meanings

relate to the same form, this mechanism may solve the problem of object constancy.
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One of the reasons that makes the symbol grounding problem hard is the
notion of object constancy. How can an object be recognised as being the same
when different sensings of such an object results in different sensory stimuli, for
instance because it is partly obscured? In the experiments, the robots detect
the light sources from different positions, resulting in different sensings as the
continuum of sensings P in figure 7.2 (c) shows. This may also yield different
meanings. Nevertheless, the system identifies the objects pretty consistently,
because the one-to-many relations between form and meaning is damped at the
level of form and referent. That the robots actually learn to identify the referents
has been shown in an experiment where there were only three of the four referents
available in each situation. The robots could learn to name all referents equally
well as in the basic experiment whereas they only could detect three of them in
a situation.

7.2 No Negative Feedback Evidence?

The experiments in chapter 5 showed the importance of either joint attention
or feedback in the language formation. One experiment has been done in which
neither are present: the selfish game. In this experiment the robots used associ-
ation scores based on the co-occurrences of word-meaning associations to select
them. A selfish game was considered to be successful when the hearer ’thought’ it
understood the speaker. The communicative success from the robots’ viewpoint
was around 82 %, but the actual success was in fact less than 25 %, which is
lower than the a priori success.

Many psycholinguists hold that children when learning language hardly get
any feedback on their language use. This is the so-called no negative feedback
evidence, see e.g. (Braine 1971; Bowerman 1988)1. Other psycholinguist claim
that when children make (structurally the same) mistakes, they do get feedback
from their language teachers like their parents (Demetras, Nolan Post, and Snow
1986). Furthermore, the influence of feedback on language acquisition is thought
to be crucial by some scientist (Clancey 1997; Demetras, Nolan Post, and Snow
1986; Clark and Clark 1977; Tomasello and Barton 1994). The results of the
guessing game and the selfish make clear that this model seems to be unable
to work without feedback. The fact that when the robots mismatch in referent
word-form adoption benefits the communicative success provides a strong reason
why feedback is needed in the guessing game.

Although less successful in communication than the observational game, or
perhaps only slower, the guessing game appears to converge best on the lexicon.
Mostly, a clear winning name is used by the robots and the competition at the
bottom is not successful. Since the hearer has no knowledge about the topic

1Recall that feedback in this thesis is about the effect of a language game; not to correct
one another.
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prior to linguistic communication, it has to trust completely on the linguistic
information. The robots have to disambiguate the lexicon for which feedback
is required. When the feedback only depends on the co-occurrence of word and
meaning as is the case in the selfish game, the robots cannot disambiguate the
system well. The feedback must be on the success of the language game. Since
communication in the guessing game is not redundant as in the ostensive and
observational games, there is more pressure to disambiguate. Hence the robots
are better at it.

When joint attention is established prior to the communication, directive feed-
back appears to be less important. Experiments revealed that when the robots
established prior topic knowledge (or joint attention prior to the communication)
the lexicon formation improved. Whether or not feedback was used.

The observational language game has been inspired by the work of Mike
Oliphant (1997) and appears to work best. In this game no directive feedback
is required. The agents use feedback based on the use of word-meaning pairs,
not on their success in the game. This strategy works provided the agents have
prior topic knowledge, established through some joint attention mechanism, and
provided that scores are updated with lateral inhibition. This is conform the
findings of Oliphant (Oliphant 1997; Oliphant 1998) and confirmed by Edwin
De Jong (2000). Oliphant found that lateral inhibition is important in a com-
parison experiment where the associations were updated following (1) Willshaw
learning and (2) Hebbian learning. Hebbian learning uses lateral inhibition, which
allowed Oliphant’s agents to establish a coherent lexicon, whereas the Willshaw
method that does not use lateral inhibition did not.

When investigating a lexicon developed by the observational language game
more closely, it appeared that the system still allows quite some polysemy and
synonymy, especially at the bottom of the competition. If the no negative feed-
back evidence argument is correct, this might explain why children tend to use
overgeneralizations during their lexicon development. Having more examples
and directive feedback (possibly evaluated from the environment by the language
learners themselves) could disambiguate such overgeneralizations. It is interesting
to note that each type of language game revealed some level of overgeneralization
at the beginning of the experiments. Usually there was quite some referential pol-
ysemy in the beginning of the experiments, which died out after approximately
1,000 language games.

So, in what way does this reflect on our knowledge of child language acqui-
sition. It has been found in several observations of mother-child interactions
that joint attention is established prior to the linguistic act (Schaffer, Hepburn,
and Collis 1983; Harris, Jones, and Grant 1983; Harris, Jones, and Grant 1984;
Tomasselo and Todd 1983; Tomasello, Mannle, and Kruger 1986) as cited in
(Barrett 1995). In particular (Tomasselo and Todd 1983; Tomasello, Mannle,
and Kruger 1986) found that there was a positive relation between the period of
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joint attention and the child’s later vocabulary size.

Although children seem to be able to select the right referent, there is no
complete consensus how. It is likely that there is some trade-off between us-
ing ostensive and non-ostensive contexts in the lexical acquisition phase. The
guessing game on the one hand and the ostensive and observational on the other
hand showed that robots can learn a lexicon in both the ostensive and the non-
ostensive case. This is conform Tomasello and Barton’s (1994) results. Tomasello
and Barton investigated children’s language acquisition under conditions that are
similar to those in the guessing game and observational game. In addition, Bar-
rett’s (1995) conclusions that the lexicon is learned better under joint attention
prior or simultaneously to the linguistic act hold as well. This is also conform the
discussion placed at the 2000 Evolution of Language conference by Jean-Louis
Dessalles (Dessalles 2000).

To put the conclusion in light of the empirical data available in the psycholin-
guistic literature as from (Braine 1971; Demetras, Nolan Post, and Snow 1986;
Tomasello and Barton 1994), it is likely that infants (and probably humans in
general) use a combination of strategies to learn and develop a language. For
instance when the context is clear and the child has a high likelihood of identi-
fying the topic (possibly prior to the communication), feedback on the outcome
of a game is not necessary. When such a precondition is not satisfied and a child
makes structural mistakes, feedback on the success becomes more important, and
may be provided by adult speakers. Other strategies for associating words with
meanings are likely to exist, like the filling up of knowledge gaps in language
learners when the context is clear (Clark 1993).

Joint attention and feedback were simulated in the current experiments. There-
fore, the question how joint attention and feedback are established is left as an
open question. Probably there are several strategies. For instance, pointing can
be used to draw attention or to provide feedback. But also gaze following, at-
tention monitoring, novelty and evaluative rewards on a language game may be
sources of establishing joint attention or feedback.

The feedback provided on the outcome of language game is the same for both
robots. Naturally, this is not very plausible. It is interesting to investigate how
robots can establish joint attention and evaluate feedback autonomously. For this
it would be good to have a more task oriented approach, where joint attention
and feedback are implicit in the accomplishment and success of the task.

7.3 Situated Embodiment

As obvious the influence of the physical interactions and the body of the robots
is very important. Especially the results of chapters 4 and 5 must have made
this clear. First, the physical condition and the bodily adjustment of the robots
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relevant to the task appear to have some influence. And second, the most im-
portant influence seems to be in how the robots interact with their environment,
including each other.

Due to the fact that the robots have unreliable control, they have difficulties
in co-ordinating their interaction physically. This is one of the reasons for the
robots’ poor ability to construct a coherent context. In turn, this has set a limit
to the potential understandability around 80%. Using more reliable robots, could
solve this problem to some extent. However, the physical unreliability is not the
only reason for context incoherence. More fundamental is the problem, that the
robots are at different locations from which they cannot sense the same. Since
the robots only communicate the ’here and now’, this problem cannot be solved
in principle.

The idea that the robots physical condition and bodily adaptation to the
robots’ environment appears to be trivial to some people, but this is not so. Why
is it that humans are the only creatures on earth that use language? Answering
that they have a different body, which enables them to learn language is simply
not enough. It presumably has a lot to do with it, but to what extend and
in what ways? When the robot’s visual apparatus could not neatly detect the
world with enough resolution, the robots performed much worse at grounding the
language. The communicative success was around the a priori value. And when
the robots had new gearing, the performance increased a little bit. Although
these results were not significant, the robots can rotate more smoothly, giving
noise in the sensing less chance. It is likely that physical fitness and co-ordination
abilities are important ingredients in language learning. Humans are organisms
that have great co-ordination abilities, which especially become handy in setting
up coherent contexts and joint attention.

The most important influences observed came more from the experiments
where different strategies of joint attention and feedback were investigated. Many
of the results have already been discussed in the previous section, so they will
not be discussed again.

To obtain reasonable results in the experiments the methods for obtaining
joint attention and feedback have been simulated. The result of the simulations
were that the robots could inspect the internal states of each other. Obviously this
is not very plausible. These mechanisms did not change the principle of language
acquisition, but it required the assumption that the robots had a mechanism
by which they could establish joint attention extra-linguistically. This requires
that the problems of establishing joint attention and evaluation of feedback on
the robots still needs to be developed. It should be clear that establishing joint
attention requires good physical co-ordination of the agents’ bodies.

The different results showed the importance of a good co-ordination of the robots
in their environment. Hence the importance of the robot’s interaction with the
world is made clear. Language is not only linguistic communication, but also
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heavily depends on co-ordinated interaction of agents with their environment as
has been made clear in the situated cognition paradigms (Clancey 1997).

7.4 A Behaviour-Based Cognitive Architecture

For the development of a robotic system that is able to fulfil a relatively complex
task that the language game is, an architecture is constructed that is based on a
behaviour-based architecture. Examples of behaviour-based architectures are the
subsumption architecture (Brooks 1990) and PDL (Steels 1994b). These architec-
tures mostly control reactive behaviour as ’direct’ couplings between sensors and
actuators. It is most prominently based on the vehicles proposed by Valentino
Braitenberg (1984). Behaviour-based architectures have become very popular
in robotics in the past ten years. However, these architectures could not show
much more complex behaviour than e.g. wall following, phototaxis and obstacle
avoidance. Although these behaviours have interesting emergent functionalities,
they cannot be used for accomplishing more complex tasks that involve planning.
The dual dynamics architecture (Jaeger and Christaller 1998) could, but there
the planning is implemented implicitly in the reactive processes. It is therefore
less controllable and thus prone to errors.

