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Abstract 
This thesis attempts to explain the particular selection of the 16 logically possible truth-functional 
connectives that is found in human language. Only a few of these connectives, such as ,  and  

(NOR) are expressed using single-morpheme lexicalisations in natural language. Other connectives, 
such as  (NAND) and  (IFF) are expressed compositionally, by combining words for other 

connectives or adding extra phrases specific to language. 
Various kinds of explanations have been put forward for this observation. Mentalist-cognitive 

explanations appeal to properties and limitations of the logical reasoning mechanisms of human 
minds (Gazdar and Pullum 1976; Jaspers 2005). On the other hand, communicative explanations state 
that connectives differ in the extent to which they can be pragmatically appropriate or 
communicatively useful (Gazdar and Pullum 1976; Van Rooij 2005; Sierra-Santibañez 2001).  

None of the previous accounts fully answers the research question. Some of the accounts are 
functionalistic: they propose a cause for language’s particular set of connectives and stop there 
(Gazdar and Pullum 1976; Jaspers 2005). What these accounts fail to provide is a clear mechanism 

that links the proposed causes to language form. The evolutionary accounts propose that cultural 
evolution be that mechanism (Van Rooij 2005; Sierra-Santibañez 2001). However, these accounts use 
a representation of language structure that is too impoverished to answer the research question. 

What is needed is a model of cultural evolution that addresses language surface structure in 
sufficient detail. Such an approach is the Iterated Learning Model of the emergence of 
compositionality by Kirby (2000; 2001). This model demonstrates how, as a consequence of the 
transmission of language across generations of learners, frequent meanings evolve to be represented 
as irregular holistic phrases, whereas infrequent meanings get compositional representations. The 
main part of this thesis is devoted to applying this model to the problem of the connectives. 

Two routes to a frequency distribution of connectives were pursued. The mentalist-cognitive 
approach remained unsubstantiated as psychological theories of reasoning difficulty (e.g. Johnson-

Laird 2001) were shown to make false predictions about which connectives should be present in 
language and also unable to provide frequency data in general. More fruitfully, a communicative 
approach was pursued using a simplified model of human communication. This model, Sierra-
Santibañez (2001), consisted of agents aiming to discriminate sets of topic objects from background 
objects. For this purpose the agents used descriptions involving perceptual properties of the objects, 
conjoined by the connectives. An exploratory analysis was done of the variables influencing the 
frequencies of the connectives in this simulation. 

 Analysis of the simulation results revealed a hierarchy among the 16 connectives with respect to a 
property of specificity, familiar from Gricean pragmatics. It was shown that in a number of situations 
that are, within the limited bounds of the reality of the simulation, the ones most reminiscent of 
human communicative situations,  and  are the connectives most frequently used by the agents, 
because they are the ones that conform best to Grice’s (1975) Maxim of Quantity. More research is 
needed on the external validity of the communication model used, however.  

A concrete application of Kirby’s model proved a bridge too far, as the model simulates the 
emergence of a different kind of combinatoriality than is found with connectives. Changes need to be 
made to the learning mechanisms implemented in this model in order to apply it to the case at hand. 

Despite the lack of the desired conformation by a computer simulation, connective frequency looks 
like a strong candidate for an explanation of language’s set of single-morpheme logical connectives. 
In particular, Zipf’s (1949) principle of least effort is likely to favour a system in which the most 

frequently needed connectives are realised as single morphemes from which all others are derived. 
The communication simulation in this thesis suggests that those most frequent connectives may well 
be  and  or , because of their usefulness in the communicative situations that humans tend to find 
themselves in. 
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Preface 
At the end of 2003, three and a half years into my study of linguistics at Leiden, I read an interview 
with Luc Steels in the Dutch weekly Intermediair (Hellemans 2003). The article recounted of 
communities of robots developing language, on their own. ‘They [the robots, MvW] are creating a 
language we have trouble understanding,’ prof. Steels said suggestively in the article. The sheer 
futurism of this research got me hooked and led me to discover a branch of my field that I had not 
known the existence of before: evolutionary linguistics. This is what I wanted to graduate in. 

I ended up not writing my thesis at Steels’s Artificial Intelligence Lab in Brussels: instead I went 
over to the University of Edinburgh for a year. The Language Evolution and Computation Research 
Unit in Edinburgh is probably the world’s largest community of researchers into the evolution of 
language. Staying at the LEC was a great experience and has provided with me invaluable knowledge 
without which this thesis could not have been written. 

One of the things I learned at Edinburgh is that you have language evolution simulations and 
language evolution simulations. The folks in Edinburgh and Brussels each tend to do things their own 
way. I found one man in Edinburgh trying to close the gap between the two groups: Paul Vogt, who 
graduated with Luc Steels and also happened to become my supervisor. Like much of Paul’s work, 
my thesis, too, is indebted to the research traditions of both Edinburgh and Brussels. 

Finally, the explanandum of this thesis comes from the field of semantics. In my early years in 
Leiden, the devoted semanticist Crit Cremers has managed to convince me that meaning itself is the 
most fundamental and fascinating property of language. My choice to channel the explanatory power 
of evolution into solving a semantic problem specifically can be traced back to Crit’s influence on my 
education, even though I failed to comprehend many of the other, finer points of his teachings. 

Many others have kindly assisted in the process of writing this thesis. I should name: 
 

Josefina Sierra-Santibañez, for developing a cornerstone simulation of my thesis and sending 
me an excerpt of its original code, crafted especially for me. 

Robert van Rooij, for helping me understand his work on evolutionary signalling games, for his 
failed attempts at explaining the arcanities of mathematical lattices to me and for buying me 
an ice cream at EvoLang in Rome. 

Jim Hurford, for always knowing the right article to cite in any situation, and pointing me to 
some of the key articles of this thesis in the process. 

Simon Kirby, who introduced me to a simulation of his that spawned the research question for 
this thesis in its final form. 

Jonathan Coe and Simon Levy, who helped me while I was trying to construct the pay-off table 
in appendix 3 using multiple inequality solving in MatLab, Wolfram Mathematica and CLIP 
for Prolog. 

Richard Blythe, who, after I had unsuccessfully struggled with MatLab, Mathematica and CLIP 
for several days, suggested I should just try and play around with the problem in Microsoft 
Excel. That solved it in half an hour. 

Bengt Sigurd, Katalin Balogne Berces and many other kind respondents to my queries on 
Linguist List. 

 
Finally, I should thank all my friends in Leiden and Naaldwijk for giving me some respite from the 
stress I got from writing this thesis, and my parents, without who this thesis would not have been 
possible at all. 
 

Maarten van Wijk, September 2006 
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1 Introduction 

1.1 Logic, language and evolution 

In this thesis, I shall try to tackle a small sub-question of a larger dillemma that has puzzled 
philosophers since Plato: the different natures of logic and language. The modern discipline of 
semantics, fathered in the late 19

th
 century by Gottlob Frege and Bertrand Russell, has tried to 

characterise the meaning of language systematically using various incarnations of formal logic. 
Although Russell’s predicate calculus is still the best system we have for this purpose, the goal of a 
full formal characterisation has never been achieved. Language always turns out a little bit too 
complex, too unpredictable, and too irregular to fit perfectly into the ever more intricate moulds that 
semanticists build it.

1
 

One domain in which language diverges from logic is that of truth-functional connectives. The 
formal definition of connectives in the form of truth tables allows for 16 possible two-placed 
connectives. Yet of only two of them can we confidently state that language uses them:  (AND) and  

(OR). Some of these connectives, like the connective that yields true whatever the truth value of its 
arguments, remain absent because of their obvious communicative uselessness. Others, such as  

(NAND) or  (IFF), appear to be perfectly sound devices for reasoning and communicating: their 

absence in natural language is harder to explain. Rather than trying to find separate explanations for 
the presence or absence of particular connectives, this thesis aims to formulate a general theory that 
extends over all connectives and accounts for natural language’s particular subset of the 16 possible 
two-placed truth-functional connectives. 

Other than being baffled by this ambitious goal for a master’s thesis,
2
 the reader may wonder at this 

point why anyone would be surprised to find discrepancies between logic and language. Of course 
language is not like logic! Language is a naturally evolved phenomenon, most likely adapted for 
communication by human beings. Logic on the other hand is a formal device invented by logicians 
for all kinds of reasons and purposes, such as curiosity, better reasoning, clearer representation, but 
certainly not for communication by humans. 

Still, the problem we are dealing with here is very real, since the meanings represented by the 16 
logical connectives are very real, too. They are not artefacts of the way logic is constructed. In fact, 
these meanings are expressed in natural language all the time. For instance, the meaning of  is 

contained in you won’t get both ice cream and chips, a perfectly good English sentence. The fact that 
none of the world’s language uses an equivalent of *you will get ice cream nand chips cannot be 
easily explained away as a figment of the logician’s imagination. 

Of course, we need to look outside of the domain of lonesome old logic in order to explain why 
language is so different from it. In 1967, Herbert Paul Grice held his William James Lectures in 
which he proposed that some of the meaning elements of language may be best understood as a 
product of a principle of communicative co-operation between two human beings. In this thesis, too, 
viewing language as a tool for communication will be the key to solving the dilemma. 

I (and many others) consider it fascinating that we use and and or instead of nand or iff. So 
fascinating, in fact, that I have devoted 70 pages and a year of my life to the subject. Yet, I have 
encountered quite a few people who felt that the solution was somehow obvious and the question not 
really worth investigating.  and  seem so much more natural than  or , they say.  must be very 

fundamental in representing seeing two things at the same time, they say.  is about the fundamental 

concept of two choices, they say. 
These are all just assumptions, possibly fed by some sort of cognitive closure we may suffer because 

                                                
1
 A thorough yet very readible overview of the history of logic, semantics and Western linguistics is Seuren (1998). 

2
 If you are not baffled, consider for instance that Dany Jaspers has recently devoted a 260 page Ph.D. thesis to the 

universal absence of  alone (Jaspers 2005). 
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we have always used the connectives and and or in language. Gazdar and Pullum (1976) point out 
forcefully that the question posed in this thesis is worthy of empirical research: 

 
It is important to see that there are no easy, a priori answers to this question. The connectives 
discussed in logic textbooks unquestionably owe their familiarity to the prior existence in 
natural language of truth-functional connectives that wholly or partly correspond to them. 
Characterizing the properties that determined the natural evolution of the particular natural 
language truth-functional connectives happens to be an empirical endeavour, and one that 
seems to us to be of some intrinsic importance and interest. (Gazdar and Pullum 1976: 220). 

 
I wholeheartedly agree. I shall therefore stay away from any a priori assumptions, common sense 
arguments or philosophical debate on the fundamentality of any of the logical connectives. I will treat 

 and  as equals until proven otherwise. 

1.2 The structure of this thesis 

Chapter 2 is a small crash course in logic, focussing on logical truth-functional connectives. In 
chapter 3 we investigate mappings of logical connectives to natural language connectives. Various 
problems with these mappings will be discussed along with possible solutions. 

In chapter 4, I devise a taxonomy for the previous accounts given for the set of logical connectives 
that human languages tend to have. I will conclude that of these accounts, the evolutionary ones are 
potentially the most convincing, but that they fail to answer the research question of this thesis due to 
lack of attention to the surface structure of language. 

Chapter 5 presents a quick outline of my own evolutionary proposal, aiming to fix the problems 
with the previous accounts. A model (Kirby 2000; 2001) is introduced that does address language 
structure in sufficient detail. This model suggests a mechanism through which language may evolve 
to represent infrequent connective meanings as compositional structures, and frequent meanings as 
holistic units. In order to apply the model to the research question we will need (a) a frequency 
distribution for truth-functional meanings and (b) a meaning representation for logical connectives. 

Chapter 6 is an attempt to derive such a frequency distribution from psycholinguistic theories of 
reasoning difficulty, while chapter 7 takes a communicative approach: how often do we need a 
connective? A model of communication is introduced (Sierra-Santibañez 2001) that yields various 
frequency distributions depending on its parameter settings. An exploratory analysis of the effects of 
these parameters shows that if settings reminiscent of human communicative situations are used,  
and  are the connectives most frequently used by communicating agents of the simulation. 

In chapter 8 I look at the other requirement of Kirby’s model: a meaning representation for logical 
connectives. The representation in Kirby’s original (2001) simulation is shown to be insufficient. The 
development of a realistic meaning representation for connectives needs to be deferred to future 
research. Chapter 9 contains my conclusions. 
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2 Truth-functional connectives in logic 
In sentential logic, two-placed truth-functional connectives are items that conjoin two propositions. 
Propositions are statements that can be either true or false in some world. The conjunction of two 
propositions P and Q forged by a connective C has a truth value that is a function FC of the truth 
values of the propositions, where FC is specified by the connective. This is why these connectives are 
called truth-functional. They are also sometimes simply referred to as logical connectives, contrasting 
with other, non-truth-functional connectives in natural language such after and because. Below I 
present two examples of logical connectives and their functions. In these functions, true is represented 
as ‘0’ and false is represented as ‘1’. 
 

F (P,Q): P=1, Q=1  (P,Q) = 1 

 P=1, Q=0  (P,Q) = 0 

 P=0, Q=1  (P,Q) = 0 

 P=0, Q=0  (P,Q) = 0 

 
F (P,Q): P=1, Q=1  (P,Q) = 1 

 P=1, Q=0  (P,Q) = 1 

 P=0, Q=1  (P,Q) = 1 

 P=0, Q=0  (P,Q) = 0 

 
As can be seen from the function definitions above, a connective has an output value specified for 
each one of four input cases, namely (1) both P and Q are true, (2) both P and Q are false, (3) P is true 
but Q is false and (4) P is false but Q is true. This output can take on two values: 1 and 0. Therefore, 
2

4
 = 16 two placed connectives are logically possible. 
In principle, truth-functional connectives could also be defined with more than two arguments, in 

which case more than 16 different connectives would be possible. Such n-placed connectives are 
almost never used in classical logic, however, and certainly do not seem to be present in natural 
language. One-placed connectives, on the other hand, are. Negation (¬) is the most common one. 

Appendix 1 contains a list of all the 16 two-placed connectives. Some of the connectives, such as 
 and , are well-known and have commonly recognised symbols. Others are less commonly used 

with less readily recognisable symbols, and again others are almost never used and have no symbols 
specified. I have invented symbols for the connectives that do not have commonly used ones already. 
The symbols presented in appendix 1 will be used throughout this thesis. 

The truth functions of the connectives are described in appendix 1 by listing all the input cases for 
which the output value of the connective is true. The four input cases mentioned above are 
represented as follows for a connective C, assuming a proposition P C Q: 
 

 Input case Representation in Appendix 1 
(1) both P and Q are true 11 
(2) both P and Q are false 00 
(3) P is true but Q is false 10 
(4) P is false although Q is true 01 
 

For instance, the connective  is true when either both P and Q are true, or both P and Q are false. 

The truth function of this connective is represented as {11,00}. 
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3 Mapping logical connectives to natural language 
connectives 

3.1 Logic as model for the meaning of language  

It is no coincidence that the names of the connectives  (AND) and  (OR) correspond to the existing 

English words and and or. Logicians have chosen those names because these particular functions 
closely mimic the interpretation of and and or in English: that is, if we make the additional 
assumption that English sentences are equivalent to propositions and ascribe truth values to them.  

For instance, let us assume a set of propositions P, Q, R and S, each of which is equivalent to a 
natural language sentence. 
 

Proposition Truth value Natural language rendition 
P  true [[Brussels is in Belgium]] 
Q  true [[Copenhagen is in Denmark]] 
R  false [[Brussels is in France]] 
S  false [[Copenhagen is in Sweden]] 
 

The conjunctions of these propositions are rendered in English as follows. 
 
Brussels is in Belgium and Copenhagen is in Denmark = true 
P (true)  Q (true) = true 

 
Brussels is in France and Copenhagen is in Denmark = false 
R (false)  Q (true) = false 

 
Brussels is in Belgium and Copenhagen is in Sweden = false  
P (true)  S (false) = false 

 

Brussels is in France and Copenhagen is in Sweden = false 
R (false)  S (false) = false 

 
The truth values of the natural language fragments equal those of the conjunctions they are renditions 
of. This process of asserting relationships of equivalence between elements of logic and natural 
language is known as making a semantic mapping; it is the job of natural language semantics, which 
uses logic as a model for the meaning of language. 

In §3.2, I will look into a number of mappings from logical to natural language connectives that 
have been put forward. After that, in §3.3, I will show that mapping connectives in logic to 
connectives in natural language is not always straightforward. 

3.2 Commonly recognised mappings from logical to natural language connectives 

It is fairly uncontroversial that the well-known languages of Europe and Asia have lexemes 
representing at least three logical connectives: ,  and ¬ (e.g. Braine and O’Brien 1998: 51).  

However, evidence exists that this is not universally true. Maricopa
3
, for instance, employs a variety 

of strategies for expressing  and  without a single-morpheme lexicalisation (Gil 1991). One such a 

strategy is to use bare concatenation, the way English also concatenates AP’s in phrases like a healthy, 
strong man, where healthy, strong is interpreted in the same way as healthy and strong. In Maricopa, 
however, this bare concatenation may also be interpreted as a disjunction, depending on context (Gil’s 
ex. 5a and 6): 

                                                
3
 Maricopa is a Yuman language, spoken by Native Americans in Arizona. 
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(1) a. John  Bill  v?aawuum 
  John-NOM Bill-ACC 3-come-3-PL-FUT 
  ‘John and Bill will come’ 
 
 b. John  Bill  v?aawuum aa 
  John-NOM Bill-ACC 3-come-3-PL-FUT-INFER 
  ‘John or Bill will come’ 
 
The suffix – aa causes the switch to an interpretation with . – aa is normally interpreted as an 

inferential suffix, both in sentences with and without conjunction (Gil does not provide an example of 
the latter). Inferential suffixes indicate that the speaker does not have direct evidence for his assertion, 
like in sentence (1a), but is merely inferring it. The epistemic status of the sentence thus influences 
the interpretation of bare concatenation as either  or . A similar situation is reported for Upriver 

Halkomelem
4
, which uses a connective q  meaning  or  depending on context (Ohori 2004: 57). 

Specifically, a declarative context allows for a conjunctive reading while an interrogative situation 
allows for a disjunctive reading. 

Other strategies Maricopa employs for representing  involve using the two conjuncts as arguments 

in a subordinate clause headed by verbs glossed as ‘accompany’ or ‘be together’ (Gil’s ex. 8):  
 
(2) a. John  Bill u aavk 
  John-NOM Bill-ACC 3-accompany-SG-REAL 
  ‘John is accompanying Bill’ 
 
 b. John  Bill u aavk v?aawuum 
  John-NOM Bill-ACC 3-accompany-SG-SS 3-come-3-PL-FUT 
  ‘John and Bill will come’ 
 
 c. John  Bill u aavm ñi?yuuk 
  John-NOM Bill-ACC 3-accompany-SG-DS OBJ-PL-1-see-SG-REAL 
  ‘I saw John and Bill.’ 
 
Other languages with ambiguous words or constructions for  and  include Japanese, Thai and Hua, 

a language from Papua New Guinea (Ohori 2004). Beja
5
 and Dyirbal

6
 apparently do not have words 

for  either (Gazdar and Pullum 1976).  

Claims about other connectives have been made, but most of these have always remained somewhat 
controversial. The most solid evidence seems to exist for :  Old English ne, or German and Dutch 

noch are likely candidates for this connective which is usually realized with two words, neither … 
nor

7
, in English (Horn 1989: 256). There are old claims about separate words for  and  in several 

languages. Latin is said to use vel and aut for  and  respectively (Quine 1952: 5), Finnish uses vai 

and tai and Welsh neu and ynte (Collinson 1937: 95). On closer inspection of the actual linguistic data 
these claims seem untenable, however (Horn 1989: 225). It also has been suggested that if … then is a 

                                                
4
 Upriver Halkomelem is a Salishan language, spoken by Native Americans around the Fraser River in British Columbia, 

Canada. 
5
 Beja is an Afro-Asiatic language spoken by about 2 million nomads in Egypt, Sudan and Eritrea. 

6
 Dyirbal is a Parma-Nyungan language, spoken by about 5 Aboriginals in North Queensland, Australia. 

7
 Although neither … nor consists of two words and therefore cannot be said to be single-morphemic, the construction 

smacks of a holistic fixed phrase. The meaning of the whole is not easily deconstructable from the parts. The meanings 
of nor and neither are, if anything, equal to the meaning of the construction itself. Neither … nor almost looks like it 

was formed by a process of reduplication. 
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lexicalisation of  (Horn 1989: 225), but there are some cases where the uses of if … then and  

diverge significantly (see §3.3.1).
8
 Lastly, some candidates for BUT have been put forward, such as 

rather than (Dieterich and Napoli 1982: 163), and contemporary English nor in sentences such as he 
is rather poor, nor is he exactly handsome (Horn 1989: 256). 

Finally, the connectives that are not present in any language are as interesting as the connectives that 
are. There is no natural language that has all of the 16 possible two-placed logical connectives. In 
particular, no known natural language has lexicalized  (Zwicky 1973; Jaspers 2005). 

3.3 Problems with mapping logical connectives to natural language connectives 

3.3.1 Different truth functions in natural language than in logic 

The definition of  states that if P is false, P  Q is always true. This gives rise to some unintuitive 
interpretations of natural language if we assume that  is equivalent to English if … then (Forbes 
1994: 49). 
 

Proposition Truth value Natural language rendition 
P  false [[Holland won the 1974 World Cup]] 

Q  false [[Macintosh is more common than Windows]] 

R  true [[Paris is the capital of France]] 
 

 

If Holland won the 1974 World Cup then Macintosh is more common than Windows = true??? 

 P (false)  Q (false) = true 

 

If Holland won the 1974 World Cup then Paris is the capital of France = true??? 

 P (false)  R (true) = true 

 
If  were equivalent to if … then, any sentence that starts with if Holland won the 1974 World Cup 
would be true, because Holland did not win the World Cup that year. In natural language, however, 
conditionals are not always true if their antecedents are false. Reasoners rather judge the truth value of 
such conditionals as indeterminable and take the conditional to be irrelevant (Johnson-Laird and 
Byrne 1991: 64). One could say they reason with a defective truth table: for the input values 01 and 
00, no output is specified. 

It is disputed whether English or actually corresponds to  or to   (Forbes 1994: 17–18; Horn 

1989: 224–225, 394; Gazdar and Pullum 1976: 231). Some authors suggest that it is ambiguous 
between those two readings (Hurford 1974); the alleged existence of separate words for  and  in 

some languages would support this, but as noted above, there is no good linguistic data confirming 
this claim. Others explicitly deny the existence of truth-functional  in natural language (Barrett and 

Stenner 1971); any supposed exclusive reading would be due to conversational implicature or some 
other extra-logical factor. Subjects in psycholinguistic tests do not respond uniformly when tested on 
how they interpret or (Evans and Newstead 1980; Roberge 1978, both cit. in Johnson-Laird, Byrne 
and Schaeken 1992); they are typically biased towards an inclusive interpretation, but a sizeable 
minority prefers the exclusive one. 

 

                                                
8
 The lexicalisation if … then consists of two words if and then. As with neither … nor, I suggest that if … then be treated 

as a fixed phrase and in this case as a more marked version of if, which can be used on its own as well, as in if the 
streets get wet, it is raining. The word then, however, cannot be used outside of this construction with if: it seems to 

have no independent meaning. 
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3.3.2 Non-truth-functional overlay for connectives 

And is used quite frequently to indicate a temporal sequence, for instance as in (3) below: 
 
(3) Max fell and broke his arm. 

 
Traditionally the temporal meaning has been taken to be pragmatically implied, rather than as part of 
the meaning of and in this case (Schmerling 1975). Others have argued, that temporal sequence is 
also part of the meaning of and proper (Bar-Lev and Palacas 1980). This, however, must lead to the 
abandonment of the idea that logical  and and are equivalents. 

The natural language connective if implies a causal relationship between antecedent and consequent 
whereas such a relationship is not implied in logical . Since in sentence (4) below both antecedent 
and consequent are true, the sentence as a whole would have to be judged true. 
 
(4) If Paris is the capital of France then water is H2O. 

 
Most human reasoners would judge (4) false though, because the antecedent is completely unrelated 
to the consequent (Forbes 1994: 83–84). Alternatively, reasoners may assume there must be some 
causal connection they are perhaps just not aware of. 

3.3.3 Conjoining other elements than propositions 

The connectives and and or in English do not just conjoin S’s (sentences), but also other syntactic 
categories such as VP, NP, AP and PP. Examples are presented in (5)–(8) below. 
 
  VP 
(5) a. The football fans sang and danced on the tables. 

 b. This thesis will inspire you or give you a headache. 

 
  NP 

(6) a. John and Mary walked to school. 
 b. The dog will bite John or Mary. 
 

  AP (predicative use) 
(7) a. The ball is round and red. 
 b. The ball is red or green. 

 
  AP (attributive use) 
(8) a. John had to lift a large and heavy box. 
 b. The pork comes with a red or green chilli sauce. 
 
All these categories, VP, NP and AP, are different syntactic realisations of what are considered to be 
predicates or object properties in semantics: e.g. the properties of [BEING-SINGING] (5a), [BEING-JOHN] 
(6) or [ROUNDNESS] (7a). No truth value can be ascribed to predicates: they are of a different type, 
namely a function that yields a truth value only once applied to an object. This would seem to make 
the connectives in (5)–(8) non-truth functional. 

An early linguistic solution to this problem is to represent the NP and VP examples as syntactic 
contractions of conjoined S’s. Thus (9a) would be derived syntactically from (9b): 
 
(9) a. John and Mary walked to school.  
 b. John walked to school and Mary walked to school. 
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There are several problems with this approach once NP’s not denoting individuals are used (Keenan 

and Faltz 1985: 4–5). One is the so-called collective reading of NP’s. Depending on context, some 
NP’s conjoined by and refer to a group of entities rather than to each individual (Link 1998), as in 
example (10) below: 
 
(10) a. John and George met. 
   *John met and George met. 
 b. John and George carried the washing machine to the kitchen. 
   John carried the washing machine to the kitchen and George carried the washing machine to the kitchen. 
 
More problems arise with quantifiers, which interact significantly with the meaning of the 
connectives, as can be seen from (11)–(13) below. 
 
(11) a. Some student lives in New Jersey and works in New York.  
   Some student lives in New Jersey and some student works in New York. 
 b. Some student lives in New Jersey or works in New York.  
   Some student lives in New Jersey or some student works in New York. 
 
(12) a. No cat dislikes fish and milk. 
   No cat dislikes fish and no cat dislikes milk.  
 b. No cat dislikes fish or milk. 
   No cat dislikes fish or no cat dislikes milk. 
 
(13) a. All logic theses are boring and lengthy. 
  = All logic theses are boring and all logic theses are lengthy. 
 b. All logic theses are boring or lengthy. 
   All logic theses are boring or all logic theses are lengthy. 
 
In some cases the syntactic derivation does work, but in some it does not, apparently depending on 
what quantifier is used. In order to understand this, we need to delve deeply into the intricacies of the 
set theory, second order predicate logic and generalised quantification, wholly outside the scope of 
this thesis (for an overview see e.g. Chierchia and McConnell-Ginnet 2000).  

The gist of the solution of Keenan and Faltz is to ascribe several homonymic meanings to English 
and and or depending on whether they conjoin S, VP or NP, while showing that and and or have 
homomorphous denotation functions for those categories.

9
 The denotation function I of some Boolean 

connective C is homomorphous for two categories XP and YP if and only if the denotation of the 
conjunction by C of the intensions of XP and YP equals the conjunction by C of the denotations of XP 
and YP: 

 
I(XP C YP)  I(XP) C I(YP). (I distributes over C.) 

 
This means that applying the ‘NP-homonym’ at NP-level would yield the same interpretation for a 
sentence as applying the VP-homonym at the VP-level or the S-homonym at the S-level. That is, for 
some of the quantifiers: whether I distributes over C depends on the set-theoretic structure of the 
denotation of the NP, which is turn depends on whether the quantifier in that NP is what is called 
upward or downward entailing (cf. e.g. Zwarts 1986: 162–185). 

                                                
9
 The denotation function maps the semantic meaning or intension of a word to its denotation or extension, i.e. the objects 

in the real world it refers to. This distinction was first made by Gottlob Frege, who referred to intension and extension 

as Sinn and Bedeutung (see e.g. Chierchia and McConnell-Ginnet 2000: ch. 2.). 
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An explanation in terms of homonyms appears to be supported by cross-linguistic data: many 
languages use different connectives for conjoining different grammatical categories. For instance 
Japanese uses -to ‘ ’ for conjoining NP’s, –te or –ø for conjoining AP’s and –te or –ø for S’s. 

Mandarin Chinese has hé or gen for connecting NP’s, hé or you … you for AP’s and ø for S’s (Ohori 
2004: 44–45).

10
 

Finally, another way to approach the problem of seemingly non-truth-functional conjunction is to 
say that the logical connectives are in fact always set operations. In Possible World semantics (Carnap 
1956) the extension of a sentence is not its truth value but the set of worlds in which that sentence is 
true. It easy to see that if the extension of a sentence SP is a set of worlds WP and the extension of SQ 

is a set of worlds WQ, then the extension of SP  SQ is WP  WQ. Truth-functional operations can thus 

be eliminated from the semantics. 
From the above discussion, in which phrases referring to propositions are sometimes treated as 

entities, and sets of entities are conjoined using truth-functional operations, one may rightly conclude 
that set theory and logic are fundamentally interrelated. Set union and intersection can defined using 
logical connectives as: 
 

A  B = {x | x    x  B} 
A  B = {x | x    x  B} 

 
Even more generally, in the mathematical theory of lattices, union vs. intersection and conjunction vs. 
disjunction are instances the same lattice operators join and meet. It just happens that they are joins 
and meets over the lattices of sets and truth values, respectively (Robert van Rooij p.c.). A number of 
linguists have argued that the philosophical distinction between truth and reference can be safely 
abandoned for the semantics of natural language (Carstairs-McCarthy 1999; Hurford In Press). 

3.3.4 A solution from formal semantics? 

One might naively take the formal semantic discussion above to present an obvious solution to the 
question of this thesis. If truth-conditionals are eliminated, the problem of the 16 possible connectives 
disappears: there is only set union and interaction, or lattice join and meet. However, more set 

operators than these two are possible as well. For instance, nothing would prevent an ‘exclusive 
union’ set operator  that would construct, from sets A and B, a new set containing all the elements 
that are in either A or B, but not in both: 
 

A  B = {x | x    x  B} 
 
In fact, set theoretic operations based on each connective could be constructed in this way. Mutatis 
mutandis the same can be done for lattice operations. This just changes our question into why 
language use the particular set of set-theoretic or lattice operations that is does. 

Ultimately, formal semantics cannot provide us with clues to why language lexicalises particular 
meanings the way it does. The formal apparatus is powerful enough to give us all the 16 possible 
connectives, and presents no inherent reason why one should be more fundamental than the other.  

                                                
10 Secondly, not only do many languages have different renditions of  for conjoining different syntactic categories, such 

a system is sometimes not mirrored in the rendition(s) for  in the same language, or vice versa. For instance, Maori 

uses me or ø for  conjoining subject NP, but ø, aa, or hoki for  conjoining S and VP. For , however, it uses the same 

morpheme raanei throughout all syntactic categories (Ohori 2004: 60). 



  15 

3.4 Compositional connectives in logic and natural language 

English has a way of expressing the meaning of each and every one of the connective meanings. 
Appendix 2 consists of a list of English language renderings of all the 16 logical connectives. As can 
be seen from the examples in the appendix, language has several strategies for expressing these 
meanings. 

One strategy is combining connectives, like in logic itself. However, the way connectives are 
combined in natural language only sometimes mirrors the syntax of classical logic. Some 
combinations in natural language, such as ¬(P  Q), mean different things in logic (and in this case, 

English) than in some other languages, such as Hungarian (Szabolcsi and Haddican 2004: ex. 1–2): 
 
(14) Mary didn’t take hockey or algebra ¬(P  Q) 

Means Mary didn’t take hockey and didn’t take algebra  ¬P  ¬Q  P  Q 

 (following De Morgan) 
 

(15) Mari nem járt hokira vagy algebrára ¬(P  Q) 

Mary not went hockey-to or algebra-to 
Means Mary didn’t take hockey or didn’t take algebra.   ¬P  ¬Q  P  Q 

Cannot mean Mary didn’t take hockey and didn’t take algebra (contra De Morgan) 
 
The same pattern holds for combinations of and and not in English and Hungarian: English obeys De 
Morgan’s law ¬(P  Q)  P  Q, whereas in Hungarian ¬(P  Q)  P  Q. The behaviour of Russian, 

Serbian, Italian and Japanese is similar to Hungarian, according to Szabolcsi and Haddican. 
Other combinations of connectives in logic are just plain ungrammatical in language. For instance, 

the way  is composed as (P  Q)  ¬(P  Q) is impossible in natural language. 

 
(16) *The tiger came or I brought a spear and not the tiger came and I brought a spear. 
 
In this case, language uses a different strategy, namely introducing an extra fixed phrase that does not 
have truth-functional meaning by itself. These fixed phrases vary in the degree to which they are 
compositional in meaning themselves: they often do contain words that are used as connectives 
independently and sometimes have a structure mirroring logic. In the case of , but not both is added 

to or ‘ ’ to produce or … but not both ‘ ’. We can see how or … but not both mirrors (P  Q)  ¬(P 

 Q): of the two unfamiliar words in this phrase, but adopts the meaning of , and both refers to (P  

Q). Less transparent is the case of : and only if is added to if ‘ ’ to produce if and only if ‘ ’. In 

logic,  may be derived from  as in P  Q  ¬(¬P  Q). In the natural language rendition of , 

only if seems to refer to the exclusion of the condition ¬P  Q. 

Finally one other natural language strategy for producing the meaning of a connective is to use 
another connective and reverse the arguments. The meaning ‘P  Q’ is derived from if P then Q ‘P 

 Q’ by swapping P and Q, as in if Q then P ‘P  Q’. 

Summarising, language seems to use some of the combinatorial possibilities of connectives in logic, 
but in some cases it employs strategies of its own to derive connective meanings. Strictly speaking 
English would not need to use such strategies, though, since the set of connectives it has lexicalised, 
{ , ,¬}, is expressively complete (cf. e.g. Schumm and Shapiro 1990): all the 16 connective 

meanings can be derived through some logical combination of the members of { , ,¬}. So what 

stops language from always combining connectives like logic does? One possible beginning of an 
explanation could be processing difficulties. 

Combinations of connectives are compositional in the sense that the meaning of a proposition can be 
inferred by subsequent application of the functions of the connectives to the outputs of the 
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connectives they scope over. So, for instance, the meaning of (P  Q)  ¬(P  Q) can be inferred to 
be equal to P  Q as follows: 

 
  ¬ 
 

P Q P  Q P  Q ¬(P  Q) (P  Q)  ¬(P  Q)  P  Q 
1 1 1 1 0 0 0 
0 1 1 0 1 1 1 
1 0 1 0 1 1 1 
0 0 0 0 1 0 0 

 
  

  
 
When these derivations are simple, as in the case of BUT, the mechanism of logic is used. Once the 
derivations get more complex, such as for  or , language adds specific phrases of its own with no 
clear analogues in logic. Language’s idiosyncratic compositional lexicalisation of connectives could 
thus be a result of a tendency to avoid nesting functions too deeply. This is however mere speculation; 

the question at hand is altogether different from the one this thesis attempts to answer. 



  17 

4 Approaches to explaining natural language’s set of logical 
connectives 

4.1 Mentalist-cognitive, communicative, functionalist and evolutionary explanations 

The main question that this thesis will try to answer is why of the 16 logically possible connectives 
only some are realized as single morphemes in natural language, while the rest require paraphrases. 
The work done into this area so far has been very limited. The explanations given can be divided into 
two categories: mentalist-cognitive explanations and pragmatic-communicative explanations. 

Mentalist-cognitive explanations propose that the representations of logic that humans employ in 
their minds are different from formal logic itself, or that human brains are for some reason limited in 
applying the rules of formal logic. For instance, Gazdar and Pullum (1976) propose that humans have 
difficulty processing negation, and that therefore  cannot be a connective in natural language (§4.2). 

Another example of this approach is Jaspers (2005), discussed in §4.3.  
Pragmatic-communicative explanations appeal to the principles of a discipline that was founded 

with the purpose of explaining the gap between logic and language: pragmatics. These explanations 
state that connectives differ in the extent to which they can be pragmatically appropriate or 
communicatively useful. For instance, Gazdar and Pullum believe that a connective such P AM Q is 
communicatively useless: it is logically equivalent to P, so the added effort of using the connective 
gets no extra information across. 

Another dichotomy in the accounts given in the literature is between the evolutionary ones and the 
functionalist ones. In principle, both these types of accounts might invoke the same underlying source 
for some property of language, be it mentalist-cognitive of communicative. A functionalist account 
stops there, however, while an evolutionary account also provides a causal mechanism through which 
the underlying source could have influenced the properties of language. The differences between 
these types of explanations will be considered in more detail in §4.4, after which two evolutionary 
studies will be discussed in §4.5 and §4.6: Van Rooij (2005) and Sierra-Santibañez (2001). In the 
following chapter 5, I will then outline what kind of evolutionary approach I think would be most 
suitable for answering the research question of this thesis. 

4.2 A functionalist, cognitive and pragmatic account for all connectives: Gazdar and Pullum 

The first and last attempt to provide an exhaustive account for the particular selection of connectives 
that human languages possess has been provided by Gazdar and Pullum (1976). They formulate three 
criteria that a logical connective has to meet in order to qualify as a natural language connective. 
 
1. Compositionality: A connective C cannot be defined in such a way that one of C’s arguments is 

superfluous in determining the truth value of the proposition conjoined by C. This means that it 
must not be the case that P C Q  ¬P C Q or P C Q  P C ¬Q. The principle of compositionality 

rules out AM, MA, NM, MN, ALWAYS and NEVER as natural language connectives. 
2. Commutativity. The linear order in which the two arguments of a connective C are given cannot 

influence the truth value of the proposition conjoined by C. This means that it must not be the 
case that P C Q  Q C P. The principle of commutativity rules out BUT, ALTHOUGH, AM, MA, NM, 

MN,  and  as natural language connectives. 

3. Confessionality: A connective C cannot be defined in such a way that a proposition conjoined 
by C is true when both of the arguments of C are false. This means that it must not be the case 
that P C Q  1 if P  0 and Q  0. The principle of confessionality rules out , NM, MN, , , 

,  and ALWAYS as natural language connectives. 