To deal with explicitly planned behaviour, a behaviour-based cognitive archi-
tecture has been developed. The cognitive architecture is an extension of PDL.
The planning is coded in finite state automata. Each state activates or inhibits
separate behaviours using motivations that can be set on, off or the inverse2.
The behaviours that are on control in parallel the emergent behaviour an agent
shows. This approach is very similar to the architecture proposed by (Barnes,
Aylett, Coddington, and Ghanea-Hercock 1997). The transition from one state
to another happens when the final condition of the state is satisfied. When an-
other robot has to transfer to the next state simultaneously, the first robot can
send a radio signal to do so. Each state has a timer and when a robot tries to
achieve a goal for too long, the state is left and the default state is entered, thus
the task fails.

The architecture has basically three in parallel operating layers between the
sensors and actuators of the agents. The first layer bears the finite state automata
that control planning. The second layer consists of behaviours that control the
reactive behaviour of a robot, like phototaxis. And thirdly, there are cognitive
processes that for instance control categorisation and naming. The processes in
the two final layers are controlled by the motivations set in the first layer. A
distinction is made between the reactive and cognitive processes. This is done,
because calculating reactive processes are faster than calculating cognitive pro-

2In principle motivations can have any value between -1 and 1 controlling the strength of a
certain behaviour. These motivations have been incorporated before in PDL, see e.g. (Steels
1994c; Steels 1996a).
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cesses. The reactive processes demand a fast response, because a moving agent
cannot wait to respond when, e.g. it is close to a wall it has to avoid. In the
control architecture that is used in this application, the sensor readings and actu-
ators are updated and processed 40 times per second. The cognitive processes can
take, in principle as long as they need, because they can be processed (physically)
in parallel. In the current implementation this has been accomplished by doing
off-board processing later on. When all processes are run in real time, this should
either ask for a physically parallel process or incorporate a good timing protocol
that works on the clock process. When this is not done, unwanted side-effects will
occur as has been observed while implementing a real time language game where
robots tried to develop a lexicon about their actions (Vogt 1999; Vogt 2000). In
these experiments it has been observed that robots collided with a wall and did
not avoid it because they were busy processing the categorisation or naming.

The cognitive behaviour-based architecture that has been developed for these
experiments is a general-purpose architecture for doing cognitive robotics. It
has been used to implement various language games on the mobile robots that
incorporate fundamentally different behaviours. In the current implementations,
the behaviours have been pre-programmed, including the planning. It might well
be possible that the planners are learned or created dynamically, see e.g. (Barnes,
Aylett, Coddington, and Ghanea-Hercock 1997). Furthermore, new layers may
be introduced when necessary.

7.5 The Talking Heads

Before discussing the results obtained in the previous chapters in relation to
the Talking Heads and other related experiments, it is good to summarise the
differences between the different experiments. The main sources from which the
discussions are based are the book ‘The Talking Heads Experiment: Volume 1,
Words and Meanings’ by Luc Steels (1999) and the PhD thesis ‘L’émergence d’un
lexique dans une population d’agents autonomes’ of Frédéric Kaplan (2000).

7.5.1 The Differences

In the Talking Heads several agents can materialise their cognitive structures
into a set of cameras, each representing the physical body of a robot. Different
sites are placed around the world and are connected via the internet. Agents can
travel from one site to another and engage in guessing games with each agent
that is present at a certain site. Furthermore, human users can launch new or
existing agents to travel the net. In a guessing game the robots look with their
cameras at a white board at which various geometrical figures are pasted. The
cameras cannot move around freely, they can only move there cameras in a pan-
tilt manner. In addition, the cameras are calibrated such that they can identify
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co-ordinates at the white board reliably. This information is used to implement
pointing. So, although not completely perfect, the robots can reliably point to a
referent on the white board thus providing feedback. In addition, the calibration
is also used to focus the robots’ attention, which is used to detect a context.
This way the Talking Heads can detect (again more or less) reliably a coherent
context. Since the Talking Heads cannot move from their place, the cameras
observe a referent more or less similarly at different times. The differences they
detect are mainly due to changing lighting conditions and possibly changes made
on the white board by human intervention introducing new referents. Another
source of difference lies in the fact that the robots can change bodies, and thus
observe a particular area of the white board from different positions. However,
these positions are limited to two at each site. The mobile robots can move freely
in their environment.

Besides the different sensory apparatus (a camera instead of light sensors)
and different referents (geometrical figures), there are already several important
differences found:

1. The first fundamental difference is the number of agents that are in the
language community. In the Talking Heads there is a dynamic flow of
agents that learn the language at different sites, whereas in the experiments
presented here, there are only two agents.

2. Another fundamental difference is that the agents cannot move freely in
their environment, but they can only pan-tilt their movements and they
can travel from site to site and from camera to camera. The mobile robots
can move freely in their environment which is only at one site. The robots
cannot change from body.

3. The third difference is that the Talking Heads have a calibrated world in
which they can establish joint attention by means of pointing reliably. The
calibration is also incorporated to detect a more or less coherent context,
which is a flaw in the mobile robots implementation.

Another source of differences can be found in the segmentation, feature ex-
traction and categorisation processes of the two applications. Besides the fact
that the Talking Heads have cameras and a different environment of objects, the
way information is extracted from the image differs in fundamental ways. In the
mobile robots experiments the feature extraction is developed to identify classes
of light sources that are placed at different heights. The Talking Heads have fea-
ture extractors that are more abstract and can be used for instance to name very
different objects similarly by using information about their relative positions in
a context. The feature extraction of the Talking Heads extracts features about
colour, horizontal position, vertical position, relative object size and a filling ratio
of the segmented area inside a rectangular bounding box. This way the Talking



200 Discussion

Heads develop a language not to recognise objects directly on their shape, texture
etc., but also on their relative position in a particular context. Such abstractions
are not made on the mobile robots.

Categories in the Talking Heads are constructed using a binary tree, which
splits subparts of the sensory channel space in equal halves of increasing gran-
ularity. Besides one experiment, the mobile robots’ categories are represented
as prototypical categories. In addition, the Talking Heads construct categories
that start searching lexical elements with one dimensional categories. When it
fails finding a good match, the Talking Heads look for all possible categories of
dimension 2 etc. This continuous until a good match is found or until the naming
game fails. In the binary tree method, the categories need not to be composed
of elements from one hierarchical layer. They can also be composed with a com-
bination of elements stored at different hierarchical layers. Remember that the
binary tree method does not work with different versions of the feature space, but
the different versions can be compared with different hierarchical layers. Thus
the Talking Heads potentially looks for all possible configurations of categories.
This process is guided by the naming game; when a suitable category is found in
the lexicon either for production of utterances or understanding, the search for
more complex categories stops.

Another feature of the category selection is guided by the notion of saliency.
After the discrimination game, a category that is most salient will be used in the
naming game. This way, the Talking Heads have a more invariant and coherent
way of categorising a certain scene. In the mobile robots it is opted to consider
only categories that span all the dimensions of the feature space. This way the
mobile robots are guaranteed to find a category that has the invariant property
of the segment in it. As argued, exploiting saliency does not guarantee to find
that information, whereas exploiting all dimensions of the feature space does.

Summarising, the differences found at the feature extraction and categorisa-
tion level between the Talking Heads and the mobile robots are:

4. The feature extraction of the Talking Heads extract more abstract infor-
mation of the sensed image. Most notably are those of colour and spatial
information.

5. The discrimination games in the Talking Heads explores categories that
are composed of one or more dimensions of the feature space at possibly
different hierarchical layers. It stops when a suitable match is found.

6. Saliency is incorporated in the Talking Heads to guide invariant and coherent
categorisations. This is a.o. necessary because the Talking Heads have
more abstract feature extractors (4) and categories may not span all the
dimensions of the feature space (5).
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In the naming part of the guessing game there are no large differences appar-
ent. The only main differences are in the word-form adoption strategies, some
parameter settings and the adaptation mechanisms of scores.

In the Talking Heads word-forms are adopted when there is a mismatch in
the referents the two robots identified as the topic. In the mobile robots this
only done in certain experiments. In both experiments word-forms are adopted
when the hearer could not find a matching word-meaning pair that matches the
categorisation. When word-forms are adopted in the Talking Heads, the speaker
points to the topic and the hearer adopts the uttered word-form with the identified
topic from pointing.

The word-form creation probability in the Talking Heads are always set to 1,
whereas this was set initially in the basic experiment presented here this was set
to 0.02. Kaplan (2000) investigated the different parameter settings of Ps. The
experiments reported in chapter 5 revealed that when 0.1 ≤ Ps ≤ 0.9 the mobile
robots system worked best.

The scores are adapted in the Talking Heads by a different scheme than incor-
porated in the mobile robots. The scores s are adapted according to the following
equation:

σ = σ′ + δ · X (7.1)

where σ′ is the previous value, δ is a constant (usually set to 0.1) and

X =











1 if association is used successful

−1

{

if association is lateral
if association yields mismatch

(7.2)

This equation allows the scores to vary rapidly in through time, thus allowing
instability in some way. In addition, the method lets the scores to hold only a
little information on past effectiveness of an association. The walking average
method used on the mobile robots do not alternate heavily in time and it holds
information about a longer period of use. In fact it holds all past experiences,
although recent past experiences influence the scores more than experiences from
long ago.

So, the naming game of the Talking Heads differs from the mobile robots
mainly in the following features:

7. Word-forms are always adopted when there is a mismatch or misunderstand-
ing in any way. In such cases, the speaker always provides the hearer with
topic information by means of pointing. In the mobile robots word-form
adoption is done always only in a few experiments. In the case of word-form
adoption, the hearer randomly selects a segment to be the topic.
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Mobile robots Talking Heads

Referents Light sources Geometrical figures.
Sensors Light sensors without spa-

tial information.
Camera.