 
Together these three criteria rule out all logically possible connectives bar three: ,  and . This is of 

course a pleasing result, but in order for Gazdar and Pullum’s principles to count as a true explanation 
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for the absence of the other 13 two-placed connectives in natural language, the principles have to be 
backed up with independent evidence. Otherwise Gazdar and Pullum would be explaining the 
problem with an appeal to a new formulation of the problem: a case of begging the question. 

For the principle of compositionality Gazdar and Pullum give a pragmatic justification. A non-
compositional connective would force the language user to utter one conjunct that must be irrelevant 
to the truth value of the sentence. Thus, the language user would violate Grice’s (1975: 46) maxim of 
relevance. This seems like a very credible explanation, also in line with the well known principle of 
least effort (Zipf 1949): why say ‘P C Q’ (where C is a non-compositional connective) if just saying 
‘P’ conveys exactly the same thing? 

Gazdar and Pullum give a mentalist-cognitive explanation for the principle of confessionality. They 
appeal to psycholinguistic evidence that negations are hard to compute for human minds, and that 
computation time increases exponentially for each extra negative element added (Hoosain 1973; 
Clark 1974, both cit. by Gazdar and Pullum 1976). Though this may be true, there is no reason why 
this computation difficulty would imply that no language could possibly have a non-confessional 
connective.

11
 In fact old English ne or German noch seem likely candidates for a lexicalisation of the 

non-confessional connective  (Horn 1989: 256).  

Gazdar and Pullum acknowledge the existence of neither … nor in modern English, but they 
accommodate this by proposing that neither … nor is derived syntactically from either … or by 
incorporation of NEG (e.g. Klima 1964, cit. by Gazdar and Pullum 1976). English nor certainly gives 
the impression of being composed out of not and or. Etymological sources however suggest it may 
ultimately stem from a contraction in Middle English of Old English nawther, composed of na ‘no’ 
and hwaether ‘which of two’ (Barnhart 1988). In other languages than English the negative element 
in the lexicalisation of  is not so obvious either. Swedish, a close relative of English, has varken … 

eller ‘neither … nor’, which does not look at all like inte ‘not’ or like antingen … eller ‘either… or’ 
(Bengt Sigurd p.c.). In Hungarian  translates as sem, which does not look like nem ‘not’ or like vagy 

‘or’ (Katalin Balogne Berces p.c.). 
The explanation Gazdar and Pullum give for commutativity falls out of the mentalist-cognitive / 

communicative dichotomy. Instead it is formal-theoretical: according to Gazdar and Pullum 
‘underlying structures in language are linearly unordered’, a claim which they support with various 
citations of contemporaneous work in linguistics.  

Gazdar and Pullum were working in the now defunct tradition of generative semantics, which 
means they make ‘the assumption that underlying structures in syntax correspond essentially to 
logical structures’ (p. 224). We should note that in ‘logical structures’ themselves, orderedness 
abounds. Predicate logic, for instance, consists entirely of predicate-argument relationships, ordered 
structures par excellence. Gazdar and Pullum’s hypothesised deep syntactic structure must somehow 
be able to represent the meaning of these logic structures without replicating their ordered structure. I 
find this unlikely. 

However, if we do take the claim of linear unorderedness to be true, such unorderedness does not 
seem to prevent syntactic languages such as English from having predicates with non-commutative 
argument structures. Verbs are an obvious example: their arguments, objects and subjects, come in a 
specific order. Also, language has words that look suspiciously like lexicalisations of non-
commutative connectives such as BUT (rather than and nor, mentioned before in §3.2) and  (if .. 

then). The latter is non-commutative, even if we ignore the parts of the truth table of  that refer to 

the cases with a false antecedent. A sentence like if it rains then the streets get wet is not equivalent to 
if the streets get wet then it rains. 

Finally, as a general principle of scientific conduct, I think we first should look for explanations not 
involving any assumptions about hypothetical underlying structure. This will be my aim in the rest of 
this thesis. 

                                                
11

 I shall discuss the relationship between psycholinguistic computation difficulty and connectives in more detail in 

chapter 6. Implications for the principle of confessionality specifically are addressed in §6.5. 
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4.3 A functionalist and cognitive account for the absence of NAND: Jaspers 

The main problem with as  a natural language connective is, according to Jaspers (2005), the fact 

that P  Q presupposes P  Q. That this is the case can be intuitively felt from the example below 

(Jasper’s ex. 84): 
 
(17) a. John is in the garden and Peter is in the garden entails 
 b. John is in the garden or Peter is in the garden. 
 
Jaspers distinguishes IN-logic and EX-logic. IN-logic is the natural logic of human minds; EX-logic is 
the formal, consciously developed mechanism of logic. Natural language negation reflects IN-logic. It 
is unlike logical negation in that it cannot always cancel a presupposition. An example of a 
presupposition-cancelling negation language is emphatic not (Jasper’s ex. 367): 

 
(18) All gnomes are not married. (Because there are no gnomes!) 
 
The application of the predicate married to gnomes presupposes the existence of gnomes. This 
presupposition is cancelled by not here. A negation used a bound morpheme such as un- as in (19) 
may not cancel presuppositions, however. If the set of gnomes is empty, the statement in (19) is not 
false, like it would be in EX-logic, but meaningless in natural language (Strawson 1950). 
 
(19) All gnomes are unmarried. 
 
By the same reasoning, the presupposition P  Q cannot be cancelled by a bound morpheme n- ‘not’ 

in a fictitious natural language connective nand ‘|’ (Seuren 1985: 260–266). Any sentence containing 
nand would thus be meaningless in natural language logic.  

4.4 The need for an evolutionary explanation: why functionalism will not do 

Up until now we have seen several explanations for the absence of certain logical connectives in 
natural language: (1) because these connectives are not communicatively useful; (2) because they are 
difficult to process for human brains; or perhaps (3) because they do not fit mental logic. These are all 
functionalist explanations: language has a certain set of connectives, because that is the set that 
conforms best to the demands of communicative use and to the limitations of human mental abilities. 
What is missing is an account of the mechanism through which language came to attain this set of 
connectives that conforms so well to these demands. Disentangling the causal connection between 
external pressures on language and its form has been identified by Kirby (1999) as the problem of 
linkage. This causal connection is what should be provided by an evolutionary account. 

In order to understand the difference between functionalist and evolutionary accounts better, we 
may draw an analogy with biology. A biological equivalent of a functionalist explanation might be: 
‘Giraffes have long necks, because it helps them to reach the leaves up in high trees.’ Unlike some 
linguists, biologists have not been content with such kinds of explanations. The missing link in 
biology is filled in by evolutionary theory, which explains how organisms get to conform to or adapt 
to pressures from the environment. The most important mechanism for adaptation in biology is 
natural selection: generation after generation, the giraffes with the genotypes leading to the longest 
necks reproduce in larger numbers, because they are the ones that have access to the best food source. 

After the infamous 1866 ban by the Société de Linguistique de Paris on papers on the origin of 
language, it has taken linguists a long time to rediscover the possibilities of applying evolutionary 
theory to language. Starting in the 1970’s there has been a distinct functionalist movement in 
linguistics which related language properties to external factors such as mental parsing mechanisms 
(Hawkins 1994) or iconicity (Haiman 1985). This movement and mainstream generative linguistics 
have remained fairly isolated from each other, though (Newmeyer 1998: ch. 1). 
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A common argument still used today by linguists against functionalist explanations for linguistic 
phenomena is that they would lead us to expect such a phenomenon to be present in all languages. 
The explanation would therefore be falsified by just one counterexample in one language or dialect. 
In the words of John Du Bois: 

 
Volumes of so-called functionalism are filled with ingenious appeals to perception, cognition or 
other system-external functional domains, which are used to ‘explain’ why the language simply 
has to have the grammatical particularity that it does—when a moment’s further reflection 
would show that another well-known language, or even just the next dialect down the road, has 
a grammatical structure diametrically opposed in the relevant parameter. (Du Bois 1985: 353). 
 

This argument is misguided: the hypothesis that giraffes have long necks so they can reach leaves up 
in high trees is not falsified once we discover that lions or antelopes from the same area have short 
necks. The argument does show why a functionalist explanation by itself cannot be enough: we need 
a causal mechanism that explains why some languages or organisms adapt in a particular way to an 
outside pressure, and why some do so in other ways. 

Only with Pinker and Bloom’s (1990) paper ‘Natural language and natural selection’ interest in the 
evolution of language has been revived in linguistics: in the decade following this paper the number 
of articles on language evolution increased tenfold (Christiansen and Kirby 2003: 2–3). Pinker and 
Bloom’s attempt at an evolutionary account of language closely follows the model of biological 
evolution, and attributes the particular functional properties of language to an innate Language 
Acquisition Device (LAD), which would have evolved biologically. 

If we consider language as a unitary phenomenon, a device for communicating, this proposal seems 
credible: it is not hard to imagine better communicators reproducing faster. More specific properties 
of language, however, seem unlikely to cause such differential replication. Such accounts have been 
suggested by inter alia Newmeyer (1991) for several principles of Universal Grammar, such as 
Subjacency and the Empty Category Principle. Lightfoot’s (1991: 69) dryly stated response to 
Newmeyer sums up the argument against biological evolution of specific language properties: ‘The 
Subjacency Condition has many virtues, but I am not sure that it could have increased the chances of 
having fruitful sex.’ And even if the Subjacency Condition had such desirable qualities, there are also 
neurological limitations on the specificity of the language properties that could emerge through the 
evolution of innate wiring in our brains (Deacon 1997: 328–334). Most linguists these days agree that 
if there is an innate LAD, it cannot contain exact specifications of all the details of the human 
language. It probably just contains biases that push language to take on certain forms. 

Explaining biases in the brain does not equal explaining the state of human language. We cannot 
assume a simple mapping of innate preferences onto language features, as has been shown by Kirby, 
Smith and Brighton (2004). Instead, any bias from an innate LAD is just another factor to which 
language has to adapt, and as biology has taught us, adaptation can take place in unexpected ways. In 
short, an appeal to biological evolution does not solve the problem of linkage for language. 

The way to solve this problem is by approaching language itself as an evolving entity. Language 
goes through a process of continuous cultural evolution: it changes in non-random ways as it is 
transmitted between users, and is being learned by successive generations. Cultural evolution is the 
causal mechanism that could link language form and external pressures. Hurford (1990) has dubbed 
this the glossogenetic approach to language evolution, contrasting with Pinker and Bloom’s 
phylogenetic approach. Through glossogeny, it can be shown that language may acquire certain 
functional characteristics. Using computer simulations, this has been demonstrated for traits such as 
compositionality (Kirby 2000), co-existence of regular and irregular forms (Kirby 2001), existence of 
a fair amount of homonyms but few synonyms in language (Hurford 2003), recursion (Batali 2002) 
and headedness (Christiansen and Devlin 1997).  

I should point out that neither phylogeny nor glossogeny is ‘the only’ process that gave us the 
language we use today. Instead both phylogeny and glossogeny play a role in a process of co-



  21 

evolution, the former in the evolution of a human brain adapted to learning language, the latter in the 
adaptation of language to those brains and the communicative needs of its users (e.g. Deacon 1997; 
Kirby and Hurford 2002). Researchers still differ in opinion on how large the part is that each process 
plays in explaining human language. Which of these two processes, then, would be the one that could 
provide the bulk of an explanation for the problem at hand, viz. language’s particular set of 
connectives?  

Since it is very unlikely that humans would have an innate specification of what connectives their 
language can contain, and since any other factor influencing the set of connectives can only do so 
indirectly through a process of cultural language evolution, the glossogenetic approach will be the 
viable approach. In pursuing this approach we must set out (1) to find possible biases and pressures 
that may affect which connectives emerge in language evolution and (2) address the causal process 
through which these pressures affect language evolution. 

In the following paragraphs I will discuss two studies, Van Rooij (2005) and Sierra-Santibañez 
(2001), that explicitly consider the process through which a system of communication with logical 
connectives can evolve in response to communicative pressures from the external world—I know of 
no evolutionary studies that appeal to mentalist-cognitive principles as an external pressure. Both the 
studies derive the biases in step (1) not from research into the real external world, but instead pre-
specify a simple model of the environment that we can modify in certain ways. By experimenting 
with the properties of the model, insight is sought into the properties of the environment that may 
influence language’s set of connectives. 

4.5 An evolutionary and pragmatic account using Evolutionary Game Theory: Van Rooij 

4.5.1 Signalling games and Evolutionary Game Theory 

David Lewis’s (1969) signalling games are an application of game theory
12

 to linguistic convention. 
In signalling games, the communicative usefulness of a signal is the factor that decides whether such 
a signal will be part of an optimal system of communicative conventions. 

It is assumed that any signal emitted by a speaker has a certain effect on its hearer, or causes that 
hearer to perform a certain action. Depending on what the situation is, this effect on the hearer may in 
turn benefit or damage the speaker. For instance, in a situation in which a juicy apple is hanging from 
a tree, but unfortunately out of reach for the speaker, uttering ‘Could you get me that apple?’ will 
cause the hearer to perform an action that is beneficial to the speaker. In signalling games damage or 
benefit is pre-specified in utility values or pay-offs that are attached to different combinations of 
abstract situations and actions. 

An optimal signalling strategy is one in which the speaker, for every given situation, produces a 
signal that will in turn cause the hearer to perform the action with the highest possible utility value to 
both speaker and hearer. 

The question remains how such an optimal signalling strategy would develop in the absence of any 
conscious design. An answer to that question has been found for regular game theory. In Evolutionary 
Game Theory (Maynard Smith 1982), successful strategies evolve through a mechanism in which 
organisms using more successful strategies have a higher chance of reproduction.

13
  

Van Rooij (2004) recasts signalling games in terms of Evolutionary Game Theory and proves that 
given a set of utility values for different situations and actions, a community of speakers will evolve 
an Evolutionary Stable Signalling Strategy (ESSS) in which a speaker will, for each given situation, 
produce the message that causes the hearer to perform the action with the highest utility value. 
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 A tutorial in game theory written especially for linguists is Benz, Jäger and Van Rooij (2006). 
13

 Evolutionary Game Theory was originally modelled on biological evolution. It can be applied to cultural evolution as 
well though, if we do not take the users of a communication strategy to be the replicators, but rather the strategies 
themselves. A strategy with a high pay-off to its users would replicate well by being adopted by many organisms (Van 

Rooij 2004: note 16). 
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The notion of an ESSS is somewhat more restricted than that of an optimal strategy in non-
evolutionary signalling games. For a situation t1 to have a separate message in an ESSS, it must be the 
case that t1 has an action a1 associated with it that has the highest pay-off for t1 alone, and a1 must not 
be the action with highest pay-off for any other situation tn. If the latter is the case, the two situations 
t1 and tn call for the same action to be taken by the hearer, and there will be no evolutionary pressure 
for t1 and tn to have different signals corresponding to them. However, such a redundant strategy, 
using separate signals for situations that call for the same action, could still be optimal in non-
evolutionary signalling games. 

Since we know what defines an ESSS, and since pairs of situations and messages can be ascribed 
utility values arbitrarily, for any set of situations a pay-off table with utility values can be constructed 
in which it is evolutionary beneficial to have a separate message for each situation. 

4.5.2 Introducing connectives into signalling games 

Conceivably, there could also be situations that are actually conjunctions or negations of situations. 
Those complex situations could have separate utility values for each action attached to them. Let us 
assume two situations, t1[A TIGER IS COMING FOR ME] and t2[I HAVE A SPEAR ON ME]. Both t1 and t2 

could have utterances associated with them that would give evolutionary benefits to the speaker. For 
instance, in situation t2 a useful utterance might be ‘So let me have your wife, or I will pierce you’. 
However, that utterance would not be very beneficial in the case of the complex situation t3 = t1  ¬t2 

= [A TIGER IS COMING FOR ME AND I DO NOT HAVE A SPEAR ON ME]). In this situation, an utterance like 
‘Help!’ would probably confer more evolutionary benefit. 

There are four connectives that can be described using conjunctions and negations of simple 
situations: , BUT, ALTHOUGH and . If we assume that t1 = [P] and t2 = [Q], then t1  t2 = [P  Q], 

t1  ¬t2 = [P BUT Q], ¬t1  t2 = [P ALTHOUGH Q] and ¬t1  ¬t2 = [P  Q]. The simple situations and 

the complex situations that can be described using , BUT, ALTHOUGH and  are the situations that are 

actual. By this I mean that they describe a singular state of affairs that is true or false at a particular 
point in time. 

The situations represented by the other connectives, on the other hand, represent disjunctions of 
those actual situations and can be used by the speaker to represent his belief state about the possibility 
of several actual situations (Van Rooij 2005)

14
. This follows from the insight that each connective can 

be defined in Disjunctive Normal Form (DNF) as a disjunction of conjunctions.
15

 For instance, P | Q 
can be rewritten as (P  ¬Q)  (¬P  Q)  (¬P  ¬Q)  (P BUT Q)  (P ALTHOUGH Q)  (P  Q), 

while P  Q  (P BUT Q)  (P ALTHOUGH Q).
16

 So, if t1 = [P BUT Q] and t2 = (P ALTHOUGH Q) then t1 

 t2 = [P  Q]. The 16 two-placed connectives can all be represented in DNF with either one, two, 

three or four disjuncts. Hence these connectives have one, two, three or four situations in which they 
are true, respectively. 

How do we define the pay-off of a particular action with respect to a belief state rather than an 
actual situation? If we take it that the situation represented by each disjunct in the belief state has an 
equal chance of occurring, then a situation t1 t2[P  Q] reflects the belief that there is a 50% chance 

that t1[P BUT Q] is the case and a 50% chance that t2[P ALTHOUGH Q] is the case. So, the pay-off value 
of some action ax for t1  t2[P  Q] is the average of the pay-off of ax for t1[P BUT Q] and the pay-off 

of ax for t2[P ALTHOUGH Q]. 
Now recall from §4.5.1 that a situation t1 merits a separate message if and only if t1 has an action a1 
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 Van Rooij (2005) is an unpublished manuscript; a published summary of this manuscript is Van Rooij (2006). 
15

 Disjunctive Normal Form is a standardised or ‘normalised’ way of representing a logical formula. A logical formula 
needs to be normalised if it is to be used as input to many automated theorem proving algorithms. DNF and its sibbling 

CNF (Conjunctive Normal Form) are thus commonly used in machine learning (see e.g. Chang and Lee 1973: 12–15). 
16

 It may seem confusing to represent P  Q—with exclusive or—as (P BUT Q)  (P ALTHOUGH Q) in DNF—with inclusive 

or. By definition DNF uses inclusive or, but since (P  Q), (P BUT Q), (P ALTHOUGH Q) and (P  Q) are all mutually 

exclusive, we could replace inclusive or with exclusive or in the DNF-representation without any consequences. 
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associated with it that has the highest pay-off for t1 alone, and a1 is not the action with highest pay-off 
for any other situation tn. An example of a pay-off mapping that attributes a unique highest pay-off to 
[P  Q] is presented in table 1 below (adapted from Van Rooij 2005: 18). The utility value of an 

action ax in a situation tx is represented as U(ax,tx). 
 

Table 1. Example of a pay-off mapping that attributes a unique highest pay-off to [P  Q]. If this mapping 
characterises the environment, an ESSS will emerge in which there is a separate signal for [P  Q]. 
 Actions 

Situations a1 a2 a3 

t1[P BUT Q] U(a1,t1) = 4 P(a1,t1) = 0 P(a3,t1) = 3 
t2[P ALTHOUGH Q] U(a1,t2) = 0 P(a1,t2) = 4 P(a3,t2) = 3 
t3 = t1  t2[P  Q] AVG(U(a1,t1),U(a1,t2)) = 2 AVG(U(a2,t1),U(a2,t2)) = 2 AVG(U(a3,t1),U(a3,t2)) = 3 

 
With this pay-off mapping, a1 is the best action to perform in situation t1, because it yields a pay-off 
of 4, while a2 is the best action to perform in situation t2, because it yields a pay-off of 4 in that 
situation. However, if the speaker believes that either t1 or t2 may be true (i.e. he is in belief state t3), 
performing a1 will have a 50% percent chance of yielding 4 as a pay-off (if t1 turns out to be actual 
case) or 50% chance of yielding 0 (if t2 turns out to be the actual case). The same is true for a2: 
performing that action means gambling for a pay-off of either 0 or 4, depending on what actual 
situation turns out to be the case in belief state t3. The average pay-off will be 2. So, in belief state t3, 
when either t1 or t2 could be true, a3 is the best action to perform, because a3 will give a pay-off of 3 
no matter whether t1 or t2 turns out to be true. If the particular set of situations, actions and pay-off 
values represented in table 1 exists in the environment, the evolutionary need for  will arise. This is 

how far Van Rooij (2005) went in demonstrating the possible scenarios for the evolution of 
connectives for belief states in signalling games.

17
 

4.5.3 Is there an Evolutionary Stable Signalling Strategy with all 16 connectives? 

The crucial question now is whether it will be possible to construct a utility matrix similar to table 1 
that models an environment in which there is evolutionary pressure to develop a separate signal for 
each of the 16 connectives. In such a table, for each connective C there must be a complex situation t1 
conjoined by C, that has associated with it an action a1 yielding the highest pay-off for t1 alone and a1 
must not be the action with highest pay-off for any other complex situation t2 with the same premises 
but a different connective. 

Constructing pay-off tables for actual situations is straightforward, because for those situations the 
pay-off value of an action can be assigned an arbitrary value. However, for connectives reflecting 
belief states the pay-offs of each action are calculated as a function of the pay-off values of other 
actual situations for that action. A change to one pay-off value will affect many other values in the 
table, and this interrelatedness may make a table with all 16 connectives impossible. If this turns out 
to be the case, we would have proof from signalling games and Evolutionary Game Theory that there 
is no evolutionary need for some connectives. 

However, after some experimentation I have discovered that pay-off tables yielding communication 
systems with separate messages for all 16 connectives do exist. Such a table is presented in appendix 
3. This finding shows that the meaning of each connective is a potentially useful thing to express. 
Whether the connective meaning is actually useful depends on the environment, in this case the pay-
off table. Importantly, it is not the case that there is no connective that would not be useful in any 
environment at all.18 
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 Van Rooij actually constructed P  Q out of the simple situations P and Q rather than out of P BUT Q and P ALTHOUGH 

Q, while he had separate explanations for the evolution of  and ¬. I have used the approach with DNF-disjuncts for 

simplicity, but I believe results similar to mine could be achieved using just simple situations and their negations. 
18

 This is even true for the non-compositional connectives, although these are logically equivalent to the simple situations 
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4.6 An evolutionary and communicative account using Language Games: Sierra-Santibañez 

4.6.1 Language Games 

Another language evolution simulation paradigm that lends itself to studying the way in which 
language is shaped by the environment is that of Luc Steels’s Language Games, most famously 
exemplified in his Talking Heads experiment (Steels 1999). In these simulations, robot agents evolve 
concepts and vocabularies for describing the world around them. Their worlds are filled with simple 
objects, definable by properties such as their colour, shape or location on a grid. Such properties are 
dimensions in a meaning space, and concepts are defined as intervals on these dimensions. For 
instance, the concept AT THE TOP might be defined as interval (7,10] on a meaning space dimension 
with domain [0,10], describing an object’s vertical position on a grid.

19
 

The robots evolve a set of both concepts themselves and names for those concepts by playing series 
of Language Games in which they negotiate word meaning in pairs. Two possible Language Games 
are the observation game (Vogt 2000), in which the robots point out the names of the objects to each 
other and the guessing game (Steels 1999; Vogt 2000), in which one robot makes the other guess 
which object is meant by a particular word. The guessing game, which we will be concentrating on in 
this paragraph, proceeds as follows: 
 
I. A speaker randomly picks an object as a topic and a number of objects as a background. 
II. The speaker tries to find a concept in her conceptual system that uniquely picks out that topic 

from the background. If none is found, a new concept is created, for instance by dividing an 
existing concept interval in halves. This part of the guessing game is called the discrimination 
game. The term is somewhat confusing, since the discrimination game is only a subroutine of 
other language games and unlike those other games it involves only one player. 

III. The speaker lexicalises the concept and communicates the word she has found to the hearer. If 
the speaker does not have a word for the concept yet, she invents a new word. 

IV. The hearer interprets the word and points to the object she thinks is meant by the speaker. 
V. If correct, the hearer reinforces its conviction that the particular word indeed had the meaning 

she thought it had. 
VI. If incorrect, the speaker points to the object she had intended, and the hearer responds by 

adjusting her own lexicon. 
 

Of course in each of these phases there is room for adjusting the properties of the simulation and the 
way the game is played. 

4.6.2 Evolving connectives with language games 

This language game model of the emergence of a vocabulary of perceptual concepts has been applied 
by Sierra-Santibañez (2001) to the evolution of concepts and words for logical connectives. The 
development occurs in two distinct and consecutive phases. 

In the first phase the agents play guessing games in which they develop a lexicon of perceptual 
categories describing the horizontal and vertical positions of objects on a grid. They also develop a 
procedure for determining whether some category is true for a particular object or not, and map these 
combinations of objects and categories to a member of {0,1}. Once this phase is over, the 
vocabularies and conceptual systems of the robot agents are fixed. 

In the second phase the agents evolve concepts for logical connectives by playing evaluation games. 
Evaluation games are like the guessing games discussed in §4.6.1, with a few notable differences. In 

                                                                                                                                                               
t1 and t2. The non-compositional connectives arise because the simple situations they are equivalent to are not present 
in the pay-off table. It may be presumed that their meanings would usually be expressed in natural language with just 
the word for the equivalent simple situation, rather than with one of these connectives. 

19
 For a more extensive discussion of meaning spaces, see ch. 8. 
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phase (I), topic selection, a speaker is allowed to pick more than just one object. In phase (II), the 
discrimination game, the speakers do not just discriminate the topic using a simple predicate, but 
using a complex expression consisting one or two perceptual categories and a logical category. Such 
expressions look like simple formulae of propositional logic in Polish notation, i.e. the operator 
precedes the arguments: 
 

true(up(x)) 
not(down(x)) 
iff(up(x), right(x)) 
and(left(x), up(x)) 
xor(left(x), right(x)) 

 
Note that lexicalisations like true, iff and xor (or left and up) above are not really used in the 
simulation; the robots develop their own vocabulary. 

In order to find a discriminating expression, a speaker first randomly picks one or two perceptual 
categories and evaluates them on both the topic and background object(s). This results in two sets of 
truth values Ttopic and Tbg in the cases where one perceptual category is used, and two sets of truth 
value pairs Ttopic and Tbg in the case of two categories. If Ttopic  Tbg =  or Ttopic  Tbg = , those 

categories in fact discriminate the topic from the background. The possible values of Ttopic and Ttopic 
represent the connectives. If the speaker does not have this particular set of truth values or truth value 
pairs as a logical category in his conceptual system, that category is added to the system. 

The one-placed logical categories are thus represented as subsets of T1 = {0,1} and the two-placed 
ones as subsets of T2 = {(1,1),(1,0),(0,1),(0,0)}. The latter definition follows from the insight that 
each connective can be defined in Disjunctive Normal Form as a disjunction of conjunctions. For 
instance, P | Q can be rewritten as (P  ¬Q)  (¬P  Q)  (¬P  ¬Q). This logical category | would 

be represented as T  = {(0,1),(1,0),(0,0)} in the simulation: each truth value pair T  T  corresponds 

to one disjunct in the DNF representation of | and the first and second member of each T correspond to 
the truth values of the first and second conjunct of each disjunct. As we saw in the §4.5, Van Rooij 
(2005) used the same normalisation as a basis for his representation of the connectives.

20
  

All this has been rather abstract, so let us move to an example and see how the simulation actually 
works. Assume that in one evaluation game a speaker needs to discriminate the topic objects TOPIC1, 
TOPIC2 and TOPIC3 from background objects BG1 and BG2. Let us further assume that the objects have 
three perceptual features X, Y and Z, each of which can have values ranging [0,10], and several 
perceptual categories have already been defined over these features. The feature values of the objects 
are as follows: 
 

 X Y Z  
TOPIC1 1 4 1 
TOPIC2 7 7 7 
TOPIC3 9 1 9 
BG1 9 1 7 
BG2 4 1 1 

 
The speaker always tries discriminating the topic objects from the background by using a single 
perceptual category and a one-placed connective first, but it can be shown that that procedure would 

                                                
20

 Note the difference between Van Rooij’s and Sierra-Santibañez’s use of the connectives with more than one DNF-
disjunct. Van Rooij uses them to represent disjunctions of possible situations. Sierra-Santibañez uses them to represent 
disjunctions of objects with differing properties. In either case, these connectives always refer to more than one object 
or situation.  
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have failed in this case. I will concentrate on the procedure for discriminating the topic using a two-
placed connective. 

The speaker randomly picks an ordered set of perceptual categories, e.g. {slonk,gnurk}. Slonk 
means Y=[0,3] and gnurk means Z=(8,10]. Let E be the evaluation function over perceptual 
categories and objects; evaluating slonk on TOPIC1 yields E(slonk,TOPIC1) = 0, because for TOPIC1 

Y=4 and 4  [0,3]. Likewise E(gnurk,TOPIC1) yields 0 as well, leading to an ordered truth value pair 
TTOPIC1 = {0,0}. In the same way truth value pairs TTOPIC2 = {0,0}, TTOPIC3 = {1,1}, TBG1 = {1,0} and TBG2 = 
{1,0} are derived. TTOPIC = TTOPIC1  TTOPIC2  TTOPIC3 = {(0,0),(1,1)} and TBG = TBG1  TBG2 = {(1,0)}. The 
topic is discriminable from the background using these features since TTOPIC  TBG = . 

The set Ttopic turns out to represent the biconditional, but this is not relevant to the computer. If the 
speaker already has a word representing the logical category matching TTOPIC, say klok, meaning 
T={(0,0),(1,1)}, she communicates this to the hearer in a representation klok(slonk(x),gnurk(x)) — cf. 
step III of the guessing game. This representation can be evaluated as true when Tklok = 
E(slonk(x),gnurk(x)). It may be paraphrased as: ‘the topic I am trying to communicate to you has Y  
[0,3] if and only if it has Z  (8,10]’. The reader may verify from the table that this is indeed a 
characterisation that picks out the topic objects from the background objects. 

Note, that for a particular set of objects several combinations of feature pairs and connectives may 
exist that discriminate the topic from the background. Only a subset of these will be available to the 
speaker after the first step of the discrimination game, the random pick of an ordered pair of 
perceptual features. This step fixes the arguments and their order for the connective that could be 
used. However, under the limitation of one fixed set of features, too, there can be more than one 
logical category that discriminates the topic. For instance, in the example above, the topic may also be 
discriminated with the conditional rather than the biconditional. The conditional would be represented 
as T  = {(1,1),(0,1),(0,0)}, and since T   TBG =  it also discriminates the topic from the 

background, in the same way that T  does. The reason that  works as well as  in this case, is that 

 is true in all the cases that  is true in.  is also true in one extra case (i.e. {1,0}), but that does 

not prevent discrimination since the background does not contain any objects for which  is true. 

In fact, the only way to find a discriminating logical category other than the one picked by the 
search algorithm is to use a connective with more DNF-disjuncts, as with  and . Sierra-

Santibañez’s algorithm searches for the ‘tightest fit’, however. It simply evaluates the feature pairs on 
each topic: thus it is guaranteed to find the logical category with smallest possible number of 
elements. Any other element will be one that is not true of any of the objects in the topic, and thus in a 

sense superfluous. I will return to this heuristic in §7.3.2 as I discuss whether it is warranted in a 
model of human communication that aims to be realistic.  

After the speaker has communicated her representation to the hearer, the hearer interprets the 
representation and points to the topic object, as in step (IV) of the guessing game. If the hearer is 
correct, the next round is played. If she is wrong, the speaker points to the topic, and the hearer 
essentially repeats the procedure that the speaker has undertaken. First the perceptual categories are 
evaluated, after which a set of truth value pairs is constructed that discriminates the topic from the 
background. The hearer then stores this set in her lexicon, together with the word that the speaker had 
used previously for it. 

Since the hearer can already be certain about the fixed meanings of the perceptual categories, and 
since both hearer and speaker use the same deterministic procedure for finding a discriminatory 
logical category that, given two perceptual categories, always yields the same result, there is no way 
that the logical lexicons of the agents could be different at any time. In the guessing game for 
perceptual categories on the other hand, the hearer cannot always derive the correct meaning of a 
presented word with certainty from the speaker’s pointing to an object the word refers to. Indeed, the 
way lexicons align to each other despite this ambiguity of pointing is one of the major explananda of 
Steels’s model. The problem dates back to Quine (1960: 29 ff.) who pointed out that if some native 
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tribesman exclaims ‘Gavagai!’ while pointing to a rabbit, the linguistic field worker still could not be 
sure that gavagai means RABBIT. It could also mean FURRINESS, FOUR-LEGGEDNESS, RUNNING, etc. In 
our evaluation game for logical connectives however, we have seen that if a speakers points to a set of 
objects and utters two known perceptual categories and an unknown connective, the meaning of that 
connective can be unambiguously derived from the pointing, if both hearer and speaker are biased to 
find the connective with the ‘tightest fit’. 

In Sierra-Santibañez’s simulation it turns out that the agents develop all of the 14 of the 16 logically 
possible connectives during the course of 10,000 evaluation games. The only ones that do not arise 
are those which yield either false or true in all cases, i.e. ALWAYS and NEVER. Thus all connectives 
seem to be potentially useful in describing objects. Sierra-Santibañez reports only briefly on the order 
in which the connectives arise during the simulation and the relative frequencies of their use by the 
robot agents. She only states that unary categories (TRUE

21
 and ¬) are learnt first, followed by ‘binary 

connectives such as conjunction, disjunction and implication’, for which lexical coherence is reached 
after 3,000 games. After 10,000 games all connectives have been learnt. 
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 TRUE(P) is true if and only if P  1. 
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5 The evolution of holistic and compositional connectives in 
the Iterated Learning Model 

The evolutionary models considered in chapter 4 have demonstrated that it is useful to have a 
communication system that can express the meanings of all the 16 connectives. This should not come 
as a surprise. As can be seen from appendix 2, natural language has evolved to meet this need: it has a 
way to express the meaning of each connective. However, we still do not know why some truth-
functional meanings, such as of  or , are realized as single morphemes and others, such as , as a 
composition of other connectives. This was the question this thesis was meant to answer. 

The models discussed so far concentrate on the evolution of the meanings of the connectives. Some 
representation of language form does co-evolve with the meanings in the models, but that 
representation is too impoverished to answer the research question. Van Rooij represents the 
meanings of each utterance with just an abstract symbol t, encompassing both the connective and its 
arguments. Sierra-Santibañez pre-imposes a structure of two arguments and a single-morpheme 
connective on the expressions her agents can build.  

 What we need is a model that addresses the surface form of language in sufficient detail. 
Specifically, that model should account for the concurrent or sequential evolution of both simple 
single-morpheme units of meaning and the complex compositional meaning constructs that are the 
hallmark of modern human language. 

A large amount of research has been done into the evolution of compositionality. Two schools of 
thought exist that divide the evolutionary linguistics community. The first one is the oldest one: the 

synthetic account envisages language starting its existence in the form of a ‘protolanguage’ with just 
simple words and no syntax (e.g. Bickerton 1995). Syntax would have evolved later, mainly as an 
exaptation to other pre-existing cognitive structures of the human brain. For instance, argument 
structure may have evolved on top of existing mechanisms for determining givers and receivers in 
social contracts (Bickerton 2000). 

The other route to the emergence of compositionality is the analytic one (Wray 1998). According to 
this theory, protolanguage was a system of holistic phrases, similar to animal calls, which functioned 
as complete messages serving concrete communicative goals. Through various processes of language 
change, such as re-analysis, these phrases would get broken up into shorter words progressively.  

Both these models have their merits. I do not claim to be able to resolve which one is correct.
22

 In 
this thesis I shall adopt the analytic approach, though, mainly because this approach has been 

modelled in interesting computer simulations various times (Kirby 2000; 2001; Vogt 2005; De Beule 
and Bergen 2006). These simulations do not only confirm that the causal mechanisms proposed in the 

analytic approach may indeed result in the emergence of compositionality, but also illuminate the 
factors that determine whether a given meaning will come to be expressed as a holistic or a 
compositional signal. 

 In all the simulations mentioned a population of artificial agents is busy trying to get meanings 
across to each other. The agents have various mechanisms for inventing new concepts, for creating 
words for those concepts and for inferring what another agent could mean with a certain utterance. 
New generations of fresh learners are added periodically to these populations, while older speakers 
‘die’ and are removed from the simulation. Because language is learned over and over again by 
successive generations in this kind of models, they have been dubbed Iterated Learning Models 
(ILM’s) by Kirby and colleagues (e.g. Kirby and Hurford 2002). I shall not go into how these 
simulations work precisely, and concentrate instead on what factors in each model determine whether 
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 The incessant and frequent debates between Jim Hurford and Simon Kirby on this topic have become somewhat 
legendary at the LEC in Edinburgh. For years now, the two of them have been hijacking countless discussion sessions 

meant to be on other topics, topics often only vaguely related to the issue of the origins of compositionality. 
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a given meaning will come to be expressed as a holistic or a compositional signal. 
In one important ILM simulation by Kirby (2000) the factor causing compositionality in language is 

a bottleneck effect in its transmission across generations (Kirby 2002: 20–21). Language learners are 

always presented with just a subset of the language they are trying to learn: this is the bottleneck, 
through which elements of a language must pass again and again as it is learned by a next generation. 
Compositional rules are more likely to pass through the bottleneck than holistic ones, since they can 
be used for the lexicalisation of more than one meaning. Hence they are more frequent, and are thus 
more likely to be presented to the next generation somewhere during their learning period.

23
 

However, holistic rules can stand a good chance of passing through the bottleneck as well if their 
meanings need to be lexicalised frequently enough. If a Zipfian frequency distribution

24
 is introduced 

over the meanings in a computer simulation, it can be shown that after many generations of learners, 
the most frequent items get realised as irregular, holistic signals, whereas less frequent meanings are 
realised regularly and compositionally (Kirby 2001). 

In another model of the emergence of compositionality by Vogt (2005), some other factors promote 
the emergence of compositional rules. Importantly, in Vogt’s model too, frequency helps a rule to 
survive, but not just because it makes the rule more likely to pass through the bottleneck.