Nr. of agents 2. Variable ≥ 2.
Mobility Mobile Immobile.
Calibration of
world

Yes. No.

Feature extraction Not complex. Complex.
Category span in n

dimensional feature
space

n dimensions. ≤ n dimensions.

Saliency No. Yes.
Joint attention be-
fore form-adoption

No. Yes.

Form creation rate Ps < 1. Ps = 1.
Score adaptation σ = η · σ + (1 − η) · X σ = σ + δ · X.

Table 7.1: The summarised differences between the mobile robots experiments and

the Talking Heads experiments.

8. The word-form creation probability Ps is always set to 1 in the Talking Heads
experiment. A lower value is used in the mobile robots.

9. The scores adapted in the Talking Heads are adapted differently than in
the mobile robots. The method used in the Talking Heads allows more
fluctuations and does not keep track of effectiveness in a longer history
than in the mobile robots.

The differences between the mobile robots experiment and the Talking Heads are
summarised in table 7.1.

7.5.2 The Discussion

When comparing the results of the Talking Heads (Steels 1999; Kaplan 2000) with
the results obtained in this thesis (mainly reported in the guessing game of the
previous chapter), a first observation is that the results quantitatively are similar.
Discriminative success is also very high (Steels 1999) and the communicative
success varies between 50 and 80 % (Kaplan 2000). The main reason why the
communicative success is low in the Talking Heads has been ascribed to the fact
that there is a continuous flow of agents in the environment.

In more controlled experiments where there are two agents developing a lex-
icon, the success increases, although it still does not converge to 100 % as the
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system does in simulations (Steels 1999). The time of convergence, as far as there
is convergence, is much faster than in the mobile robots experiment. The time
of convergence is already achieved after 25 language games. In cases where there
are more than two agents the speed of convergence is longer and complete success
has not been obtained after 35,000 games (Steels 1999). An important source of
failure is ascribed to the uncertainties that is part of the physical interactions.
As in the mobile robots experiments failures occur mainly when the robots do
not detect a coherent context or when pointing used for feedback fails.

In the mobile robots experiment convergence is never achieved before 1,000
language games; it usually takes about 2,000 games in the optimal models. This
is a rather long period, also when comparing the results with the experiments
of Billard and Hayes (1999). Billard’s robots learned a grounded lexicon in less
than 30 language games. The difference with Billard’s experiment is that one
of her robots had its lexicon pre-programmed and the other robot learned this
lexicon. In the current experiment the lexicon has to be developed completely
from scratch; a task that is naturally much harder. The reason why convergence
takes long in the mobile robots experiment has probably to do with the mobility
of the robots. Due to this mobility the differences in sensing in different language
games is larger than in the Talking Heads. Furthermore, the two robots partic-
ipating a language game have larger differences in sensing as is the case in the
Talking Heads.

Although there are main differences in the experimental set-ups between the
Talking Heads and the mobile robots, the results are similar. The success of
the mobile robots experiments is consistently lower than in the Talking Heads
experiment with two agents. As argued, the communicative success of the mo-
bile robots experiment cannot exceed 80 % because there is a large fraction of
situations in which the robots do not share a coherent context. Due to more
reliable context setting in the Talking Heads as a result of the calibration of the
cameras orientation in relation to their environment, this fraction is much less
in the Talking Heads. The communicative success of the mobile robots when
subtracting the 20 % of failures due to context incoherence is very much similar
to the success obtained in the Talking Heads.

The categorisation in the Talking Heads use different representations for the cat-
egories: a binary tree is used rather than a prototype representation. Assuming
that the binary tree method is very similar the binary subspace method, the re-
sults presented in section 5.1 showed that the binary tree method does not work
just as well as the prototype method.

When a binary tree is being developed, the categories of the tree do not cover
the complete feature spaces, whereas the prototypes do once they are formed
at a certain space. Hence the binary tree method cannot always categorise a
segment a every layer. When one of the segments cannot be categorised at a
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certain layer, this layer is discarded in the discrimination game. The latter is
due to implementation limitations, which had been introduced for consistency
reasons (investigating a conjunction of four categories at the same hierarchical
layer). When looking at the success evolution of the discrimination games in
the Talking Heads (e.g. (Steels 1999)) it is clear that the success evolves similar
to the success of the prototype method presented in this thesis. In addition,
De Jong (De Jong and Vogt 1998; De Jong 2000) showed that applying the
adaptive subspace method, also yield similar results3. This indicates that the
power of categorisation lies not in the representation of categories, but rather
in the methodology of the discrimination games. This methodology is strongly
based on generation and selection of categories.

In the Talking Heads saliency is thought to be crucial in the establishment of
a coherent lexicon (Steels 1999). The results of the mobile robots experiments
showed that this can also be accomplished by preferring categories that span
all the dimensions of the feature space. Depending on the type of information
that needs to be categorised, one might prefer one method above another. When
one wants to categorise a variety of abstract notions like spatial information of
left/right, up/down or colour, one is interested in only one or more dimensions
of the feature space. In such cases the method of saliency may be preferred.
When the most information of an observation lies in the entire feature space, one
might prefer categories that span all dimensions in this feature space. In this case
saliency appears to be redundant. Furthermore, the sensory data revealed that
saliency does not guarantee invariance filtering. In more complex systems where
there are many more different sensory channels, a combination of both might be
useful.

In the mobile robots experiments it appeared that one-to-many relations between
form and meaning can benefit the communication system as long as polysemy
and synonymy is minimised. In his PhD. thesis Kaplan (2000) presented an
experiment in which groups of categories are classified in a variant of the naming
game. In this variant clusters of categories tend to be named with the same
word-form. The categories are distributed as points in the conceptual space,
cf. (Gärdenfors 1996). When an agent cannot name a particular category, the
agent can recruit the name of a category (or meaning) that is mathematically in
the same cluster of the conceptual space. This way a classification of meanings
emerge that are lexicalized with the same word-form. Although in the mobile
robots experiment, such classifications emerge from the existing model, it may
be beneficial for the agents to explicitly recruit neighbouring categories. This is
because such classifications in the mobile robots experiment are in continuous

3Note that De Jong does not apply its experiments on the Talking Heads. De Jong’s exper-
iments are a simulation on the emergence of communication about situation concepts.
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competition with each other. They are thus exposed to antagonising forces.
Hence a deliberate recruitment may overcome this effect.

When looking at competition diagrams, the diagrams in the Talking Heads look
very similar to the ones presented in this thesis. This is not very surprising, since
the competition between the different elements are very similar. Self-organization
at the word-meaning level is established mainly by the update of association
scores. As reported in (Steels 1999; De Jong 2000; Kaplan 2000) the main source
of self-organisation appears to be lateral inhibition. When a form-meaning as-
sociation is used successfully, the score of the winning association is increased
and the scores of other associations with either the word-form or meaning are
inhibited. In the language experiments the lateral inhibition sharpens the differ-
ence between associations that are proven to be successful and connections that
are less successful. This way punishment of possible failures of previously suc-
cessful associations has little influence and the associations are still likely to be
used again. If lateral inhibition is not used, less successful associations can easily
take over effective ones, causing instability. Hence a more stable communication
system is present.

According to De Jong (2000), lateral inhibition is more powerful than the
rewards taken from the evaluated success. In an experiment where success was
not evaluated, but where there was lateral inhibition, guided only by the use
of associations, agents were well capable of learning a communication system.
The observational games confirm the findings of De Jong. Lateral inhibition
disambiguates the level of synonymy and polysemy to a large extend, as observed
section 5.4.

That lateral inhibition is such a powerful mechanism in self-organising systems
should not be a surprise. It has already proved to be a powerful mechanism of
self-organisation in cognitive sciences. The Kohonen networks (or Self-Organising
Maps) showed how topological maps emerge in connectionist models that is fun-
damentally based on lateral inhibition. When activation of certain neurons results
in a desired response of the network, neighbouring neurons are excited and neu-
rons that lie further away are laterally inhibited. Similar mechanisms are also
used in Hebbian learning.

Kaplan (2000) reported an experiment in which the creation probability Ps has
been varied between 0.1 and 1.0 in a series of simulations of the guessing game.
The results showed a similar result as obtained in chapter 5. There are hardly dif-
ferences in the evolution of the communicative success. Nevertheless, the number
of word-forms that enter the language does increase. Kaplan does not investigate
what the influences are for the quality of the communication system that emerged
other than reporting on the time of convergence of the system4.

4Convergence is established when the communicative success becomes 1. Kaplan measures
the success of his experiments by the average time a system needs to converge.



206 Discussion

In the Talking Heads Ps is usually set to 1. No negative side-effects have been
reported on this. But recall that the meanings of the Talking Heads are more
abstract (using e.g. spatial relations) and the aim of the experiment is to name
these meanings. In the mobile robots experiment the aim of the robots is to name
the referents with meanings that more directly correspond to the sensing, rather
than naming the referents by using abstract and relative meanings. In the Talking
Heads word-forms emerge that mean e.g. left, far left or close left and distinctions
that have even more granularity. These word-forms can be used to name different
referents depending on the context of the language game. In the mobile robots
experiments the aim was that the robots learn to name the referents that are
in their context (and categorisation is context-dependent), but independent of
the orientation at which these are observed. To achieve this, a lower setting Ps

is more effective, since it allows more one-to-many relations between form and
meaning to cancel out the one-to-many relations between referent and meaning.
This way a word-form better relates to one referent. Thus solving the symbol
grounding problem more invariantly.

7.5.3 Summary

So, although there are many differences in the details between the Talking Heads
experiment and the mobile robots experiment, the principles of the models used
are the same. The results are therefore also very similar. Due to the fact that the
Talking Heads are better controllable, the heads are better capable of constructing
a coherent context. In addition the differences in sensing between two Talking
Heads is smaller than in the mobile robots experiments. As a result of this,
the maximum communicative success is much lower. Furthermore, arriving at a
stabilised success takes longer in the mobile robots experiments.