25
 In Vogt’s 

model, every time a rule is used successfully in an interaction, its weights are reinforced making it 
more likely to be used in future, whereas other rules competing for the same meaning are inhibited. 
Vogt does not provide an account of regulars versus irregulars, but given the role of frequency in this 
model it may be assumed that frequent meanings would be lexicalized irregularly in this model, too 
(Paul Vogt, p.c.). The same basic mechanism of reinforcement of successful items is used in a 
different study by De Beule and Bergen (2006). If a frequency distribution were introduced here, 
frequent holistic phrases would tend to survive as well (Joachim de Beule, p.c.).  

Frequency as an explanatory factor for language properties is no stranger to the field of linguistics. 
Difference in frequency has been invoked to explain inter alia the fact that the 10 most frequent 
English verbs are all irregular (Pinker 1999: 123–125), grammaticalisation (Bybee 2003), relative 
word length (Zipf 1935)26, markedness, the loss of the OV word order in Old English and differential 
diffusion of sound changes through the lexicon (all three mentioned in Newmeyer 1998: 123–126). 

By picking these models we have taken an important step towards an evolutionary explanation for 
language’s set of natural connectives. Recall from §4.4 that a proper evolutionary explanation would 
consist of (1) possible pressures or biases that influence languages properties and (2) an account of 

the causal process through which these pressures influence those languages properties. The computer 
model provides the causal mechanism, and also a mediating factor through which external pressures 
may influence the lexicalisations of the connectives: frequency. We are now left with step (1), finding 
the pressure that could lead to an unequal frequency distribution of the connectives. In particular, we 
would need proof showing that, for some reason, language users will express some connective 
meanings, such as  and , more frequently than others, such as  or . 

In chapters 6 and 7 I shall investigate the two main lines of explanation (mentalist-cognitive and 
communicative) that have been invoked in the literature to explain connective use in human language 
and pursue them to see if they could give rise to a frequency distribution. 

                                                
23 Van Rooij suggests that the ILM might provide a way in which presumed holistic signals for complex signalling game 

situations could be broken down into compositional ones containing separate signals for the connective and its two 
arguments. Note that this would be compositionality arising in a different meaning space than the compositionality this 

thesis is looking into, namely the breaking up of connectives themselves into meaning components. 
24

 A distribution of meanings is Zipfian if the relative frequency of each meaning is inversely proportional to its frequency 
rank (Zipf 1935). Corpus research shows that the natural languages tend to conform to Zipf’s law quite well (Li 1992).  

25
 Bottlenecks can be introduced into Vogt’s model, but do not have to in order for compositionality to emerge. 

26
 Zipf observed that word length is inversely related to frequency without quantifying this relation. A formula has been 

devised later, though: it turns out to vary according to what language corpus is tested (Sigurd, Eeg-Olofson and Van de 
Weijer 2004). The observation of Zipf about frequency and word length should not be confused with his law about 

frequency and frequency rank, discussed earlier in this paragraph. 
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In chapter 8 then I seek to fulfil another requirement of these models. All the models are about 
agents learning to convey meanings to each other through signals, and simply pre-specify the 
meanings. I too shall make the assumption that language users had the meaning of all 16 connectives 
available before they actually started developing words for them27. These meanings need to be 
represented in some way. Kirby’s (2001) study into the emergence of compositionality and irregulars 
uses very simple meaning representations: strings of 2 characters from a 5-letter alphabet. Vogt 
(2005) actually co-evolves meaning with form, but the variation of meanings that may evolve is 
limited to different variants of bit-vectors. Other studies, such as Kirby (2000) and De Beule and 
Bergen (2006) use a form of predicate logic. In chapter 8 I shall investigate what kind of meaning 
representation would be suitable for the meanings of the connectives. 

                                                
27

 How connective meanings (rather than words) may evolve is demonstrated in the models of Sierra-Santibañez and Van 
Rooij (§4.5 and §4.6). Sierra-Santibañez’s model, specifically, co-evolves meanings with words for those meanings. 
Her words however are always random mono-morphemic strings, while the meanings of the connectives are simply 
invented the first time a connective is needed for discrimination. A tighter integration between evolution of meaning 
and words still has intuitive appeal, and it may perhaps be achieved in Vogt’s (2005) model that integrates elements of 
the ILM and Language Games. The matter of the relative timing of the evolution of words for and meanings of the 
connectives remains an empirical question: there is no a priori reason to reject my assumption that connectives 

meanings came first, and words second. 
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6 Looking for a frequency distribution of logical connectives: 
the mentalist-cognitive approach 

6.1 Different processing difficulty may give rise to different connective usage frequencies 

There is a large body of psycholinguistic evidence for differences in processing difficulties with the 
various connectives. From the relative difficulty of the connectives we may be able to infer different 
frequencies of use: one would assume that a connective that is difficult to understand or reason with 
would tend to be used less often. 

One limitation here is that processing difficulty data only exists for a limited number of connectives, 
namely ,  and . The reasons for this are obvious: these are the most common connectives by far 

in logic and natural language. Research into other connectives is sparse to non-existent. However, the 
theories advanced in psycholinguistics are general enough to make predictions about the difficulty of 
the connectives other than those that have been experimented with.  

6.2 Syntactic and semantic models of mental reasoning 

Two main models have been proposed in the psychology of deductive reasoning: a syntactic model 
and a semantic model. Both are inspired by inference mechanisms of formal logic: the syntactic 
model by proof-theoretic deduction, the semantic model by model-theoretic deduction.

28
 

The syntactic model (e.g. Rips 1994) states that humans always automatically abstract the ‘surface 
form’ of an argument into a logical form. When reasoning they mentally apply a subset of the rules of 

proof-theoretic inference. Among these are disjunction elimination (P  Q, ¬Q, therefore P) and 

modus ponens (P  Q, P, therefore Q). However, some other rules are usually not included in the 
hypothesized mental rule system, such as modus tollens (P  Q, ¬Q, therefore ¬P). 

Model-theoretic inference works by setting up models of states of affairs based on the semantics of 
the premises. In formal logic the semantics or meanings of propositions are represented as truth 
tables. These truth tables are highly redundant as representations, however. In psycholinguistic 
models therefore they are compressed in order to reduce the load on working memory (Johnson-
Laird, Byrne and Schaeken 1992). Reasoners are taken to represent only the models that are true for a 
particular connective, and by default only the true propositions in those models (Johnson-Laird 1999: 
116). For instance, the proposition P  Q would have the following truth table: 

 
P Q P  Q 

1 1 1 
1 0 0 
0 1 1 
0 0 1 
 

Compare the models that P  Q would be represented by: 

  
1. P Q 
2.  Q 
 

Each of the models represents a case in which P  Q is true. The fact that P is false in model (2) is 

not represented. Finally, the semantic model states that initially, reasoners do not fully flesh out all of 

                                                
28

 For discussion of proof-theoretic and model-theoretic induction in logic, see e.g. Forbes (1994). For an overview of 
psycholinguistic research into deduction, including a comparison of the syntactic and model-theoretic models, see 

Johnson-Laird (1999). 
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these possible models. Instead, they start with just one model, representing the most salient case. In 
the case of P  Q, this is the first model in which P and Q are both true. 

6.3 Predictions for reasoning errors with the connectives of classical logic 

The two models make different predictions about the errors humans make while reasoning. 
The syntactic model predicts that the number of inferential steps needed correlates with the number 

of errors. However, this number of inferential steps needed depends on the mental rules that are 
hypothesized. For instance, take the modus tollens inference. If there were a mental rule for this 
inference it should be easy to make, as easy as, say, disjunction elimination. In fact, reasoners 
consistently find modus tollens difficult to make.29 Rule theorists explain this by hypothesising that 
there is no mental rule for modus tollens, and that reasoners need a multiple-step inference, involving 
modus ponens and a reductio ad absurdum. This argument seems circular: reasoners have difficulty 
with modus tollens, so they must lack a mental rule for it; and because reasoners lack this mental rule, 
they have difficulty with the inference. 

The semantic model predicts that the more models are needed to make an inference, the more errors 
will be made, because people try to minimize working load by focussing on just one possible model. 
Evidence for this tendency has been found in spatial, temporal and quantified reasoning as well as 
logical inference, the topic at hand (Johnson-Laird 2001: 435; Sloutsky and Goldvarg 2004: 638). The 
difficulty reasoners have with modus tollens is explained as follows. 

When presented with the proposition P  Q, reasoners initially represent it with only one model, 

and include a footnote (represented by ‘…’ below) that more models are possible: 
 

1.  P Q 
2. … 

 
From this initial model and ¬Q nothing follows. This is in fact the response of many untrained 

reasoners who are invited to make a modus tollens inference. In order to make the inference, the 
representation for P  Q needs to be fully fleshed out, as in: 

 
1.  P Q 
2.  Q 
3.  

 
Now it can be seen that there exists no model in which ¬Q is true and P is true as well. Thus ¬P 
follows. So, reasoners need to consider all three models under which P  Q is true, and that is what 

makes modus tollens hard. Note that in order to make the easy modus ponens inference reasoners 
only need to consider the first model that is initially represented.  

6.4 Predictions for human preferences for particular connectives 

Whichever theory is correct, what concerns us here is which predictions they make for a preference 
for one connective over another. These predictions should be extendible to other connectives than the 
ones of classical logic. 

The syntactic theory makes no such prediction (Johnson-Laird 1999; Rader and Sloutksy 2001). 
Without modifications, it also does not allow for connectives other than the ones already present in 
classical logic, since the mental rules it proposes are designed to reason with those connectives only. 
                                                
29

 Note that by ‘reasoners’ I mean participants on reasoning experiments with no particular experience in formal logic. Of 
course anyone can be trained in formal logic, and those that are may become adept at it to such an extent that modus 
tollens no longer forms a problem. However, the research described here is meant to investigate the everyday 

reasoning skills human naturally use in their daily lives, not the formal skills of logicians. 
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A rule-based theory would thus give an a priori account for the particular sets of connectives there are 
in human language: we have the connectives we have, because they are the only ones we can reason 
with using our mental rules. From other connectives no inferences can be made at all. They are thus 
meaningless, and human language has no need for words without meaning. 

On the other hand, syntactic theory does not offer any reason why humans would use the inference 
rules of classical logic, rather than some other arbitrary set of valid rules. For instance, a valid rule for 
making deductions with  would be: P  Q; P; therefore Q. The theory might also introduce a 
derivational system that rewrites the other connectives into the classical ones. Thus, the model would 
in fact be compatible with any set of connectives, without giving us any reason why one would be 
used rather than another. 

Semantic theory does have something to say about the individual connectives. If inferences 
requiring more than one model are harder to make, then propositions containing connectives 
compatible with more than one possible model will, on average, cause more representational errors 
(Rader and Sloutsky 2001: 839; Johnson-Laird 2001: 435). However, the number of models a 
proposition is compatible with does not map one-to-one onto the number of cases in which the 
connective is true. Johnson-Laird, Byrne and Schaeken (1992) found that the order of difficulty of the 
connectives is, from easy to hard, , ,  and |. Note that even though   is true in more cases than 

  is (3 versus 2), people find it easier it reason with. This would be the case because reasoners 
initially represent  with only one model. As we saw, this limited initial representation makes modus 
ponens inferences easy. On the other hand, however, it inhibits the modus tollens inference, for which 
reasoners need to flesh out the initial representation of   to include more models. So, the difficulty 
of a connective depends on the inferences we want to make with it, because different inferences 
require different amounts of explication of the models with which a connective is compatible. 

It will be hard to predict what kind of inferences would be made with hypothetical connectives; in 
fact we do not even know what inferences people most commonly make with the existing 
connectives. Also, it is not clear what the model theory would predict about these inferences, because 
there seem to be no general laws gouverning the pick of an initial model for a connectives. The theory 
proposes that reaonsers initially postulate a model ‘P Q’ for , and two models for , namely ‘P’ and 
‘Q’, but it not clear why this would be the case. We have no way of telling with what initial 
representations a reasoner would represent a non-classical connective. Since these are supposed to 
predict the difficulty of an inference, we have no way of knowing which connectives should be 
difficult and which connectives easy. 

There is a way around this problem if we just consider the case of the connectives with only one 
condition of truth. These could be equally difficult as other connectives with more conditions of truth, 
because those connectives might have only of those conditions fleshed out. However, they could 
never be more difficult. If ease of reasoning were a large factor in the evolution of connectives, we 
would predict at least some languages with the connectives , BUT and ALTHOUGH. However, we find 
none with BUT and ALTHOUGH, and all languages have , which is supposed to be much harder to 
reason with according to the model. 

6.5 Difficulty and frequency seem unrelated in the case of logical connectives 

Psycholinguistic theories of reasoning difficulty seem to have little predictive value of the particular 
connectives that languages contain. Natural language may contain connectives that are notoriously 
hard to reason with, whereas other connectives, that should be very easy according to some theories, 
remain absent. It is also far from clear how a frequency distribution for connectives could be derived 
from processing difficulty differences. However, if somehow a function could be found that predicts 
higher frequencies for theoretically more difficult connectives, it is obvious that such a function 
would make false predictions as well. 
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Our discussion of processing difficulty does shed some new light on Gazdar and Pullums’s 
principle of confessionality, which appeals to the difficulty of the processing of negation in order to 
rule out connectives which yield true for two false arguments. The difficulty with the processing of |  
found by Johnson-Laird, Byrne and Schaeken (1992) confirms this, although they cite a different 
cause: | requires three mental models. On the other hand, semantic theory predicts that another non-
confessional connective, , should be easy. In fact,  is found in many languages, and | is not. This 
should of course not be taken as evidence that the model theory predicts the presence of certain 
connectives in language, but merely that Gazdar and Pullum’s theory about non-confessionality must 
be mistaken for two reasons: (1) the class of non-confessional connectives is not homogeneous with 
respect to difficulty and (2) difficulty is a not a sufficient condition for the absence of a particular 
connective in human language, which in fact is shown by the presence of   in Old English, German 
and Dutch mentioned in §3.2. 
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7 Looking for a frequency distribution of logical connectives: 
the communicative approach 

7.1 The ‘use’ of connectives: being more specific or allowing more possibilities 

All in all processing difficulties do not seem to give promising clues to the origins of languages’ 
particular set of connectives. In this chapter I shall look into another possible factor: the 
communicative use of a connective’s meaning. Could it be the case that  and  are somehow more 
useful than other connectives, so that their meanings are needed more frequently? And could this in 
turn cause  and  to be quickly and efficiently realised as holistic phrases, whereas other connectives 
do with paraphrases? 

It is going to be difficult to theorise about which connective meaning would be ‘needed’ how 
often.

30
 A good place to start would be an informal description of when and why humans use and and 

or, the existing connectives in natural language. As noted in §3.3.3, these connectives can conjoin a 
number of syntactic categories, such S, NP and VP. In (20)–(24) below I present some examples of 
different syntactic categories being conjoined by and and or, repeating the examples given in (5)–(8) 
in §3.3.3. For each example, I briefly describe the purpose the connective is used for in that example. 

 
  S 
(20) a. Conjoined by and: to describe two simultaneously occurring situations 
  The box is wet and the vase is wet. 
 b. Conjoined by or: to describe two possible situations 
  The box is wet or the vase is wet. 
 
  VP 
(21) a. Conjoined by and: to describe a set of actions 

  The football fans sang and danced on the tables. 
 b. Conjoined by or: to describe two possible actions 

  This thesis will inspire you or give you a headache. 
 
  NP 
(22) a. Conjoined by and: to describe a set of two persons or objects 

  John and Mary walked to school. 
 b. Conjoined by or: to describe two possible persons or objects  

  The dog will bite John or Mary. 
 

  AP (predicative use) 
(23) a. Conjoined by and: to describe two properties of one object 
  The ball is round and red. 
 b. Conjoined by or: to describe two possible properties that an object could have 
  The ball is red or green. 
 

                                                
30

 At first sight it may seem that no connective is strictly necessary, since the meaning of each connective can be always 

be expressed in terms of certain subsets of other connectives. A subset of connectives that can express all other 
connectives through some combination of its members is called expressively complete: such sets are inter alia { ,¬}, 

{ ,¬}, {|} and { } (Schumm and Shapiro 1990; yli ski 1924; Sheffer 1913; Peirce 1933). If we have any of these 

sets, we might say the other connectives are not useful at all. However we should bear in mind here that we are looking 

for a frequency distribution of truth-functional meanings rather than a distribution of connectives per se. 
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  AP (attributive use) 

(24) a. Conjoined by and: to describe two properties of one object 
  John had to lift a large and heavy box. 
 b. Conjoined by or: to describe two possible properties that an object could have 
  The pork comes with a red or green chilli sauce. 
 
A pattern leaps out from the examples: and is used for referring to two properties, objects, actions, 
etc. simultaneously, whereas or is about describing two different states that those properties, objects 
and actions could take on.31 And is about being more specific about one particular entity or action; or 
is about admitting the possibility of more entities or actions, that is being less specific. 

As we noted before when discussing the approaches by Van Rooij and Sierra-Santibañez to 
accounting for the connectives in human language (§4.5 and §4.6), connectives can be described 
using Disjunctive Normal Form and split up into categories that yield true in either 1, 2, 3 or 4 states 
of affairs. 

And is in the category that is only true in one case. For instance, example (22a), John and Mary 
walked to school is true if and only if both John and Mary walked to school. The fact that  is two-

placed makes it suitable for describing two situations being true simultaneously, namely John walking 
to school and Mary walking to school. Other connectives in this category are BUT, ALTHOUGH and . 

Or is in the category that is true in several cases, namely three. For instance, example (22b), John or 
Mary walked to school is true if and only if one of these three conditions is met: (1) John walked to 
school but Mary did not, (2) John did not walk to school although Mary did, or (3) both John and 
Mary walked to school. Other connectives in this category are , ,  and .  

So, connectives can be split up into two groups depending on the direction in which they diverge in 
specificity from a baseline expression P. , BUT and  introduce more restricted truth conditions by 
adding a conjunct, and thus reduce the number of worlds in which P is true. The other two-placed 
connectives introduce more lax truth conditions through the different DNF-disjuncts and thus increase 
the number of worlds in which P is true. Increased specificity can be used to reduce the number of 
objects, situations, properties being referred to; decreased specificity can be used to increase that 
number. The question remains: how frequently do we use either more specific and less specific 
connectives? 

7.2 Quantifying the use of the connectives 

We saw in §7.1 that some connectives serve to increase specificity, whereas others decrease 
specificity by allowing more possible situations. Both functions could be useful to a human 
communicator at some point: he may need to be specific in some cases, and need to make broad 
statements in other cases. It seems pretty much impossible to quantify these communicative needs. 
How many times does a communicator need to be specific? How many times does he need to be 
general? The answer would depend on the environment, the goals of the communicator and the 
properties of the rest of the communicative system. It is obvious that these factors are extremely 
complex. The chances are slim for us to be able to derive any frequency data from them about the 
need for the 16 logical connectives. Yet real frequency data is what we need if we want to use the 
Iterated Learning Model to find out why some connectives are realised holistically and some are not. 

As is common in science when problems become too complex to solve, I shall attempt to reduce the 
problem to a model. Frequency data may be obtained from some simplified model of communication. 
Two of such simplified models of communication have already been discussed in this thesis: Van 
Rooij (2005) in §4.5 and Sierra-Santibañez (2001) in §4.6. 

                                                
31

 Admittedly, this fact is not exactly ‘leaping out’ of raw data, but rather out of my interpretation of the data, which may 

be biased. The reader is invited to verify my interpretation and judge whether it makes any sense. 
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In Van Rooij’s model, a communication system is evolved through the extra-linguistic mechanisms 
of Evolutionary Game Theory. After evolution, we find that this communication system consists of a 
simple one-to-one mapping of abstract situations and signals. Some of these signals contain the 
meaning of one of the 16 connectives. At what point such a signal containing a connective is 
produced depends on what abstract situation is the case. This in turn is determined entirely arbitrarily. 
There is no way we could obtain any meaningful connective frequencies from this model. 

In Sierra-Santibañez’s model the environment consists of a set of objects. The goal of the speaker is 
to point out a set of topic objects to the hearer, in such a way that the hearer cannot confuse them with 
a different set of background objects. It is assumed that the particular set of topics and background 
objects the speakers needs to point out changes randomly on each occasion. Every such occasion is 
modelled in one evaluation game. The communication system consists of expressions for simple 
perceptual properties of the objects, which can be used as arguments to one and two-placed 
connectives. 

If we want to understand what part of real human communication is being modelled here, we could 
imagine two children (speaker and hearer) sitting in a room full of toys (the objects). At some point 
(one evaluation game), one of the children wants to have two particular toys, a green one and a red 
one (the topic objects). Those toys lie in one corner of the room along with a few other toys, say a 
pink one and a blue one (the background objects). The child wants his companion to get him the 
green toy and the red toy. Therefore she asks: ‘[Could you get me the toys that are] red or green?’ 
because red or green is the qualification that is true of the objects the speaker wants to have and false 
of the other toys. If the other child then hands the speaker the desired toys the speaker has achieved 
her goal. 

 In short, the linguistic behaviour modelled is that of humans pointing out objects to each other by 
describing the properties of those objects. It most closely resembles the use of connectives in (23)–
(24): to conjoin AP. This may not seem very ‘useful’ or common behaviour, but according to one 
prominent evolutionary anthropologist and cognitive scientist (Tomasello 1999), the habit of calling 
other people’s attention to objects and establishing joint attention is specifically human behaviour that 
is fundamental to the development of our cognition. 

Although Sierra-Santibañez makes no mention of frequencies herself, her simulation could 
potentially provide us with frequency data about the use of all the connectives. Over the course of a 
number of discrimination games, we can count the number of times a speaker could use a particular 
connective to build a discriminating expression. This means that we shall use Sierra-Santibañez’s 
original simulation for a slightly different purpose than it was set up for. Sierra-Santibañez was 
researching how concepts and words for connectives could emerge in some community of artificial 
speakers and hearers, as a consequence of a need to point out sets of objects. I am looking for how 
often the meaning of each connective is useful to speakers for pointing out the desired object, 
assuming the meanings of the connectives are already available to the speaker. I also aim to make this 
frequency distribution explain properties of the real world, so unlike Sierra-Santibañez I want the 
speakers and environment to be as realistic as possible. 

In the following paragraphs I will use Sierra-Santibañez’s simulation to obtain a frequency 
distribution of logical connectives. It will turn out in §7.3.1 that Sierra-Santibañez’s original 
algorithm yields a frequency distribution that would produce unrealistic lexicalisations of the 
connectives if used as input to Kirby’s model.

32
 These results can partially be ascribed to some 

unrealistic parameters of the original algorithm. 
These parameters are discussed in §7.3.2; they include properties of the speaker’s cognitive system, 

the structure of the environment and the communicative system. Appropriate settings for some of 
these parameters are suggested, so that the simulation can be made more realistic. For some other 
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 It is easy to predict which meanings will be realised holistically and which ones compositionally in Kirby’s (2001) 
model: it is always the most frequent ones that get lexicalised as holophrases. An unrealistic frequency distribution is 
therefore a distribution in which  and  are not the most frequent connectives. 
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parameters, it is proposed that the effect should be researched. In order make these changes and to be 
able to tweak the parameters easily, I explain how I have reimplemented the simulation in a different 
programming language. 

Then, in order to find out what exactly is the effect of these parameters, §7.3.3 proposes to run a 
large number of simulations, in which different combinations of parameter settings are tested. Using 
statistical methods, then, the effects of the different properties can be determined. 

The result of one preliminary run of simulations is presented in §7.3.4. The results from this run 
prompted a second run of simulations. The results of this second run are presented in §7.3.5. The 
main observation we make from the data is that the connectives can be divided into two groups, 
positive and negative, that respond differently to different numbers of topic and background objects. 
The emergence of these groups is analysed and explained formally in §7.3.6. In §7.3.7 I then relate 
these groups to the notion of specificity already touched upon in §7.1. Finally, in §7.3.8, I discuss 
how specificity affects the frequency of use of the connectives. 

7.3 Repeating Sierra-Santibañez’s simulation in order to find a frequency distribution 

7.3.1 Repeating Sierra-Santibañez’s simulation using her original settings and algorithm 

In the process of finding a frequency distribution of connectives, I have initially used the same Prolog 
discrimination game algorithm as used by Sierra-Santibañez for her (2001) article. I have limited 
myself to the discrimination game part, and have ignored the part where the hearer interprets the 
speaker’s utterance. This is because I aim to use Sierra-Santibañez’s original simulation for a slightly 
different purpose than it was set up for, as mentioned in §7.2. Sierra-Santibañez was researching how 
concept and words for connectives could emerge in some community of speakers. I am looking for 
how often the meanings of connectives are potentially useful for discrimination. 

The discrimination games run in Sierra-Santibañez’s original algorithm had the following 
properties: 
 

- ND = 2. There are 2 dimensions in the meaning space. 
- NR = 4. There are 4 regions in each meaning space dimension.  
- NT  {1,2,3}. The number of topic objects has an equal chance of being either 1, 2 or 3. 

- NB = 2. There are 2 background objects. 
 
Running 10,000 discrimination games using Sierra-Santibañez’s original settings reveals the 
following frequency distribution: 

 
TRUE 2060  713  101 

¬ 3170  1210  35 

  AM 0  44 
 60 MA 0  14 

BUT 128 NM 0 
ALTHOUGH 99 MN 0   Total 8697 

 1063     Non-discriminable 1303 

 
From this distribution the following observations can be made: 

 
A. The two-placed connectives AM, MA, NM and MN are never used. 
B. ¬ is used 1,5 times more often than TRUE, and   is used 17 times more often than . 

C. Although very frequent in natural language,  is hardly used, as is .  

D. Instead, ,  and  are by far the most common two-placed connectives. 
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The connectives mentioned in observation (A) are Gazdar and Pullum’s non-compositional 
connectives. The reason they do not emerge is because in Sierra-Santibañez’s algorithm, a speaker 
agent searches for a characterisation using a one-placed connective first. If such a characterisation is 
found, the speaker does not bother with searching any further for a two-placed connective that may do 
the trick as well. Now, there is no case in which any of the non-compositional connectives could pick 
out some set that could not be picked out using an expression with just TRUE and ¬, because each of 

the non-compositional connectives is logically equivalent to such an expression. This corresponds to 
the situation in natural language (see appendix 2): there are no holistic connectives that are equivalent 
to AM, MA, NM or MN.

33
 

The connective use described in observations (B), (C) and (D) on the contrary does not correspond 
to the typical situation in natural language. In order to seek explanations for these phenomena, we 
need to tweak the original settings of Sierra-Santibañez and explore what their effects are on 
connective frequency. 

7.3.2 Manipulating Sierra-Santibañez’s original settings using a new algorithm 

We have been able to explain observation (A) easily from the properties of Sierra-Santibañez’s 
original algorithm. In order to find explanations for the other observations, we need to explore 
different combinations of the variables in the simulation: ND, NR, NT and NB. In order to manipulate 
these variables easily, I have rewritten the discrimination game algorithm in HyperTalk

34
.  

Other than allowing for easier manipulation of the simulation settings, we are now in a position to 
reconsider some of the built-in preferences of the original Prolog algorithm. Since we are using the 
algorithm to a slightly different purpose than it was originally meant for, some of these preferences 
may no longer be justifiable. 

The discrimination simulations in the HyperTalk algorithm proceed as follows. Each simulation has 
a particular specification for ND, NR, NB and NT. First, all the possible objects using this particular 
number of dimensions and regions are generated. The number of possible objects equals NR

ND
. The 

actual names of the dimensions and the regions into which they are divided are of no importance; the 
program just provides abstract symbol for them, e.g. dimensions X, Y and Z or regions a, b, c and d. 
Next, a random sample of 1,000 possible combinations of NT topics and NB background objects is 
generated using these objects. We have to limit ourselves to a sample since the number of possible 
combinations, given by NR

ND(NT+NB)
, becomes too large quickly. The discrimination phase then 

proceeds by checking, for each pre-defined connective, for which one of the 1,000 possible 
combinations of topics and background objects the connective is true of the topic and false of the 
background. 

The first change from Sierra-Santibañez’s Prolog code is that the new algorithm does an exhaustive 
search. The original algorithm stops after one discriminating connective has been found. That one 
connective is essentially a random pick of the possible connectives that could work in a particular 
discrimination game: a random set of arguments is chosen, after which a deterministic procedure 
leads to a connective. This makes sense in a simulation in which the goal of the agents is just to 
communicate. However if we want to know how frequently each connective could be used 
potentially, we need to continue searching until all the connectives that would discriminate in a 
particular round of the discrimination game have been found. 

                                                
33

 Interestingly, Sierra-Santibañez reports in her (2001) paper that all 16 two-placed connectives plus TRUE and ¬ arise 

during the simulation, even the non-compositional ones. This is because she simulated the emergence of one-placed 
and two-placed connectives separately. If a speaker needs a one-placed connective, but cannot use one, the non-
compositional connectives fill the gap (Josefina Sierra-Santibañez p.c.). 

34
 HyperTalk is a scripting language originally used in an Apple Macintosh authoring environment called HyperCard, 

which was very popular during the 1980’s and 1990’s. HyperCard has been discontinued by its developer Apple 
Computer Inc., but HyperTalk is still supported as part of a HyperCard clone called Revolution, developed by Runtime 

Revolution Ltd. of Edinburgh. 
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A second property of the Sierra-Santibañez simulation is a preference for one-placed over two-
placed connectives. In this thesis I want to focus on whether two-placed connectives are useful in 
particular situations. Prima facie it may seem safe to say that a two-placed connective is not needed if 
an expression using TRUE or ¬ would be logically equivalent. If we think more carefully, however, 

we need to wonder what the basis for that preference would be. Invoking least effort as an argument 
here would be inappropriate, since we are only dealing with the semantic meanings of connectives 
rather than their surface forms, and the principle of least effort has only been postulated for actual 
language. Instead we would just have to assume here that in mental logic, too, a preference somehow 
exists for one-placed over two-placed connectives.

35
 

Since we want to build as few assumptions as possible into our simulation, I will initially research 
the behaviour of the two-placed connectives without a preference for one-placed connectives. 
Possibly the simulation would reveal a frequency distribution leading to connective morphology with 
a realistic share of one-placed and two-placed connectives, even without such a preference.  

Another preference present in Santibañez’s algorithm is that for the connective with the least 

possible number of DNF-disjuncts (cf. §4.6.2). Again, this preference is difficult to justify from 
empirical data of the human mind. There is some evidence for a correlation between processing 
difficulty and number of truth conditions but this evidence, discussed in §6.4, is sketchy at best. 
Therefore my algorithm shall not necessarily prefer connectives with less DNF-disjuncts. If a set of 
objects can be discriminated using both  and , for instance, both connectives will be equally 

acceptable, even though  could be said to be more specific than . 

Another choice to be made is whether I allow discrimination games to use the same object twice. By 
the ‘same’ object is meant an object with exactly the same properties.

36
 Having the same object both 

in the topic and the background makes all discrimination impossible. This is not equally true for the 
cases where the same object is represented twice in either topic or background. Disallowing the same 
object to be used twice would make some combinations of settings impossible; for instance NR = 2, 
ND = 2 and NT = 8. Since with NR = 2 and ND = 2 only 4 different objects are possible, it would be 
impossible to have eight topic objects. Since this happens to be one of the settings I have been 
meaning to use in the simulation runs, I have decided to allow using the same object multiple times in 
the discrimination games. 

7.3.3 Methods of statistical analysis of the data 

After running the simulations in HyperTalk, I have used the SPSS statistics package
37

 to analyse the 
effects of the settings ND, NR, NT, NB on the frequencies of the connectives. SPSS is also useful for 
uncovering interactions between the effects of the settings. The results from the first run prompted for 
a second run with some different settings. Both runs and their details are covered in §7.3.4 and §7.3.5. 

I have treated each of the simulations as a separate case, specified for ND, NR, NT, NB and for the 
number of times each connective was used. ND, NR, NT, NB are the independent variables upon which 
the frequencies of the connectives depend. I have analysed of the influence of these independent 
variables on the connective frequencies by plotting the relevant data. 

Because the results of the discrimination game simulations are not real statistical data, I have 
refrained from using actual tests of statistical significance. Of each possible combination of the 
independent variables, only one case is present in my data. This would rule out any statistically 
significant results from this data if it had been experimentally obtained. However, several runs of the 
                                                
35

 Such mental least-effort assumptions have been made in the literature. For instance Vogt (2004) has fitted robot agents 
with a tendency to minimise cognitive cost by preferring general concepts over specific ones. Interestingly, this 
assumption gave rise to the emergence of Zipf’s law of word length and frequency in the agents’ vocabularies. 

36
 That two objects sharing the same properties are the ‘same’ objects by definition is a philosophical position famously 

taken by Leibniz (see Forrest 2002). This philosophical debate lies out of the scope of this dissertation, however. 
37

 As its name implies, SPSS or the ‘Statistics Package for the Social Sciences’ is the standard computer programme used 
for data analysis in the social sciences. It is developed by SPSS Inc. of Chicago, IL. The MacOS version of SPSS is a 

horrible port that crashes and corrupts data continually, increasing my frustration levels to great heights.  
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simulation have shown that its outcome is almost completely deterministic: each run yields the same 
results, give or take 1 case. The only factor introducing variance is the random selection of topics and 
background objects in the 1,000 discrimination games. 

SPSS, a Statistical Package for the Social Sciences, assumes the simulation data are in fact 
empirical, stochastic data from such social science experiments. However, the outcome of one run of 
a deterministic procedure is as significant as an infinite number of runs of a field experiment in the 
social sciences. The results on statistical significance that SPSS returns will be meaningless; instead, I 
will consider all the main and interactions effect found for ND, NR, NT, NB to be significant and not 
due to chance. 

7.3.4 Results from run 1: more meaning space dimensions means easier discrimination 

In run 1, I have done 256 simulations of 1,000 discrimination games each using the HyperTalk 
algorithm. The 256 games represent all the possible combinations of the following settings: ND  

{1,2,4,7}; NR  {1,2,4,7}; NT  {1,2,4,8}; NB  {1,2,4,8}. This preliminary run revealed a number 

of properties of the diverse connectives that prompted me to do a second run with changes. 
Firstly, I found that some connectives consistently had identical frequencies and 100 % overlap with 

other connectives. These were AM, MA, NM, MN, ALTHOUGH and . The first four are equivalent to 

TRUE and ¬, as noted before in observation (A). As for ALTHOUGH and , the data from run 1 has 

shown that these connectives always fully overlap with BUT and , respectively, and vice versa. This 

is a consequence of the fact that these non-commutative connectives mirror each other’s argument 
positions: P BUT Q  Q ALTHOUGH P and P  Q  Q  P. So, in every case in which ALTHOUGH or 

 can be used, BUT or  can be used, too, if the arguments are reversed.
38

 

Secondly, for none of the connectives does an interaction effect exist between ND and either NR, NT 
or NB. The main effect for ND is depicted in fig. 2 below.

39
 

 
Figure 2. Main effect of number of meaning space 

dimensions (ND) on the number of times Ndisc[C] in 

which each connective C successfully discriminates 

topic from background. 
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38

 Strangely, there is a small difference in number of occurrence for BUT and ALTHOUGH in Sierra-Santibañez’s original 

algorithm, and similarly for  and . I had no explanation for this result at the time of writing. 
39

 Every time a graph is presented with a main effect for some independent variable X, this means that for each value of X, 

the mean number of successful games over all the different settings for the other independent variables is presented. 
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There is positive main effect of ND for all the connectives: with an increase in number of dimensions, 
the number of cases in which any connective can successfully discriminate increases. This intuitively 
makes sense: each of the meaning space dimensions acts as a separate ‘opportunity’ for applying a 
particular connective. The more meaning space dimensions, the more elaborately specified the 
objects can be, and the larger the chances are that an object can be accurately described using some 
connective. 

The effect is slightly stronger for the pairs  /  and  /  while less strong for  / . However, as 

ND increases the lines start running more parallel, i.e. Ndisc/ ND for each connective converges. 

Most importantly, nowhere does a change in ND change the relative order of successfulness of the 
connectives. Therefore there is no way in which the variable ND could make a difference as to which 
connective works best in a given situation. Since there is also no interaction effect between ND and 
either NR, NT or NB, for any of the individual connectives, we can ignore ND in the rest of our 
analysis and can suffice with keeping the setting for ND equal across all simulation runs.

40
 

Moving on to the effect of NR, I found that the number of successful games using any connective is 
0 if NR = 1. This must be the case since if a particular property of an object (say COLOUR) can have 
only one value (say red), that particular property has no discriminatory value: all objects are red by 
definition. We can eliminate the setting NR = 1 from the data. 

7.3.5 Results from run 2: the effects of number of regions, topics and background objects interact 

In run 2 there were 100 simulation of 1,000 discrimination games, where ND = 3, NR  {2,3,5,7}, NT 

 {1,2,3,5,7} and NB  {1,2,3,5,7}. These settings reflect several adjustments made since run 1. ND 

= 3 across all runs, since the results from run 1 showed that dimensionality does not interact with the 
effect of the other variables. NR = 1 is removed, since with this setting no successful discrimination 
can occur using any connective. Since keeping ND constant reduces the number of—computation 
intensive—simulations, I was able to increase the number of data points by introducing some more 
possible settings for NR, NT and NB. 

                                                
40

 The connectives  and show some aberrant behaviour: Ndisc[ ] and Ndisc[ ] are both 0 if ND = 0. This must be the 

case because if r1  r2, (XJ(r1),XJ(r2)) is a contradiction while (XJ(r1),XJ(r2)) is a tautology. If r1 = r2, 

(XJ(r1),XJ(r2)) is equivalent to TRUE(XJ(r1)) or TRUE(XJ(r2)) while (XJ(r1),XJ(r2)) is equivalent to ¬(XJ(r1)) or 

¬(XJ(r2)). In these latter cases  and  cannot discriminate because in run 1, one-placed TRUE and ¬ were always 

preferred over two-placed  and  (cf. §7.3.2). 
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The graph in fig. 3 below depicts the mean number of discrimination games each connective was 
useful in across all settings. 
 

Figure 3. Mean number of times Ndisc[C] in which 

each connective C successfully discriminates topic 

from background in run 2. 
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Surprisingly, TRUE and ¬, on the far left and right of the graph, are the connectives used least. Also, 

 is infrequent. The most frequently applicable connectives are  and . If will defer discussing the 

causes of this particular frequency distribution to §7.3.8. Using the results of run 2, I shall now 
investigate the main effect for number of regions per meaning space dimension, presented in fig. 4 
below. 