Lateral inhibition is found to be crucial for the development of a coherent
lexicon in the Talking Heads (Steels 1999; Kaplan 2000) and in simulation done
by De Jong (2000). Experiments in the observational language game confirm this
finding.

Although the details of the categorisation differs a lot in the different models
used here and in (Steels 1999; De Jong 2000), the discrimination games explored
in all these models reveal similar results. Hence the power lies in the model of
the discrimination games rather than somewhere else.

A similar conclusion can be drawn from the naming game. Although different
interaction schemes may be used, as well as alternative adaptation schemes, the
results of the two experimental set-ups are rather similar.

Hence, most important observation is that the principle of generation, selec-
tion and (cultural) interaction is a strong tool in explaining grounded lexicon
emergence.
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7.6 Future Directions

This thesis showed how the symbol grounding problem can be solved in a real-
world multi agent system in which robots interact with their environment (includ-
ing each other), adapt their ontology and lexicon individually and the resulting
ontology and lexicon are formed through self-organisation. In the experiments,
the symbols have been grounded in a lexicon, however the method of discrimina-
tion games can also be applied to other task oriented applications, like navigation.
In such an application, the naming game can be replaced by another type of game,
for instance a self localisation game.

Since the set-up of this experiment has many elements of a toy problem,
it is necessary to scale up the models and test them in a more realistic real
world environment. The Talking Heads experiment as it is, does not suffice this
requirement because the Heads’ world consists only of geometrical figures. The
experiments currently being investigated by Frédéric Kaplan (2000) are a better
example. In his new experiment he uses a dog-like robot, the AIBO developed
by Sony CSL in Tokyo, that learns a language from human-robot interaction in
a world with real toys (furry animals and balls). More interesting would be an
experiment with a mobile robot navigating in an office environment. In such
an experiment the robot can ground ‘natural’ landmarks like doors, paintings or
whatever exists in an office environment. This way the robots can communicate
about their whereabouts.

Another interesting direction that can also be applied in a navigation task is
grounding a lexicon about actions, like going left and going right. A preliminary
study on this has been published in (Vogt 1999; Vogt 2000). In this study two
robots engage in a follow me game. The robots take turns in being the speaker
and hearer. The speaker drives in front doing obstacle avoidance. The hearer
follows the speaker by doing phototaxis on the light that the speaker carries.
When the speaker changes its direction, it categorises the action and tries to
produce a single word utterance. When the hearer receives the utterance, it also
categorises its actions and tries to interpret the utterance. When the hearer
understands the speaker and it is still following it, the game is successful. Later
in the games, the hearer can try to follow the speaker only by using the speaker’s
utterances.

In this game, categorisation is done by what has been called the identifica-
tion game. By using reconstruction vectors of a time series (first proposed for
categorisation by (Rosenstein and Cohen 1998a)) a segment of the time series
is compared to the prototypes that it constructed. If there is a prototype close
enough to the segment that corresponds to the robot’s action, the identification
game is successful. When the robot fails to identify such a prototype, it creates
a new one, taking the segment as an example.

Integrating the ’perceptual’ language game, the follow me and, for instance
the self-localisation game can result in an interesting experiment where robots
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learn to communicate about navigation. The result may be a path planning game,
where the robots learn a language during a navigation task in such a way that a
path can be planned based on the grounded interactions. In addition, it should
be possible that one robot can give route descriptions to another robot for going
somewhere. Not by saying go forward for 5 meter, then turn 90o left, go

forward 3 meters ..., but by saying go forward until you see a yellow

painting, go left, at the red door .... This idea has been proposed for a
post-doctoral research at the University of Amsterdam in co-operation with the
VUB AI Lab.

An interesting side effect of such an experiment is that it can be integrated
with newly investigated models in which grammatical structures are developed
(Steels 2000). In these new ideas, a procedural cognitive semantics is constructed,
from which a grammar might emerge when applying new types of language games
to the system.

For all future experiments on (mobile) robots in this direction, it is advisable
to use off-the-shelf robots when possible. It turned out that developing the cur-
rent system was immense difficult, and for a great deal the problems had to do
with the unreliability of the sensorimotor board of the robots and the unreliable
sensory equipment. Off-the-shelf robots are tested on their robustness and their
sensorimotor equipment has been calibrated. Hence, modelling a cognitive sys-
tem on such a robot is more easy. A disadvantage is that one has to cope with
the physical limitations of the robots that are used.

Additional interesting future research areas are involved with categorisation, at-
tention and feedback. For instance, is there a way to make a fuzzy categorisation
system that benefits the grounding process? In this thesis the fuzzy system did
not provide much improvement over the normal categorisation, but it has been
mentioned that this might happen in more complex environment. Recruiting
similar categories or meanings in the naming game (Kaplan 2000) might also be
an interesting and beneficial strategy for selecting form-meaning associations and
classification.

Can the categorisation improve when the phase space of the sensorimotor
space is exploited using techniques from non-linear dynamics? In (Rosenstein
and Cohen 1998a; Vogt 1999) such methods have proved to be successful in the
categorisation of time series. Perhaps this could also be applied to the sensing of
real world objects.

Besides the discrimination game, other strategies of categorisation could be
investigated. Distinctions are not the only source of meaning. Identification
is another. An identification game has already been explored in (Vogt 1999;
Vogt 2000). When a segment is close enough to a prototypical category, the
identification is completed. If it fails, new categories may be introduced in the
ontology. Possibly similar strategies can be invented.
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In the current implementations attention has been pre-programmed by means
of internal inspection. It would be interesting to implement other more realistic
strategies modelling attention. Saliency could be one source of attention selector,
novelty could be another one. Several studies argue that humans tend to focus
their attention at salient events in their surroundings and use these events as the
topic of their conversation, see e.g. (Dessalles 2000). Robotic studies could be
made where such mechanisms are investigated. In addition, it is interesting to
investigate ways how such mechanisms could be learned or perhaps acquired by
genetic selection.

A similar argument can be given about the feedback. This has now also been
implemented by means of internal inspection. Other more plausible methods
should be developed. This is best done when having the agents operate and
communicate in a task-oriented application. Then agents can evaluate the success
of a language game based on the outcome of the task, which indicates the success
of the language game.

To make the model physiological more plausible, a more biologically inspired
structure of representation and processing should be investigated. A potential
architecture would be the selectionist architecture proposed by Gerald Edelman
and colleagues (Edelman 1987). One language game model has already been
implemented in the Neural Darwinism approach (Popescu-Belis 1997). Another
more simple neuronal implementation of the language game is done by Dircks
and Stoness (1999).

7.7 Conclusions

This thesis showed how the symbol grounding problem is solved in a particular
experiment. In this experiment, two robots developed a shared and grounded
lexicon about the light sources that they could detect in their environment. In
the experiments the robots construct relations between the referents, meanings
and forms so that they can communicate the referents by using forms efficiently.
Conform the theories on semiotics, the relation between a referent, meaning and
form is called a symbol.

The model that has been developed lets the robots do a hybrid set of tasks:
sensing, segmentation, feature extraction, categorisation, discrimination, naming,
evaluating feedback and adaptation. This way the robots develop a shared lexi-
con based on three principles as hypothesised by Luc Steels (1996b): individual
adaptation, cultural evolution and self-organisation.

Because the robots detect their environment differently under different cir-
cumstances, the categorisations of the light sources they try to name differ as
well. However, the mechanisms that guide the lexicon formation (i.e. the nam-
ing game model) allow many-to-many relations between category (meaning) and
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form. Feedback or joint attention cause the robots to select relations in such
a way that there emerges more or less one-to-many relations between form and
meaning. This way the robots construct a lexicon that enables them to commu-
nicate the referents rather consistently.

It appeared that the physical conditions of the robots influence their ability to
co-ordinate their interactions, which in turn influenced their capability to ground
a shared lexicon.

So, the symbol grounding problem has been solved for this particular experi-
mental set-up, but there is still a long way to go for robotic agents to develop a
grounded language within its full scope. Nevertheless, this thesis provides a good
step forward on the road to understanding and modelling cognition.
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Glossary

Actual success The actual success is a measure that calculates the average
success of the past 100 language games. A language game is successful
when both robots of a language successfully identified a symbol that has
the same form and stands for the same referent. Often this is the same as
the communicative success. In these cases, the latter measure will be used.

Binary subspace A binary subspace is a region in the feature space. Binary
subspaces are constructed by splitting another subspace in two equal halves
in one dimension of the feature space. A binary subspace is a possible
definition of a category.

Categorisation Categorisation is the process in which a feature vector is related
to one or more categories. In the experiments a category is defined by either
a prototypical category or a binary subspace.

Category A category is defined by a region in the feature space.

Communicative success The communicative success is a measure that calcu-
lates the average success of the past 100 language games as evaluated by
the robots themselves. This need not be the same as the actual success.

Context A context is the set of segments identified from a single sensing event.

Consistency Consistency is a measure that indicates how consistent the refer-
ents are named by some word-forms.

Discrimination Discrimination is a process where the robot identifies categories
that relate to one feature vector, but not to another feature vector from the
same view. This discrimination takes place at the category level. Harnad
(1990) defines discrimination directly at the level of perception. Unless
mentioned otherwise, the term discrimination is used at the category level.
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Discriminative success The discriminative success is a measure that calcu-
lates the average success of the discrimination games of a robot in the past
100 language games. If a robot does not play a discrimination game in a
language game, the discrimination game is considered to be a failure.

Distinctive category A distinctive category is a category that relates to some
segment in a context, but not to any other segment in the same context.

Distinctiveness Distinctiveness is a measure that indicates to what degree the
meanings used by a robot relates to the same referent as before.

Feature A feature is a value between [0, 1] that designates a property of the
sensed segment.

Feature extraction Feature extraction calculates some property of the sensed
segment from the sensor data. It reduces the complexity of the segment
and returns a set of values that designate features.

Feature space The feature space is an n-dimensional space where each dimen-
sion is related to some property that can be calculated from the sensory
data that a robot can sense. In the experiments described here there are 4
dimensions, each relating to a property of a sensory channel. The domain
of each dimension are real values between [0, 1].

Feature vector A feature vector is an n-dimensional vector in the feature space
that has as its elements the different features that are extracted from a
segment. This way a feature vector is related to a segment.

Feedback Feedback is the process where the robots evaluate the effectiveness of
a language game, i.e. whether both robots communicated the same referent.
The feedback evaluated can be both positive as negative.

Form A form is an arbitrary string of characters from an alphabet.

Iconisation Iconisation is the forming iconic representations. It is a term that
Harnad (1990) identifies as a subpart of solving the symbol grounding prob-
lem.

Identification Harnad (1990) defines identification as the invariant categorisa-
tion of sensing a real world phenomenon. In this thesis this means that both
robots successfully related the referent to a meaning and a form. Although
the meaning can be different, the referent and form must be the same for
both robots.

Joint attention With joint attention is meant the state where both participants
of a language game know the topic prior to the verbal communication.
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Lexicon A lexicon is the set of form-meaning pairs that a robot has stored in
its memory.

Meaning In the theory of semiotics meaning is the sense that is made of the
symbol. The meaning arises in the interpretation of the symbol. In the
experiments this is the category that a robot used in a language game to
name a referent.

Parsimony Parsimony is a measure that indicates to what degree a referent
gives rise to the use of a unique meaning.

Polysemy Polysemy is the notion that a form is used to name more than one
referent.

Prototype A prototype is defined as a point in the n-dimensional feature space
and it is used for defining a category.

Prototypical category A prototypical category is a category that is repre-
sented in the feature space by a prototype. It is defined by the region
of which the points in the feature space are nearest to the prototype.

Referent A referent is that what the symbol ’stands for’. In the experiments,
the referents in the robots’ environment are light sources.

Segment A segment is a set of data from the sensory channels that is obtained
by segmentation.

Segmentation Segmentation is the process in which the aim is, given a sensed
data set, to construct regions that corresponds directly to a real world
object. It is implemented by a process that identifies from a sensed data
set connected areas that are uniform in some way.

Sensing Sensing is the process in which a robot records a view of its surround-
ings. In the experiments described here, the robots make a full 360o turn
while recording. Sensing results in a set of data points given on the sensory
channels.

Sensory channel A sensory channel is the channel in which the numeric output
of a particular sensor flows.

Specificity Specificity is a measure that indicates to what degree forms are used
to name a unique referent.

Symbol The definition of a symbol is adopted from C.S. Peirce’s theory on
semiotics. A symbol is defined as the relation between a referent, a meaning
and a form. This relation is often illustrated with the semiotic triangle.
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Synonymy Synonymy is the notion that one referent is named by more than
one form.

Topic The segment that is the subject of a discrimination game and/or language
game is called the topic.

Word-form See form.



Appendix B

PDL Code

In this appendix the PDL program that runs on the physical part of the robots
is presented. Its purpose is to sketch how the behaviour-based cognitive archi-
tecture presented in chapter 3 can be implemented in PDL. The language game

scenario that the program implements has partly been introduced in chapter 3.
The scenario is extended with the part in which the robots can find each other
autonomously, as discussed in more detail in (Steels and Vogt 1997; Vogt 1997).

The program is adapted such that there is more readability than the original
program. This means that some debug facilities are left out, as well as some
by-passes, which have been made to solve some not yet understood peculiarities
of the robots’ behaviours. In addition, although no actual implementation has
been made in PDL, it is sketched how the cognitive part of the language game
may be implemented in PDL. This sketch, however, leaves away the critical parts
of the segmentation, discrimination and naming processes.

PDL has been introduced in chapter 2. PDL is implemented in ANSI C. Part of
the code is in C, but it should be readable also for non-C programmers. Remarks
are given between /* and */ or behind a double slash: //. PDL processes are
defined as functions, which are usually preceded by a void.

The Code

/*Here are some include files with libraries for PDL, SMBII and C.

Also some definitions and declarations are present.

These are all left out for clarity.

*/
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#define NoPulse 25

#define Relax 15

const float ON=200.0f,

OFF=1.0f;

/*PDL declarations of quantities.

The network is constructed at the end of the program.

*/

quantity Identity;

quantity LFBumper, RFBumper, LBBumper, RBBumper;

//Left- and Right- Front and Back Bumpers

quantity L0,L1,L2,L3; //The white light sensors.

quantity LeftIR, FrontIR, RightIR;

quantity LM, RM;//Left- and Right Motors

quantity IREm0,IREm1,IREm2,IREm3;//IR emitters

/*Basic behavior processes

Touch Based Obsacle Avoidance (TBOA) */

void touch_based_obstacle_avoidance(){

int T,DL=1,DR=1;

/*If both front bumpers are active one of the directions to turn

is randomly chosen. The appropriate direction DL(eft) or DR(ight)

is set to 0. */

if ((value(LFBumper))&&(value(RFBumper))){

T=random(2);

if (T)

DL=0;

else

DR=0;

}

/*If LFBumper and MotTBOA (motivation for obstacle avoidance

are active, then LM:=-Retract and RM:=-LargeRetract

For the RFBumper it is the other way around*/

add_value(LM,

-DL*value(LFBumper)*MotTBOA*(Retract+value(LM)));
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add_value(RM,

-DL*value(LFBumper)*MotTBOA*(LargeRetract+value(RM)));

add_value(LM,

-DR*value(RFBumper)*MotTBOA*(LargeRetract+value(LM)));

add_value(RM,

-DR*value(RFBumper)*MotTBOA*(Retract+value(RM)));

/*If one of the back-bumpers is pressed and its motivation (MotTBOA)

is on, the motor-values are set to the default speed DS.*/

add_value(LM, value(LBBumper)*MotTBOA*(DS-value(LM)));

add_value(RM, value(LBBumper)*MotTBOA*(DS-value(RM)));

add_value(LM, value(RBBumper)*MotTBOA*(DS-value(LM)));

add_value(RM, value(RBBumper)*MotTBOA*(DS-value(RM)));

}

/*Rotation with RotateSpeed in direction of MotRot.

If MotRot=1, then robot turns right.

If MotRot=-1, then robot turns left.*/

void rotate(void){

add_value(LM,MotRot*(RotateSpeed-value(LM)));

add_value(RM,-MotRot*(RotateSpeed+value(RM)));

}

/*Active IR Obstacle Avoidance (AOA) and IR-taxis

Since the IR modulation for AOA is the inverse of IR-taxis,

the same process is used. So, if MotIRT=1, then IR-taxis is

applied, and if MotIRT=-1, AOA is applied.

The IR modulation is regulated in the IR emission module ...

inv_sigmoid dampens the difference between the left and right IR,

so that large differences in IR don’t give too large differences

in motorvalues.

*/

float inv_sigmoid(float x){

float Alpha=2.5,Beta=0.3;
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return (1/(1+exp(Alpha*(x-Beta))));

}

void IRTaxis(void){

float F=inv_sigmoid(abs((value(RightIR)-value(LeftIR)))/255.0);

add_value(LM,0.1*F*MotIRT*(value(RightIR)-value(LeftIR)));

add_value(RM,-0.1*F*MotIRT*(value(RightIR)-value(LeftIR)));

}

/*When MotFW is on, the robot will try to accelerate towards default speed.

The motor-values increase asymptotically towards this DS.*/

void towards_default(void){

add_value(LM,MotFW*(DS-value(LM))/20.0);

add_value(RM,MotFW*(DS-value(RM))/20.0);

}

/*If MotStop=1, the motor-values become zero.*/

void stopMotors(void){

add_value(LM,-MotStop*value(LM));

add_value(RM,-MotStop*value(RM));

}

/*Pulsing the IR. During their default behavior the robots emit pulses

of IR so that the robots can detect each other’s presence.*/

void pulse_IR(void){

if (PulseIR){

if ((Timer%(Pulse+NoPulse))>Pulse)

IR=ON;

else

IR=OFF;

}

}

/*Emitting the IR. The modulation of the IR is set to 1

if the IR=1 (this means the IR is OFF), then the robot

can detect other IR sources.

If the IR > 1, the modulation is set to 95, so the robot

can AND emit IR AND detect its own IR.

*/
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void emitIR(void){

if (IR>1)

SMB2IRModDc(95);

else

SMB2IRModDc(1);

add_value(IREm0,(IR-value(IREm0)));

add_value(IREm1,(IR-value(IREm1)));

add_value(IREm2,(IR-value(IREm2)));

add_value(IREm3,(IR-value(IREm3)));

}

/*Sending radio messages.

The 0 gives the reliability bit (i.e. unreliable transmission)

receipient is the identity of the receiving robot.

strlngth is the length of the message in bytes.

out_buffer is the message to be send. This is specified where

necessary.*/

void send_message(void){

if (SEND){

radio_link_tx(0,receipient,strlngth,(unsigned char *)out_buffer);

SEND=0;

}

}

/*timing increments the Timer and evaluates whether or not the

robot is in a particular state too long. If so, the robot will

stop its current behavior and will return to the default state.

*/

void timing(void){

Timer++;

if ((Timer>MaxTime)&&((StateHearer)||(StateSpeaker))){

StateSpeaker=0;

StateHearer=0;

Timer=0;

}

}

/*Reading radio linked messages */
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void read_message(void){

int i;

Expression=0;

while (radio_link_rx((unsigned char *)in_buffer)){

message_length=(int)in_buffer[0];

who_from=(int)in_buffer[1];

for (i=1;i<=message_length;i++)

message[i-1]=(char)in_buffer[i+1];

Expression=1;

}

}

/*Segmentation: In the actual implementation, the sensor-data is

transmitted to a radio base station, connected to a PC.

How the segmentation is done is discussed extensively in chapter 3.

The actual segmentation takes place off-line and the implementation

details are left out here for readability reasons.