 
Figure 4. Main effect of number of regions per each 

meaning space dimension (NR) on the number of 

times Ndisc[C] in which each connective C 

successfully discriminates topic from background. 
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The main effect for the number of regions is less clear than that for number of meaning space 
dimensions. Most noticeably, the 10 connectives fall into 5 pairs with respect to their average 
frequency, namely TRUE / ¬,  / ,  / , BUT /  and  / . These connective pairs are each other’s 

negations: 
 
TRUE(P)  ¬¬(P)  ¬(P)  ¬TRUE(P) 

P  Q  ¬(P  Q)  P  Q  ¬(P  Q) 

P  Q  ¬(P  Q)  P  Q  ¬(P  Q) 

P BUT Q  ¬(P  Q)  P  Q  ¬(P BUT Q) 

P  Q  ¬(P  Q)  P  Q  ¬(P  Q) 

 
If NR = 2, an even larger number of connectives have the same average number of successful games: 
these are the pairs TRUE / ¬  and  /  on one hand and  / ,  / , and BUT /  on the other hand. 

The connective pairs  /  and   /  increase in frequency fairly rapidly as NR goes up, while other 

connective pairs’ frequencies increase only slowly or even decrease slightly with an increase of NR 
(TRUE / ¬,  /  and BUT / ). 

A similar ‘pairing up’ effect is found in the main effects of number of topics NT and number of 
background objects NB. These are presented in fig. 5 below. 

 

Figure 5a. Main effect of the number of topic 

objects NT on the number of times Ndisc[C] in which 

each connective C successfully discriminates topic 

from background. 

Figure 5b. Main effect of the number of 

background objects NB on the number of times 

Ndisc[C] in which each connective C successfully 

discriminates topic from background. 
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As the number of topic objects increases, the number of cases in which each connective discriminates 
decreases. The larger the set of topics that have to be picked out, the more difficult it gets to find an 
expression that describes that set of topics, if the expression has to be limited to one connective with 
two properties as its arguments. Likewise, the more background objects there are, the more difficult it 
gets to find an expression that sets any topic apart from that background. All this is true no matter 
what connective is used in the expression. 

The decrease in number of successful games is not equally large for each connective, however. 
Some connectives lose their use much faster than others as NT or NB increases. For instance, if NT = 
1, ¬ discriminates the topic from the background Ndisc[¬] = 320 times on average, while TRUE is used 
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680 times. If NT increases to 2, however, Ndisc[TRUE] sinks by 450 to about 230, while Ndisc[¬] goes 

down just by 40, so ¬ is used 240 times on average, more often than TRUE is used. So, although both 

TRUE and ¬ discriminate less well as the number of topic objects increases, ¬ is affected less by this 

increase, and so ¬ becomes more successful than TRUE once NT  2. 

Interestingly, the opposite situation is found in graph 5b depicting the change in Ndisc as NB 
increases rather than NT. With NB = 1, Ndisc[¬] starts out high, and above Ndisc[TRUE], but as NB gets 

larger than 2, Ndisc[¬] plummets below the level of Ndisc[TRUE]. Here, the two connectives TRUE and 

¬ mirror each other’s decrease in successfulness as a consequence of an increase of NT and NB, 

respectively. The same pattern is found with the connective pairs  / ,  / , BUT /  and  /  as 

well. These pairs of connectives are, like TRUE and ¬, each other’s negations. They are the same pairs 

of connectives that were paired up in the graph depicting the main effect of NR (fig. 4). In the graphs 
in fig. 5, the second member of these pairs is marked with a dotted line in the same colour in which 
the first member is marked. 

In fig. 6 below we find the interaction effects between NT, NB and NR for one of these five pairs, 
TRUE / ¬. 

 
Figure 6. Interaction effects of number of topic objects NT, number of background objects 

NB and number of regions NR on the number of times TRUE and ¬  are successfully used 

(Ndisc[TRUE] and Ndisc[¬ ]). 

 Fig. 6a. Effect of NT, NB 
and NR on Ndisc[TRUE]. 

Fig. 6b. Effect of NT, NB 
and NR on Ndisc[¬]. 

Fig. 6c. Effect of NT, 
NB and NR on Ndisc[¬]. 

Projections of NB and 
NT reversed. 
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Ndisc[NOT] at NR = 2
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Ndisc[NOT] at NR = 2
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NR=3 Ndisc[TRUE] at NR = 3
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Ndisc[NOT] at NR = 3
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Ndisc[NOT] at NR = 3

NB
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NR=5 Ndisc[TRUE] at NR = 5
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Ndisc[NOT] at NR = 5
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Ndisc[NOT] at NR = 5
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NR=7 Ndisc[TRUE] at NR = 7
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Ndisc[NOT] at NR = 7
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Ndisc[NOT] at NR = 7
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The graphs for ¬ and TRUE in fig. 6a and fig. 6b are identical when NR = 2. However, as NR 

increases, the number of successful games for TRUE and ¬ starts to diverge. When NR reaches high 

values, TRUE yields a large number of successful games when NT < 2, but as NT increases, 
Ndisc[TRUE] quickly approaches 0. The situation for ¬ is the other way around: Ndisc[¬] is high when 

NB = 1, medium high when NB=2 and approaches 0 when NB > 2. Ndisc[¬] is hardly influenced by 

NT, while Ndisc[TRUE] does responds very little to changes in NB. 
TRUE and ¬ seem to mirror each other’s behaviour: TRUE reacts to changes in NT the same way as ¬ 

reacts to changes in NB, and vice versa. Indeed, they mirror each other perfectly, which can be seen if 
we flip the way NB and NT are projected in the graph for Ndisc[¬]. If NB is projected along the x-axis 

while NT is represented with separate lines, the graph for Ndisc[¬] looks exactly like the one for 

Ndisc[TRUE], as can be seen by comparing figures 6a and 6c. This also means that Ndisc[TRUE] = 
Ndisc[¬] if NT = NB, which can also be verified from the graphs in fig. 4. 

Comparable graphs for all the 10 connectives investigated are presented in appendix 4. From these 
graphs, we notice that the connectives fall into two groups with behaviours that are similar to either 
TRUE (the positive connectives) or ¬ (the negative connectives). The positive connectives do well 

with a low number of topics, but quickly approach zero successful games as NT gets higher. An 
increase in the number of background objects does not affect the success of these connectives much. 

The negative connectives are the negations of the positive connectives. Their behaviour is 
characterised by a high number of successful games when NB is low, which quickly approaches zero 
as NB increases. An increase in the number of topic objects does not affect the success of these 
connectives much. For all of the connectives that are each other’s negations, the graphs are identical if 
the projection axes of NB and NT are flipped for one of them. 

Within the two groups, connectives can be more or less extreme in their behaviour. Along this 
dimension of extremity of behaviour, both the positive and negative groups of connectives can be 
dichotomised into moderate and extreme members of that group. Extremely positive connectives are 

, BUT and TRUE: their usefulness collapses very quickly once NT gets larger than 1. Moderately 

positive connectives are  and : like the extremely connectives, the number of times they 

discriminate diminishes once NT gets larger than 1, only not as fast. Extremely negative connectives 
are ,  and ¬, while moderately negative connectives are  and . These connectives start 

yielding fewer successful games once NB increases beyond 1: the extreme ones very rapidly, the 
moderate ones less so. 

I have presented the positive and negative categories of connectives in table 2 below, with 
descriptions of their behaviour and example graphs that are representative of the graphs for the other 
connectives in that category. As mentioned before, graphs for all the connectives can be found in 
appendix 4. 
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Table 2. Groups of connectives based on their behaviours under various settings of NT 

and NB, assuming NR>2. 
Category Positive Negative 

Behaviour 

High number of successful 
games when NT is low, quickly 
approaching 0 as NT increases; 
NB has little influence. 

High number of successful 
games when NB is low, quickly 
approaching 0 as NB increases; 
NT has little influence. 

Extreme 
example graphs: 

 (positive) 

and  (negative), 

NR = 7 
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Ndisc[NAND] at NR = 7
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Moderate 
example graphs: 

 (positive) 

and  (negative), 

NR = 7 

Ndisc[OR] at NR = 7
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Ndisc[NOR] at NR = 7
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  Extreme   

 BUT/ALTHOUGH  /  

 TRUE ¬ 

Moderate   

   

   
                  negation  

 
The dichotomy between negative and positive gets more pronounced as NR increases, but it is mostly 
absent when NR = 2. In this case, the connectives show fairly similar behaviour that straddles a 
middle ground between the extreme behaviours described for the positive and negative groups. The 
connective groups TRUE / ¬, as well  / BUT / ,  /  /  and  /  even yield identical numbers of 

successful games if NR = 2. 
The analysis of the interaction effects of NR, NT and NB has left us with several explananda: 

 
I. Why do the connectives in the positive group yield a high number of successful games when NT 

is low, quickly approaching 0 as NT increases, while NB has little influence? 
II. Why do the connectives in the negative group yield a high number of successful games when 

NB is low, quickly approaching 0 as NB increases, while NT has little influence? 
III. Why do the connectives in both groups mirror each other’s response to NT and NB? 
IV. Why is the dichotomy in a positive and a negative group small to absent when NR = 2, and does 

it get more pronounced as NR increases? 
 

In next paragraph I shall provide an explanation for these results. 

7.3.6 Explaining the ‘positive’ and ‘negative’ reactions of connectives to NT and NB 

We have noticed that the connectives can be divided into 5 pairs. For each of the pairs, one member 
works relatively well when there are many topics, while the other works better with many background 
objects. Let us investigate one of these pairs, the connectives TRUE / ¬. The key to explaining the two 

groups is the observation that the dichotomy is small to absent when NR = 2, while it gets more 
pronounced as NR increases. If a meaning space is divided into more than 2 regions, there are more 
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worlds in which ¬(X) is true than worlds in which TRUE(X) is true. 

We can quantify this difference in number of worlds. Assume one meaning space dimension X 
divided into 4 regions RX = {a,b,c,d} and one object J. This means there are four possible worlds, 
namely those in which respectively XJ = a, XJ = b, XJ = c and XJ = d.

41
 For any object J and for any 

region r  RX, TRUE(XJ(r)) is true if and only if XJ = r, whereas ¬(XJ(r)) is true if and only if XJ  R–

r, i.e. the complement of r with respect to RQ, the equivalent of negation in set theory. For instance, 
TRUE(XJ(a)) is true if and only if XJ = a, while ¬(XJ(a)) is true if and only if XJ = b, XJ = c or XJ = d. 

Thus, given one meaning space dimension X, one object J with property XJ(x) can be described using 
TRUE(XJ(a)) in Ntrue[TRUE(XJ(a))] = 1 world and using ¬(XJ(a)) in a number of worlds equal to the 

cardinality of the complement of r with respect to RQ, i.e. in Ntrue[¬(XJ(a))] = NR-1 cases, where NR is 

the number of regions in X. 
Two objects J1 and J2 can only be described with TRUE(XJ(a)) if and only if XJ1 = a  XJ2 = a, but 

using ¬(XJ(a)) if and only if XJ1  {b,c,d}  XJ2  {b,c,d}, i.e. in 3
2
 = 9 worlds. If there are three 

objects, Ntrue[¬(XJ(a))] adds up to 3
3
 = 27, while TRUE(XJ(a)) remains true in only one world. 

Generally, for any number of objects NJ, TRUE(XJ(r)) can be true in Ntrue[TRUE(XJ(r))] = 1 world, 
while ¬(XJ(r)) can be true in Ntrue[¬(XJ(r))] = NR-1

NJ 
worlds. 

The asymmetry we found for ¬ and TRUE is magnified in the case of  and . Some complications 

arise if we want to investigate Ntrue[ ] and Ntrue[ ], because if there is only one meaning space 

dimension, not all combinations of regions are possible: for instance, (XJ(r1),XJ(r2)) is a 

contradiction if r1  r2, while it is equivalent to TRUE(XJ(r1)) or TRUE(XJ(r2)) if r1 = r2. However, in the 
case of two dimensions X and Y, (XJ(r1),YJ(r2)) is not a contradiction if r1  r2. Using different 

dimensions as arguments leads to different behaviours of the connectives (see also note 40). 
We will circumvent these problems for now and assume two meaning space dimensions X and Y, 

both divided into 4 regions RX = RY = {a,b,c,d}. In this case, there is one way in which (XJ(a),YJ(a)) 

can be true, namely if and only if XJ = a  YJ = a, but (XJ(a),YJ(a)) is true if and only if XJ  {b,c,d} 

 YJ  {b,c,d}, which is true in 3
2
 = 9 worlds. If we consider two objects J1 and J2, (XJ(a),YJ(a)) is 

true if and only if XJ1 = a  XJ2 = a  YJ1 = b  YJ2 = b, while (XJ(a),YJ(a)) is true if and only if 

XJ1  {b,c,d}  YJ1  {b,c,d}  XJ2  {b,c,d}  YJ2  {b,c,d}, which is true in (NR-1)
2NJ

 = 3
4
 = 81 

worlds. The formula for Ntrue[ (XJ(r1),YJ(r2))], (NR-1)
2NJ

, can be rewritten as (NR
2
 – 2NR +1)

NJ
, which 

is the formula I shall use from now on for more uniformity across the formulae for the different 
connectives. 

The connectives BUT and ALTHOUGH are in between  and  in number of worlds in which they are 

true. BUT(XJ(a),YJ(a)) is true if and only if XJ = a  YJ  {b,c,d}, which is true in NR-1= 3 worlds. 

Likewise ALTHOUGH(XJ(a),YJ(a)) is true in NR-1= 3 worlds as well. If NJ = 2, BUT(XJ(a),YJ(a)) is true 
if and only if XJ1 = a  YJ1  {b,c,d}  XJ2 = a  YJ2  {b,c,d}, which is true in (NR-1)

NJ
 = 3

2
 = 9 

worlds. 
Finally, the number of worlds in which TRUE and ¬ discriminate changes as well if two dimensions 

rather than one are introduced. TRUE(XJ(a)) is still true if and only if XJ=a, but at the same time it can 
be the case that YJ=a, YJ=b, YJ=c or YJ=d, so here TRUE(XJ(a)) is true in 1 * NR = 4 worlds. In the 
case of two topics, TRUE(XJ1(a)) true if and only if XJ1 = a  XJ2 = a  YJ1  {a,b,c,d} 

 XJ2  {a,b,c,d}. So, if ND=2, TRUE(XJ(a)) is true in 1 * NR
NJ

 = 4
2
 = 16 worlds. Likewise, we 

multiply the formula we obtained before for Ntrue[¬(XJ(r))] for ND=1 by NR
NJ

 if we want a formula 

valid for ND=2. So if ND =1, Ntrue[¬(XJ(r))] = (NR-1)
NJ

, and for ND = 2, Ntrue[¬(XJ(r))] = NR
NJ

(NR-1)
NJ

 

= (NR
2
 – NR)

NJ
. 

This bring us the following formulas for the number of worlds in which TRUE, ¬, , BUT,  are true, 

assuming ND = 2. 
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 XJ represents the property X for object J. 
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Ntrue[TRUE(XJ(r))] = NR
NJ

 
Ntrue[¬(XJ(r))] = (NR

2
-NR)

NJ
 

 
Ntrue[ (XJ(r1),YJ(r2))] = 1 

Ntrue[BUT(XJ(r1),YJ(r2))] = (NR-1)
NJ 

( =
 
 Ntrue[ALTHOUGH(XJ(r1),YJ(r2))] )

 

Ntrue[ (XJ(r1),YJ(r2))] = (NR
2
 – 2NR +1)

NJ
 

 
If more than two dimensions are introduced, these numbers need to be multiplied by a factor 
involving ND and NR to account for all the other values the dimensions could take on that are not used 
in the representation. I shall not derive those formulae here. 

For all the other two-placed connectives C, we find Ntrue[C(XJ(r1),YJ(r2))] by summing the values of 

Ntrue[ (XJ(r1),YJ(r2))], Ntrue[BUT(XJ(r1),YJ(r2))]
 
or Ntrue[ (XJ(r1),YJ(r2))], depending on which of these 

connectives are part of the DNF-representation of the desired connective. For instance, since P  Q is 

true if and only if (P  Q)  (P  Q)  1, the number of worlds in which P  Q is true equals the sum 

of the number of worlds in which P  Q and P  Q are true. The summation is done before we take 

the number of objects into account by elevating the formulae to the power of NJ.
42

 

Below, I derive Ntrue for all two-placed connectives. For purposes of notational legibility, 
Ntrue[C(XJ(r1),YJ(r2))] is from now on shortened to Ntrue[C(J)], meaning the number of worlds in which 

an expression with connective C is true of a set of objects J, assuming there are two meaning space 
dimensions X and Y, X is used for the first argument of the expression, Y for the second argument, 
and two different meaning space regions are used for each dimension.

43
  

 
 Ntrue[ (J)]     = 1 

Ntrue[BUT(J)] = Ntrue[ALTHOUGH(J)]   = (NR-1)
NJ 

 
Ntrue[ (J)]     = (NR

2
 – 2NR +1)

NJ
 

 
Ntrue[ (J)] =  Ntrue[ (J)] + Ntrue[ (J)] = (1 + NR

2
 – 2NR +1)

NJ
 =

 
(NR

2
 – 2NR +2)

NJ
 

Ntrue[ (J)] =  2Ntrue[BUT(J)] = (2(NR-1))
NJ

 =
 

(2NR-2)
 NJ

 

 
Ntrue[ (J)] = Ntrue[ (J)] + 2Ntrue[BUT(J)] = (1 + 2(NR-1))

NJ
 =  (2NR -1)

NJ
 

Ntrue[ (J)] = Ntrue[ (J)] + Ntrue[BUT(J)] + Ntrue[ (J)] = (1 + NR-1 + NR
2
 – 2NR + 1)

NJ 
=  (NR

2
 - NR+1)

NJ
 

Ntrue[ ] = 2Ntrue[BUT(J)] + Ntrue[ (J)] = (2(NR-1) + NR
2
 – 2NR +1)

NJ 
= (NR

2
 - 1)

NJ 
 
The connectives in the negative group ( , , ¬,  and ) all contain the term NR

2
 in the formula 

deriving the number of worlds in which they are true. This terms stems from the inclusion of  in the 
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 That this approach is correct is confirmed when we try to derive Ntrue[AM], Ntrue[MA], Ntrue[NM] and Ntrue[MN] in this 

way, i.e. the number of worlds in which AM, MA, NM and MN are true: 
 

Ntrue[AM] = Ntrue[MA] = Ntrue[ ] + Ntrue[BUT] = (1+ NR-1)
NJ

 = NR
NJ 

= Ntrue[TRUE] 

Ntrue[NM] =  Ntrue[MN] = Ntrue[ ] + Ntrue[BUT] = (NR-1
 
+ NR

2
 – UTR +1)

NJ
 =

 
(NR

2
-NR)

NJ
 =

 
Ntrue[¬] 

 

These four two-placed connectives, which are logically equivalent to TRUE and ¬, also turn out to have the same 

formulae for deriving Ntrue as those two connectives. 
43

 Of course more elements of RX and RY can be used to build an expression with any one or two-placed connective, and 

different combinations of dimensions can be used. The number of expressions possible using a two-placed connective 
equals NR

2
ND

2
. In many cases the same connective can discriminate the same objects in several ways by using 

different arguments. For our research however, we are not really interested in how many ways one particular 
connective could discriminate one set of objects, but rather how many possible worlds (i.e. sets of topics and 
background objects) a particular connective can discriminate at least once, using any set of arguments. It gets very 
complicated to derive the relevant mathematical formulae that take all possible combinations of arguments into 
account. I shall leave these complications aside, since the formulae we derived thus far already explain the data well. 
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Disjunctive Normal Form of these connectives: each of them is true if both of its arguments are false. 
These are the non-confessional connectives of Gazdar and Pullum (see §4.2). The term NR

2 
makes 

Ntrue grow much quicker for the negative connectives than for the positive ones as NJ gets larger. So, 
negative connectives are true relatively more often of a large number of objects than of a small 
number of objects. Positive connectives on the other hand are true relatively more often of a small 
number of objects than of a large number of objects (explanandum I and II from §7.3.5). 