*/

void segmentation(){

if (SEGMENTATION){

/*Read and process values of quantities L0, L1, L2 and L3.

This process includes sensing and featue extraction.

For each segment found, the feature values are calculated,

the segment is added to the context and NrOfSegments is

incremented.

*/

}

}

/*The processes discrimination_game, production, understanding and

feedbackadaptation are all processed off-board. They are given

for completeness, however the implementation details are left out.

For the details, see chapter 4.

*/

void discrimination_game(){

if (DG){

set_of_concepts=discriminate(Topic);

Discriminated=1;

DG=0;

}

}
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void production(){

if (Produce){

Utterance=production(Topic);

Produced=1;

Produce=0;

}

}

void understanding(){

if (Decode){

Association=decode(Utterance);

Decoded=1;

Decode=0;

}

}

void feedbackadaptation(){

if (FeedbackAdaptate){

Feedback=interpret(Association);

adapt_lexicon(Association);

Adapted=1;

FeedbackAdaptate=0;

}

}

/*So far (for now) the cognitive processes, which are mentioned for

completeness. The code continues with on-board processing.

maximize() detects a maximum in the IR flow of the front IR sensor.

Note that it is a function and not a process.*/

int maximize(){

int N=0;

float diff;

diff=value(FrontIR)-PreviousIR;

if ((diff<=0)&&(Previous>0)&&

(value(FrontIR)>IRClose))

N=1;

Previous=diff;

PreviousIR=value(FrontIR);

return N;
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}

/*speaker() implements the finite state automaton of the speaker.

Each state is divided in a set op actions and final conditions.

The actions are executed by the basic behaviors or processes as

defined above.

The basic behaviors are activated by setting the motivations to

their appropriate values. The motivations are specified with MotXX,

where XX refers to the particular behavior.

For reasons of clarity not all motivations are continously given.

Unless otherwise specified, all motivations are initially set to 0.

After changes, when a motivation is not given, its values is as

last specified.

The final conditions of one state are either the pre-conditions of

the next state, or the pre-condition of state 0 in which the

default_behavior process (see below) take over. The latter type of

final condition is modeled by MaxTime and the process timing.

MaxTime specifies how long a robot may remain in a particular state.

*/

void speaker(void){

int i,j,m,Flag;

switch(StateSpeaker){

case 0:{/*Default state. See default_behavior().*/

break;

}

case 1:{

/*Waiting for confirmation and after the IR-switch has been

relaxed, the speaker can determine in which direction to

turn. Orienting towards the hearer helps finding it.*/

//Actions.

MotStop=1;

IR=OFF;

MotTBOA=1;

if (Expression)

if (strcmp(message[0],"confirm")==0)
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Confirm=1;

//Final conditions

MaxTime=RotationTime;

if ((Timer>Relax)&&(Confirm)){

if (value(LeftIR)>value(RightIR))

MotRot=-1; /*Turning left*/

else

MotRot=1; /*Turning right*/

StateSpeaker=2;

Timer=0;

}

break;

}

case 2:{/*Initial orientation*/

//Actions

IR=OFF;

MotStop=0;

MotTBOA=0; /*If robot rotates, obstacle avoidance is nasty side-effect*/

//Final conditions

if (Timer>(RotationTime-1)){

/*If robot has not found other robot yet,

keep searching using taxis in next state.

Since the MaxTime in this state is

RotationTime, the transition has to be made

before, otherwise the state will be

timed-out by the process ‘timing’*/

StateSpeaker=2;

Timer=0;

}

if (maximize()){

if (value(FrontIR)<IRCloseEnough)

StateSpeaker=3;/*Distance to hearer is too big.*/

else

StateSpeaker=4;/*Distance to hearer is ok.*/

MotStop=1;/*Setting motor-values to 0.*/

Timer=0;

}

break;

}

case 3:{/*Get closer to the hearer by using IR taxis.*/

//Actions
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MotFW=1;

MotIRT=1;

MotStop=0;

MotRot=0;

IR=OFF;

MotTBOA=1;

//Final condition

MaxTime=SearchTime;

if (value(FrontIR)>IRCloseEnough){

StateSpeaker=4;

Timer=0;

}

break;

}

case 4:{/*Final alignment back-to-back*/

//Actions

MotFW=0;

MotIRT=0;

MotStop=0;

MotTBOA=0;

MotRot=1;

IR=OFF;

//Final conditions

MaxTime=RotationTime;

/*If the robot detects enough IR with its LeftBackIR sensor,

it stops. It stands still approximately when it is facing

the opponent robot backwards.

Using taxis would be more sophistigated, but takes longer and

is more error-prone.

Since the hearer must transfer to the next state simultaneously,

the speaker also sends a message.*/

if (value(LeftBackIR)>IRCloseEnough){

StateSpeaker=5;

strcpy(out_buffer,"aligned");

SEND=1;

Timer=0;

}

break;

}
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case 5:{/*The hearer does its alignment. The speaker waits while

emitting IR.*/

//Actions

MotStop=1;

MotRot=0;

IR=ON;

MotTBOA=1;

//Final condition

MaxTime=2*RotationTime;

if ((Expression)&&(strcmp(message,"aligned")==0)){

/*There is a message saying the hearer aligned successfully.

The speaker can start the sensing.*/

MotStop=1;

StateSpeaker=6;

Timer=0;

}

break;

}

case 6:{/*The speaker does its sensing, segmentation and feature

extraction.

Here starts the process as described in the thesis.*/

//Actions

MotStop=0;

MotRot=1;

IR=0.0f;

MotTBOA=0;

SEGMENTATION=1;

//Final condition

MaxTime=2.5*RotationTime;

/*After a particular time, the speaker stops rotating when it

again detects the IR with its LeftBack sensor.*/

if ((Timer>(1.75*RotationTime))&&

(value(LeftBack)>IRCloseEnough)){

StateSpeaker=7;

strcpy(out_buffer,"perceived");

SEND=1;//This way the hearer transits state as well.

Timer=0;

}
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break;

}

case 7:{/*Now the hearer does its sensing, segmentation and

feature extraction.*/

//Actions

MotStop=1;

MotRot=0;

IR=ON;

MotTBOA=1;

//Final conditions

MaxTime=3*RotationTime;

/*Hearer finished sensing. The cognitive part can start.*/

if ((Expression)&&(strcmp(message,"perceived")==0)){

StateSpeaker=8;

Timer=0;

}

break;

}

case 8:{/*The rest of the speaker’s FSA is how it would look like

if the cognitive part is processed on-board.

For clarity the details are left out. See chapters 3 and 4

for details.*/

//Actions

MotStop=1;

if (!Discriminated){

Topic=random(NrOfSegments);

DG=1;

}

else{//Final condition

Discriminated=0;

if (NrOfConcepts>0)

StateSpeaker=9; /*Discimination game was success.*/

else{/*Discimination game was a failure.

Language game ends in failure.

Ontology adapted during discrimination game.*/

StateSpeaker=0;

strcpy(out_buffer,"failure");

SEND=1;

LG++;



227

}

Timer=0;

}

break;

}

case 9:{/*The speaker’s word-form production.*/

//Actions

MotStop=1;

if (!Produced)

Produce=1;

else{//Final condition

Produced=0;

if (strcmp(Utterance,"nil")){

strcpy(out_buffer,Utterance);

/*The speaker produced an meaningful utterance*/

StateSpeaker=10;

}

else{/*The speaker could not produce an utterance.

Adaptation (word-creation) has already been

done during production.*/

strcpy(out_buffer,"failure");

StateSpeaker=0;

LG++;

}

SEND=1;

}

break;

}

case 10:{/*Feedback and Adaptation.*/

//Actions

MotStop=1;

if (Expression){

/*Hearer provided feedback, which needs to be interpreted.

After that the lexicon can be adapted.*/

FeedbackAdaptate=1;

}

//Final condition

if (Adapted){

StateSpeaker=0;

LG++;

Adapted=0;
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}

break;

}

}

}

/*hearer() implements the finite state automaton of the hearer.*/

void hearer(void){

int i,j,Flag;

switch(StateHearer){

case 0:{/*Default state. See default_behavior().*/

break;

}

case 1:{/*Hearer starts waiting until speaker aligned.*/

//Actions

MotStop=1;

MotTBOA=1;

IR=ON;

//Final conditions

MaxTime=AlignTime;

if ((Expression)&&(strcmp(message[0],"aligned")==0)){

StateHearer=2;

Timer=0;

}

break;

}

case 2:{/*The hearer has to wait for the IR to relaxate.

Otherwise the robot cannot detect IR of the other.*/

//Actions

MotStop=1;

MotTBOA=1;

IR=OFF;

//Final condition

if (Timer>Relax){

Timer=0;

StateHearer=3;

}

break;

}

case 3:{/*Rotation for alignment.*/
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//Actions

MotRot=1;

MotStop=0;

MotTBOA=0;

IR=OFF;

//Final conditions

MaxTime=RotationTime;

if (value(LeftBackIR)>IRCloseEnough){

StateHearer=4;

strcpy(message,"aligned");

SEND=1;//The speaker has to transit state as well.

Timer=0;

}

break;

}

case 4:{/*The speaker does its sensing, segmentation and

feature extraction; the hearer waits.*/

//Actions

MotStop=1;

MotRot=0;

MotTBOA=1;

IR=ON;

//Final conditions

MaxTime=3*RotationTime;

if ((Expression)&&(strcmp(message,"perceived")==0)){

StateHearer=5;

Timer=0;

}

break;

}

case 5:{/*The hearer does its sensing, segmentation and

feature extraction.*/

//Actions

MotStop=1;

MotRot=1;

IR=OFF;

MotTBOA=0;

SEGMENTATION=1;

//Final conditions

MaxTime=2.5*RotationTime;
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if ((Timer>(1.75*RotationTime))&&

(value(LeftBack)>IRCloseEnough)){

StateHearer=6;

strcpy(out_buffer,"perceived");

SEND=1;//The speaker has to transit state as well.

Timer=0;

}

break;

}

case 6:{/*The hearer plays discrimination games for each segment

in its context.*/

//Actions

MotStop=1;

if (Topic<NrOfSegments){

Topic++;

DG=1;

}

else{//Final condition

StateHearer=7;

Timer=0;

}

break;

}

case 7:{/*The hearer waits for the speaker’s utterance.*/

//Actions

MotStop=1;

//Final conditions

MaxTime=ProductionTime;

if (Expression){

if (strcmp(message,"failure")){

/*The speaker produced an utterance.*/

strcpy(Utterance,message);

StateHearer=8;

}

else{/*The speaker failed either to produce or discriminate

hence the language game fails and is finished for the hearer.*/

StateHearer=0;

LG++;

}

Timer=0;

}
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break;

}

case 8:{/*The hearer tries to understand the speaker’s utterance.*/

//Actions

MotStop=1;

if (!Decoded)

Decode=1;

else{//Final condition

Decoded=0;

StateHearer=9;

}

break;

}

case 9:{/*Feedback and adaptation.*/

//Actions

//No physical actions are specified.

if (!Adapted)

FeedbackAdaptate=1;

else{//Final condition

Adapted=0;

strcpy(out_buffer,Feedback);

StateHearer=0;

LG++;

}

break;

}

}

}

/*default_behavior describes the robots’ behavior when they are

exploring their environment ’arbitrary’ in order to find each

other.

When one robot finds another contact is made, and the robots

enter the first state in either the speaker- or hearer mode.

*/

void default_behavior(void)

{

if ((!StateSpeaker)&&(!StateHearer)){

//Actions
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MotStop=0;

MotFW=1;

MotIRT=-1;/*Inverse IR-taxis is Active Obstacle Avoidance*/

MotRot=0;

Pulse=1;/*The robots pulse IR to detect each other.*/

MotTBOA=1;

//Final conditions

if ((value(FrontIR)>Threshold)&&

((Timer%(Pulse+NoPulse)>(Pulse+Relax)))){

/*The robot is sure it does not detect reflected IR of itself*/

strcpy(message,"communicate");

SEND=1;

StateSpeaker=1;

}

if ((Expression)&&(strcmp(message,"communicate")==0)){

strcpy(message,"confirm");

SEND=1;

StateHearer=1;

Timer=0;

}

}

}

/* Initializing the robot and some of its variables */

void initialize(void)

{

if (Init>0){

if (value(Identity)==1){

//Each robot has its own identity, which is automatically detected.

Pulse=25;

//Some other initializations.

}

else{

//Each robot has its own identity, which is automatically detected.

Pulse=25;

//Some other initializations.

}

StateSpeaker=0;

StateHearer=0;

//Some other initializations.

Init++;
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}

}

/*The main program of PDL. Here the PDL network is initialized,

defined and constructed.

*/

void main(void){

printf("Starting Execution\n\r");

init_pdl();

/*Quantities are added to the network.

Each quantity has a name, an upper value,

a lower value and an initial value.

*/

//Sensors:

Identity = add_quantity("Identity", 1.0,0.0,0.0);

LFBumper = add_quantity("LeftFrontBumper", 1.0,0.0,1.0);

RFBumper = add_quantity("RightFrontBumper", 1.0,0.0,1.0);

LBBumper = add_quantity("LeftBackBumper", 1.0,0.0,1.0);

RBBumper = add_quantity("RightBackBumper", 1.0,0.0,1.0);

L0 = add_quantity("WhiteLight0",255.0,0.0,0.0);

L1 = add_quantity("WhiteLight1",255.0,0.0,0.0);

L2 = add_quantity("WhiteLight2",255.0,0.0,0.0);

L3 = add_quantity("WhiteLight3",255.0,0.0,0.0);

LeftIR = add_quantity("LeftIR",255.0,0.0,0.0);

FrontIR = add_quantity("FrontIR",255.0,0.0,0.0);

RightIR = add_quantity("RightIR",255.0,0.0,0.0);

LeftBackIR = add_quantity("LeftBackIR",255.0,0.0,0.0);

//Actuators:

LM = add_quantity("LeftMotor",100.0,-100.0,0.0);

RM = add_quantity("RightMotor",100.0,-100.0,0.0);

IREm0 = add_quantity("IREm0",200.0,0.0,0.0);

IREm1 = add_quantity("IREm1",200.0,0.0,0.0);

IREm2 = add_quantity("IREm2",200.0,0.0,0.0);

IREm3 = add_quantity("IREm3",200.0,0.0,0.0);

//Connections with the SMBII are made.

connect_sensor(SID_BIN1, LFBumper);
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connect_sensor(SID_BIN2, RFBumper);

connect_sensor(SID_BIN3, LBBumper);

connect_sensor(SID_BIN7, RBBumper);

connect_sensor(SID_BIN4, Identity);

connect_sensor(SID_AN0,L0);

connect_sensor(SID_AN1,L1);

connect_sensor(SID_AN2,L2);

connect_sensor(SID_AN3,L3);

connect_sensor(SID_IR1,LeftIR);

connect_sensor(SID_IR2,FrontIR);

connect_sensor(SID_IR3,RightIR);

connect_sensor(SID_IR4,LeftBackIR);

connect_actuator(AID_MOTOR2,RM);

connect_actuator(AID_MOTOR1,LM);

connect_actuator(AID_IREM0,IREm0);

connect_actuator(AID_IREM1,IREm1);

connect_actuator(AID_IREM2,IREm2);

connect_actuator(AID_IREM3,IREm3);

//Processes are added to the network.

add_process("initialize",initialize);

add_process("touch_based_obstacle_avoidance",

touch_based_obstacle_avoidance);

add_process("rotate",rotate);

add_process("IRTaxis",IRTaxis);

add_process("towards_default",towards_default);

add_process("stopMotors",stopMotors);

add_process("emitIR",emitIR);

add_process("read_message",read_message);

add_process("send_message",send_message);

add_process("timing",timing);

add_process("segmentation",segmentation);

add_process("discrimination_game",discrimination_game);

add_process("production",production);

add_process("understanding",understanding);

add_process("feedbackadaptation",feedbackadaptation);

add_process("speaker",speaker);

add_process("hearer",hearer);
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add_process("default_behavior",default_behavior);

/*The PDL program is run. This program is implemented as

an infinite loop.*/

run_pdl(-1L);

}
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Appendix C

Sensory Data Distribution

To investigate some properties of real-world experiments, it is interesting to know
how the frequency of segments corresponding to light sources is distributed. Fig-
ure C.1 shows how this distribution is found in the recorded data set. It is
interesting to note that light source L0 is detected most often; r1 segmented L0
on the average even more than once a situation. Figure C.2 shows the distribu-
tion of context size frequencies. It should be clear that contexts are not always
of equal size within one situation, nor can one observe a normal distribution of
set sizes.

Figures C.3 and C.4 show how the data is distributed after segmentation and
feature extraction has been applied on the basic data set. The figures show the
distributions of features for dimensions (a) WL0, (b) WL1, (c) WL2 and (d) WL3
after perceiving light sources L0 and L3. The x-axes show the intervals between
0 and 1 with step-sizes of 0.1. The lower bound is included in the intervals and
the upper bound is not. The last ‘interval’ shows the frequency of feature value
1.0. The figures should be read as follows: When a certain sensory channel reads
feature value 1.0, this sensory channel corresponds with the light source at the
same height (e.g. sc0 corresponds with L0). The relative frequency of reading
feature value 1.0 for this referent is 1. The relative frequencies of all other sensory
channels is distributed on the sensory space. It should be clear that most feature
values of other sensory channels read values in the interval [0.0, 0.1〉. However,
there are more sensory channels that are not directly adjacent. Between 0.1
and 1.0 the distribution is low and not structurally distributed. Hence the data
shows no clear laws in the distribution. This indicates the noisy perception of
the robots. Noise that cannot directly be simulated.
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Figure C.1: The distribution of the frequency of corresponding segments in the data

set for robots r0 (a) and r1 (b).
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Figure C.2: The frequency distribution of context sizes of robots r0 (a) and r1 (b).



239

0

0.2

0.4

0.6

0.8

1

<0.1<0.2<0.3<0.4<0.5<0.6<0.7<0.8<0.9<1.0 1.0

F

I

(a) WL0

0

0.2

0.4

0.6

0.8

1

<0.1<0.2<0.3<0.4<0.5<0.6<0.7<0.8<0.9<1.0 1.0

F

I

(b) WL1

0

0.2

0.4

0.6

0.8

1

<0.1<0.2<0.3<0.4<0.5<0.6<0.7<0.8<0.9<1.0 1.0

F

I

(c) WL2

0

0.2

0.4

0.6

0.8

1

<0.1<0.2<0.3<0.4<0.5<0.6<0.7<0.8<0.9<1.0 1.0

F

I

(d) WL3

Figure C.3: The distribution of feature values observed for light source L0.
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Figure C.4: The distribution of feature values observed for light source L3.



Appendix D

Lexicon and Ontology

In this appendix the lexicon and ontology of the basic experiment (chapter 4) is
given. Of some additional meanings the legend is given (tables D.5 and D.6). The
lexicons (tables D.1 and D.2) and ontologies (tables D.3 and D.4) give weighted
conditional probabilities based on co-occurrences of word and meaning or meaning
and referent. These probabilities P (ci|bj) are calculated as follows:

P (ci|bj) =
P (ci)

∑n
j=1 P (ci ∧ bj)

·
P (ci)

P (bj)
(D.1)

where ci are word-forms and bj are the concepts when calculating the lexical
entries P (F |C). When calculating the probabilities for the ontologies ci are the
referents and bj are the concepts, yielding P (R|C). The tables only show a part
of the lexicon and ontology. Entries that have probabilities ≤ 0.01 are left out.

The legends of some occurring meanings for robots r0 and r1 are given in
tables D.5 and D.6.



242 Lexicon and Ontology

C-F huma xomu wosa kyga vyqa guhu lyzu poma pugu wely
M53 0.58 - - - - - - - - -
M67 0.08 - - - - - - - - -
M30 0.02 0.37 - - - - - - - -
M39 0.01 - - - - - - - - -
M18 - 0.14 - - - - - - - -
M20 - 0.09 - - - - - - - -
M17 - 0.04 - - - - - - - -
M22 - 0.03 - - - - - - - -
M43 - 0.03 - - - - - - - -
M16 - 0.02 - - - - - - - -
M26 - - 0.37 - - - - 0.11 - -
M5 - - - 0.40 - - - - - -
M27 - - - 0.07 - - - - - -
M33 - - - 0.04 - - - - - -
M15 - - - 0.02 - - - - - -
M58 - - - - 0.51 - - - - -
M393 - - - - 0.08 - - - - -
M211 - - - - 0.04 - - - - -
M484 - - - - 0.04 - - - - -
M23 - - - - - 0.80 - - - -
M61 - - - 0.08 - - 0.44 0.01 - -
M55 - - - 0.01 - - 0.11 - - -
M394 - - - - - - 0.02 - - -
M46 - - - - - - 0.01 - - -
M169 0.01 - - - - - - - 0.46 -
M238 - - - - - - - - 0.26 -
M121 - - - - - - - - - 1.00

Table D.1: The lexicon of robot r0. The cells of the table give the weighted condi-

tional probabilities that a word-form is used to name a meaning. These probabilities

are based on the occurrence frequencies in one of the experiments after 5,000 language

games. Associations with probabilities lower than 0.01 are left out for clarity.
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C-B huma wosa xomu kyga vyqa guhe lyzu poma puga wely
M4 0.44 - 0.02 - 0.01 - - - 0.01 -
M51 0.12 - - - - - - - - -
M55 0.08 - - - - - - - - -
M37 0.03 - - - - - - - - -
M1 0.02 - - - - - - - - -
M69 0.01 - - - - - - - - -
M91 0.01 - - - - - - 0.03 - -
M5 - 0.33 - - - - - - - -
M39 - - 0.40 - - - - - - -
M81 - - 0.10 - - - - 0.12 - -
M13 - - 0.05 - - - - - - -
M96 - - 0.03 - - - - - - -
M40 - - 0.02 - - - - - - -
M16 - - 0.02 - - - - - - -
M65 - - 0.02 - 0.07 - - - - -
M46 - - 0.02 - - - - - - -
M21 - - 0.01 - - - - - - -
M242 - - 0.01 - 0.04 - - - - -
M0 - - - 0.30 - - - - - -
M22 - - - 0.18 - - - - - 0.01
M78 - - - 0.09 - - - - - -
M68 - - - 0.08 0.01 - - 0.01 - -
M75 - - - 0.06 - - - - - -
M85 - - - - 0.04 - - - - -
M389 - - - - - 0.08 - - - -
M42 - - - - - 0.07 - - - -
M44 - - - - - - 0.81 - - -
M363 - - - - - - - 0.12 - -
M102 - - - - - - - 0.03 - -
M287 - - - - - - - 0.01 - -
M62 - - - - - - - - 0.19 -

Table D.2: The lexicon of robot r1.
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C-B 0 1 2 3
M53 0.68 - - -
M55 0.10 - - -
M67 0.03 - - -
M169 0.03 - - -
M33 0.01 - 0.01 -
M128 0.01 - - -
M187 0.01 - - -
M43 0.01 0.01 - -
M46 0.01 - - -
M30 - 0.68 - -
M18 - 0.18 - -
M16 - 0.03 - -
M5 - - 0.45 -
M20 - - 0.21 -
M27 - - 0.13 -
M23 - - 0.03 -
M22 - - 0.03 -
M26 - - 0.02 -
M15 - - 0.02 -
M89 - - 0.02 -
M37 - - 0.01 -
M233 - - 0.01 -
M61 - - - 0.84
M58 - - - 0.08
M394 - - - 0.02
M90 - - - 0.01
M393 - - - 0.01

Table D.3: Ontology of robot r0 in relation to the referents for which they have

been used. The weighted frequencies give the relative frequency that a given meaning

co-occurs with the particular referent.
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C-B 0 1 2 3
M4 0.70 - - -
M55 0.07 - - -
M65 0.05 - - -
M51 0.04 0.02 - -
M37 0.03 - - -
M39 - 0.58 - -
M81 - 0.17 - -
M13 - 0.06 - -
M96 - 0.03 - -
M94 - 0.02 - -
M16 - 0.01 - -
M1 - 0.01 - -
M0 - - 0.46 -
M22 - - 0.27 -
M75 - - 0.08 -
M78 - - 0.05 0.01
M44 - - - 0.73
M68 - - - 0.15
M40 - - - 0.03
M242 - - 0.05 -

Table D.4: The ontology of robot r1.
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M15 (0.02, 0.31, 1.00, 0.02)1

M16 (0.02, 0.99, 0.30, 0.02)1

M17 (0.56, 0.99, 0.30, 0.02)1

M22 (0.02, 0.01, 1.00, 0.99)1

M23 (0.56, 0.31, 1.00, 0.44)1

M26 (0.02, 0.31, 1.00, 0.99)1

M33 (1.00, 0.99, 1.00, 0.99)1

M39 (1.00, 0.31, 1.00, 0.44)1

M43 (1.00, 0.99, 0.30, 0.02)1

M46 (1.00, 0.31, 0.30, 0.44)1

M89 (0.00, 0.00, 0.01, 0.00)4

M121 (1.00, 0.01, 0.30, 0.44)1

M128 (1.00, 0.01, 0.30, 0.02)1

M169 (1.00, 0.00, 0.00, 0.00)2

M187 (0.00, 0.00, 0.00, 0.00)4

M211 (0.69, 1.00, 0.00, 0.00)2

M233 (0.00, 0.00, 1.00, 0.00)2

M238 (0.02, 0.99, 1.00, 0.99)1

M394 (0.00, 0.00, 0.00, 0.01)5

M484 (1.00, 0.99, 1.00, 0.44)1

Table D.5: The additional legend of meanings of robot r0. See also table 4.4.
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M0 (0.02, 0.02, 1.00, 0.01)1

M1 (0.02, 0.02, 0.46, 0.01)1

M4 (1.00, 0.02, 0.03, 0.01)1

M5 (0.31, 0.02, 1.00, 0.01)1

M13 (0.00, 0.00, 0.00, 0.00)3

M16 (0.00, 0.00, 0.01, 0.00)3

M21 (0.00, 0.00, 0.00, 0.00)5

M22 (0.02, 0.02, 1.00, 0.53)1

M37 (0.00, 0.00, 0.00, 0.00)4

M39 (0.02, 1.00, 0.03, 0.01)1

M40 (0.00, 0.00, 0.00, 0.00)4

M42 (1.00, 1.00, 1.00, 1.00)1

M44 (0.02, 0.02, 0.03, 1.00)1

M46 (1.00, 1.00, 0.46, 0.01)1

M51 (1.00, 1.00, 0.03, 0.01)1

M55 (1.00, 0.58, 0.03, 0.01)1

M62 (0.02, 1.00, 1.00, 0.53)1

M65 (1.00, 0.02, 0.03, 0.53)1

M68 (0.02, 0.02, 0.46, 1.00)1

M69 (0.02, 1.00, 1.00, 0.01)1

M75 (0.02, 0.58, 1.00, 0.01)1

M78 (0.02, 0.02, 1.00, 1.00)1

M81 (0.31, 1.00, 0.03, 0.01)1

M85 (0.31, 1.00, 0.46, 0.53)1

M91 (1.00, 1.00, 0.46, 1.00)1

M94 (0.02, 1.00, 0.46, 0.01)1

M96 (0.31, 1.00, 0.46, 0.01)1

M102 (0.02, 0.58, 1.00, 1.00)1

M242 (0.02, 0.58, 1.00, 0.53)1

M287 (0.01, 0.01, 0.00, 0.00)4

M363 (0.31, 0.02, 0.03, 1.00)1

M389 (0.02, 0.02, 0.00, 0.00)5

Table D.6: The legend of meanings of robot r1.



248 Lexicon and Ontology



Bibliography

Aczel, A. (1989). Complete Business Statistics. Irwin.

Aha, D., D. Kibler, and M. Albert (1991). Instance-based learning algorithms.
Machine Learning 6(1), 37–66.

Aitchison, J. (1987). Words in the mind: an introduction to the mental lexicon
(second ed.). Cambridge Ma.: Blackwell Publishers.

Aitchison, J. (1996). The seeds of speech: Language origin and evolution. Cam-
bridge University Press.

Banks, S. (1990). Signal processing, image processing and pattern recognition.
UK: Prentice Hall International, Ltd.

Barnes, D. P. (1996). A behavior synthesis architecture for co-operant mobile
robots. In J. O. Gray and D. G. Caldwell (Eds.), Advanced Robotics and
Intelligent Machines, pp. 295–314. IEE Control Engineering Series 51.

Barnes, D. P., R. S. Aylett, A. M. Coddington, and R. A. Ghanea-Hercock
(1997). A hybrid approach to supervising multiple co-operant autonomous
mobile robots. In Proceedings of the International Conference on Advanced
Robotics.

Barrett, M. (1995). Early lexical development. In P. Fletcher and B. MacWhin-
ney (Eds.), The Handbook of Child Language, pp. 362–392. Basil Blackwell
Ltd.

Belpaeme, T. (1999). Evolution of visual feature detectors. In Evolutionary
Computation in Image Analysis and Signal Processing and Telecommu-
nications First European Workshops, EvoIASP99 and EuroEcTel99 Joint
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Kaplan, F. (2000). L’émergence d’un lexique dans une population d’agent au-
tonomes. Ph. D. thesis. In preparation.

Kirby, S. and J. Hurford (1997). Learning, culture and evolution in the origin
of linguistic constraints. In C. Husbands and I. Harvey (Eds.), Proceedings
of the Fourth European Conference on Artificial Life, Cambridge Ma. and
London. MIT Press.
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