From the number Ntrue[C(XJ(r1),YJ(r2))] of times that a connective C can be true of a set of objects, 

we can derive the number of times Ndisc[C(XJ(r1),YJ(r2))] that C can discriminate a number of topics 

NT from a number of background objects NB. 
In order to discriminate a topic from a background, a logical representation must be true of the topic 

objects and false of the background objects. For any connective C, C(XJ(a)) is false of some object if 
and only if ¬C(XJ(a)) is true. So, the number of cases Nfalse[C(J)] in which C(XB(a)) is false for some 

background object B equals the number of cases Ntrue[¬C(J)] in which the negation of C, ¬ C(XB(a)), 

is true for B.  
For each of the cases in which some expression is true of the topic, there also are a number of cases 

in which the expression is false of the background. So generally, for any connective C, the number of 
cases in which C discriminates the topic from the background equals the number of worlds in which C 
is true of the topic multiplied by the number of worlds in which the negation of C is true of the 
background: 

 
Ndisc[C] = Ntrue[C(XT(a))]*Nfalse[C(XB(a))] = Ntrue[C (XT(a))]*Ntrue[¬C(XB(a))] 

 
If we apply this to all the 10 two-placed connectives we are researching, we get the following 
formulae: 

 
Positive connectives 
Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = (NR

2
–1)

NB
 

Ndisc[BUT] = Ntrue[BUT(T)] * Ntrue[ (B)] = (NR–1)
NT

 * (NR
2
–NR+1)

NB 

Ndisc[TRUE] = Ntrue[TRUE(T)] * Ntrue[¬(B)] = NR
NT

 * (NR
2
–NR)

NB 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = (2NR–2)
NT

 * (NR
2
 –2NR + 2)

NB
 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = (2NR–1)
NT

 * (NR
2
 –2NR + 1)

NB
 

 
Negative connectives 
Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = (NR

2
 –2NR + 1)

NT
 * (2NR–1)

NB
 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = (NR
2
 –2NR + 2)

NT
 * (2NR–2)

NB
 

Ndisc[¬] = Ntrue[¬(T)] * Ntrue[TRUE(B)] = (NR
2
–NR)

NT
 * NR

NB
 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[BUT(B)] = (NR
2
–NR+1)

NT
 * (NR–1)

NB
 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = (NR
2
–1)

NT
 

 
From the formulae thus derived we can explain the generalisations we made in our data analysis in 
§7.3.5. We notice that the formula for Ndisc[C] for some connective C always equals Ndisc[C] for the 
negation of C, except that NT and NB are reversed. This explains why the behaviours of the positive 
and negative connectives are mirrored with respect to their response to changes in NT and NB 
(explanandum III in §7.3.5).  

As can be seen from the formulae, connectives in the negative group ( , , ¬,  and ) increase 

rapidly in their number of successful games as NT grows, and much more slowly with the increase of 
NB. On the other hand, the connectives in the positive group ( , BUT, TRUE,  and ) increase rapidly 

in their number of successful games as NB grows, and much more slowly with the increase of NT. 
Since the total number of possible cases also grows exponentially with NT and NB, the proportion of 
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cases in which positive connectives discriminate approaches 0 as NT increases, and the proportion of 
cases in which negative connectives discriminate approaches 0 as NB increases. 

As for the fact that some connectives show similar behaviour if NR = 2, if we supply NR = 2 in the 
formulae above, we get: 
 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = 3
NB

 

Ndisc[BUT] = Ntrue[BUT(T)] * Ntrue[ (B)] = 3
NB 

Ndisc[TRUE] = Ntrue[TRUE(T)] * Ntrue[¬(B)] = 2
NT

 * 2
NB 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = 2
NT

 * 2
NB

 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = 3
NT

 

 
Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = 3

NB
 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = 2
NT

 * 2
NB

 

Ndisc[¬] = Ntrue[¬(T)] * Ntrue[TRUE(B)] = 2
NT

 * 2
NB

 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[BUT(B)] = 3
NT

 

Ndisc[ ] = Ntrue[ (T)] * Ntrue[ (B)] = 3
NT

 

 
So we can derive that if NR = 2, the number of successful discrimination games is determined solely 
by the number of cases for which a connective yields true. 
 

Ndisc[ ] = Ndisc[BUT]  = Ndisc[ ] 1 disjunct in the DNF-representation 

Ndisc[TRUE] = Ndisc[ ] = Ndisc[¬] = Ndisc[ ] 2 disjuncts in the DNF-representation 

Ndisc[ ] = Ndisc[ ] = Ndisc[ ] 3 disjuncts in the DNF-representation 

 

This accounts for explanandum (IV) of §7.3.5. All of the connective behaviour covered in that 
paragraph has now been explained. 

Notice that the formulae derived in this paragraph only cover the cases with ND = 2, while assuming 
a restricted use of the connective with only one set of arguments, each of which must contain a 
different meaning space dimension (as mentioned before in note 43). Also, these formulae represent 
an absolute number of cases, rather than a proportion. Plotting the fomulae therefore does not yield 
graphs resembling those of appendix 4. Yet, even though the formulae simplify the reality of the 
simulation, they have been shown to explain all the connective behaviour observed in §7.3.5. 

7.3.7 Connective specificity as a function of positivity / negativity and number of DNF disjuncts 

How can these numerical observations be related to real communication? The previous paragraphs 
have demonstrated that the number of times a particular connective discriminates depends on how 
many topic objects it can include in its description, and how many background objects it can exclude. 
Negative connectives such as  include a lot of topic objects, but also include a large number of 

background objects. On the other hand, positive connectives like  exclude a large number of 

background objects, but also exclude a large number of topic objects. Positive connectives are more 
specific: they rule out more cases. A specific connective works well if a small number of topics needs 
to be discriminated from a large number of background objects. Negative connectives are less specific 
and more general, which works well if a large number of topics needs to be picked out and there is 
only a small number of background objects. 

What makes a connective specific or general? There are two factors, namely amount of negation and 
number of DNF disjuncts. 

Connectives that are true in many cases (e.g.  or ) are general, while connectives that are true in 

only one case (e.g.  or BUT) are specific. Amount of negation is the other factor: asserting what 

colour object does have (a positive statement) is more specific than asserting what colour an object 
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does not have, provided that there are more than 2 colours in the universe (i.e. NR > 2). Of the 
connectives with one DNF-disjunct,  is the connective that includes no negation, BUT has more 

negation since it makes a positive statement about its first argument and a negative one about its 
second argument, and  contains most negation as it a makes negative statement about both its 

arguments. The other connectives are composed of , BUT / ALTHOUGH and , and have amounts of 

negation calculable from these four. 
As NR increases, the factor negation rapidly becomes more determinative of specificity than number 

of DNF-disjuncts. As we saw from the results before, the factor that contributes most to the amount of 
negation, up to the point where it divides the connectives into clear positive and negative groups, is 
whether the connective is true when both of the arguments are false. In table 3 below the order of 
specificity of all the connectives is given for both NR = 2 and NR > 2: 
 

Table 3. Order of specificity of all the connectives. 

 NR = 2 NR > 2 

Specific 1 DNF-disjunct , BUT, ALTHOUGH,  Extremely positive   (1 DNF-disjunct) 

    BUT, ALTHOUGH (1 DNF-disj.) 

    TRUE (2 DNF-disjuncts) 

   Moderately positive  (2 DNF-disjuncts) 

     (3 DNF-disjuncts) 

 2 DNF-disjuncts TRUE, , ,  Moderately negative   (1 DNF-disjunct) 

     (2 DNF-disjuncts) 

   Extremely negative ¬ (2 DNF-disjuncts) 

    ,  (3 DNF-disjuncts) 

General 3 DNF-disjuncts , , ,    (3 DNF-disjuncts) 

 
Interestingly, the two connectives that are realized in all natural languages,  and , are the most 

specific and least specific connective of the positive group, respectively. Another commonly 

lexicalised connective, , is the most specific connective of the negative group. 

7.3.8 Relating specificity to connective frequency and finding a satisfactory frequency distribution 

In run 2, the moderately negative and positive connectives are the most frequent connectives on 
average. The connectives on the extreme ends of their groups, such as , are the least frequent 
connectives. Generally, the less extreme a connective is within its group, the more frequently it is 
used, although this correlation is not perfect. The reader may verify this from the total frequencies of 
the connectives in run 2, presented in fig. 3, also repeated below in fig. 8a. 

We should bear in mind that the average frequency of a connective over a particular run is a 
function of the settings of the simulations in the run. If we use a lot of simulations with a high NT and 
low NB, we get a large number of negative connectives. If we do the reverse, we may get a large 
number of positive connectives. Run 2 was balanced in this respect: all the possible combinations of 
NT  {1,2,3,5,7} and NB  {1,2,3,5,7} contribute to the average frequencies. 

Now, it seems that some of the combinations of NT and NB present in run 2 are not very realistic. 
For instance, humans do not usually try to point out 7 objects at a time to another human, trying to 
make sure he does not confuse them with 1 background object. It will be instructive to do one more 
run in which we attempt to make the settings of the simulations as realistic as possible. 

For this next run, I shall assume that in the real world, people typically use descriptions to pick out 
one object, occasionally two. They do this against a background of possibly say, 2 to 7 objects. Real 
world objects can vary in a lot of properties, but we shall stick to ND = 3 in order to keep the number 
of simulations down, since we already know that an increase of ND increases the number of successful 
games for each connective by the same amount. Real world meaning space dimensions can have up to 
15 regions (e.g. colour: red, yellow, blue, etc.) or just three regions (e.g. size: large, medium and 
small). 
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Data with realistic settings can be obtained from the results of run 2, by eliminating the simulations 
with the less realistic settings. We remove the simulations with a high number of topics. The settings 
for NB, NR and ND remain unchanged. We then end up with data where ND = 3, NR  {2,3,5,7}, NT  

{1,2} and NB  {1,2,3,5,7}. From these data we get the mean total frequencies depicted in fig. 8b 

below. For comparison the original mean frequencies of run 2 are repeated in fig. 8a. 
 

Figure 8a [= Figure 3]. Mean number of times 

Ndisc[C] in which each connective C successfully 

discriminates topic from background in run 2. 

Figure 8b. Mean number of times Ndisc[C] in 

which each connective C successfully 

discriminates topic from background in run 2. 

Simulations with unrealistic settings eliminated 

from the run. 
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As expected, the frequencies of the positive connective are higher in the ‘realistic’ version of run 2, 
since the simulations in which the negative connectives performed best, those with high NT, were 
eliminated. The frequencies in this ‘realistic’ run are still very much unlike the frequencies we would 
expect from natural language. The most frequent connective is , which is common in natural 

language. The connective  is also relatively frequent, although outperformed by ,  and BUT and 

only marginally more frequent than  or . TRUE and ¬ remain infrequently used. 

In §7.3.2 it was suggested that a large frequency of the one-placed connectives TRUE and ¬ might 

spontaneously arise, without making the assumption of a preference for one-placed over two-placed 
connectives. It is clear that this prediction has not borne out. Perhaps introducing such a prespecified 
preference for one-placed connectives would change the frequencies for the two-placed connectives 
in a way that better resembles the natural frequency distribution of logical connectives. Building in 
this preference into this algorithm means that, once a one-placed connective has been found that 
works in a particular discrimination game, all two-placed connectives are considered not to apply to 
that game. Setting this preference will thus reduce the number of times each two-placed connective is 
used. Importantly, it may affect some connectives more than others, changing the relative frequencies 
of the two-placed connectives. 

However, the data shows that the preference indeed reduces the use of the two-placed connectives, 
but leaves their relative frequencies mainly intact. This can be seen if we compare fig. 8 with fig. 9 
below, which contains graphs depicting the mean frequencies of the connectives in reruns of run 2 
and the version of run 2 with unrealistic simulations eliminated, but this time with a preference for 
one-placed connectives in place: 
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Figure 9a. Mean number of times Ndisc[C] in which 

each connective C successfully discriminates topic 

from background in run 2. Preference for one-

placed over two-placed connectives. 

Figure 9b. Mean number of times Ndisc[C] in 

which each connective C successfully discri-

minates topic from background in run 2. 

Preference for one-placed over two-placed 

connectives. Simulations with unrealistic settings 

eliminated from the run. 
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We seem to be unable to get a frequency distribution from our simulation that would, if used as input 
to the Iterated Learning Model, yield holistic phrases for ,  and  and combinatorial realisations for 

the other connectives. 
In Kirby (2001) there were 2 meaning spaces with 5 regions each. Each of these sets of regions had 

a Zipfian frequency distribution. This means that if the most frequent meaning is used 100 times, the 
second most frequent is used 50 times, the third 33 times, the fourth 25 times and the fifth 20 times. 
Of the regions, only the 2 most frequent ones were realized holistically. The frequencies needed to 
obtain a holophrase for some meaning do depend on the ILM model settings such as bottleneck size 
(Simon Kirby p.c.). Still, this example should serve to illustrate that in order to get a result with a 
holophrase for ,  and , these connectives need not only be the most frequent connectives, but also 

the most frequent ones by a reasonable margin. 
If we cannot obtain such a frequency distribution by trying to construct a realistic simulation based 

on what we think we know about the real world, perhaps we could reverse-engineer a simulation run 
that would give us the desired frequency distribution. In order do that, we should know what 
combinations of settings work best for the desired connectives ,  and , and worst for the other 

connectives. 
In table 4 below the connective with the highest frequency is given for each combination of NT  

{1,2,3,5,7} and NB  {1,2,3,5,7}. The setting NR = 7 is used throughout the table, because connective 

frequencies tend to diverge more with higher settings of NR, making it more likely that a single 
winner can be found for each combination of NT and NB. The results for the other settings of NR are 
similar, although there are more cases in which two connectives share the first place in frequency. 
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Table 4. The most frequent connective for each combination of NT  {1,2,3,5,7} and NB  {1,2,3,5,7}. 

NR = 7. 

NB  

1 2 3 5 7 

1  BUT  

TRUE ¬   
   

 BUT  

  

  BUT    

2   
   

    

3        

5       

NT 

7       

 
The table confirms our observations about the characteristics of the positive and negative connectives. 
The first column in table 4 contains the cases with just one background object. As we move down in 
this column, the number of topic objects increases and the negative connectives keep doing better, 
while the positive connectives disappear. Finally, once NT  5 and NB = 1, the most extreme 
connective of the negative group, , surfaces as the most commonly used connective. Conversely, the 

first row contains all the cases with just one topic. As NB increases, the negative connectives 
disappear from this row and the positive ones win out. Ultimately, once NB  5, the most extreme 
connective of the positive group, , ends up as the winner. 

We already knew that negative connectives become ineffective quickly as NB increases, and that 
positive connectives become ineffective as NT increases. So what if both NB and NT are high? As can 
be seen from the table 4, the moderate connectives of each group work best, since they are the best 
available compromise between the characteristics of both groups. These connectives are the 
moderately positive and negative connectives , ,  and , the latter two of which are the most 

common. Once we have seen table 4 it no longer comes as a surprise that these connective were the 
most frequent ones overall in run 2. Extremely positive connectives win when NT = 1, extremely 
negative connectives when NB = 1, but the moderate connectives, whether they are positive or 
negative, win in all the other cases. 

Of the four moderate connectives, the negative ones  and  occupy the lower left of the table that 

contains the cases with higher NT and lower NB. The positive connectives  and  are in the higher 

right of the table, which contains the cases with higher NB and lower NT. Judging from this table, a 
simulation run that would yield high frequencies for  and  would contain a large number of cases 

with NT = 1, which is when  works best, and a large number of cases where NT > 1 and NB  NT, 

which is when  and  works best. This seems like a fairly realistic assumption about real linguistic 

pointing behaviour, although I do not have any independent evidence to back up this judgement. 



  56 

Eliminating all the simulations with NB < NT from run 2, then, reveals the following frequency 
distribution: 

 

Figure 10. Mean number of times each connective is 

successfully used in run 2. Simulations with NT > NB 

eliminated. 
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Indeed,  and  are most frequent connectives. BUT is more frequent than , though. This reflects the 

relative order of BUT and  in the cases in which  or some other connective is the most frequent 

connective; BUT apparently does better than  in those cases. Extending the simulation to include 

more cases with more background objects (NB > 7), an extension that seems realistic, would surely 
change the relative frequency of BUT and  in favour of the latter, since , being more specific than 

BUT, benefits more from more background objects 

7.4 Specificity in real world human communication 

The main discovery we have made in our simulation is a hierarchy of specificity among the 
connectives. That saying P and Q is more specific than saying P or Q has of course for long been 
common knowledge in logic, semantics and pragmatics. What I have added in the previous 
paragraphs is a quantification of the notion of specificity for logical connectives. 

The formalisation has shown that the specificity of a connective depends on three factors. Two of 
these, amount of negation and number of DNF-disjuncts, are properties of the connectives themselves. 
The other factor, number of regions in the meaning space dimension(s) used as an argument to the 
connective, is a property of the environment. This property of the environment in turn influences the 
effect amount of negation has on the specificity of the connective. 

Since Grice (1975), specificity or informativeness has been taken to be one of the main factors 
determining the use of language in conversation. Grice thought of communication as a co-operative 
effort towards a mutual goal. Given this, he felt it would be reasonable to assume there must be rules 
(maxims in Grice’s parlance) to which participants in a conversation are expected to conform. 

The mutual goal of the conversation partners in Sierra-Santibañez’s simulation is to point out the 

topic objects and set them apart from the background objects: nothing more, nothing less. Achieving 
this goal is aided by sticking to the following of Grice’s (1975: 45–46) maxims: 
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Maxims of Quantity 
1. Make your contribution as informative as required 
2. Do not make your contribution more informative than required 
 
Maxims of Manner 
1. (…) 
2. Avoid ambiguity 
3. (…) 

 
The agents conform to the manner of Quantity: the connective they use is as specific as is required to 
set the topic apart from the background, but not more specific than that. An expression with the right 
amount of informativeness has to be an unambiguous expression. If the expression were ambiguous, it 
would also pick out some other set of objects that are not in the topic: the expression would thus not 
be specific enough to achieve the communicative goal. Obeying the maxim of Manner and obeying 
the first maxim of Quantity amount to the same thing in this simulation. 

I have found that different situations call for different amounts of specificity or informativenes in 
order to achieve this communicative goal: sometimes an unspecific connective such as  or even  

suffices. Importantly, the kinds of ‘pointing-out situations’ that humans are most likely to find 
themselves in, are the situations to which the connectives  and  /  are best suited.

44
 The former 

works best when only one object needs to be pointed out, irrespective of the number of background 
objects. The latter works best in the other cases where the number of topics is larger than one, but not 
larger than the number of background objects. 

Obviously the goals of human communicators extend beyond the mere pointing out of objects by 
referring to their perceptual properties, and connectives are used in more contexts than that. 

First of all, the statements humans make in real life are not usually confined to a small universe 
consisting of just a few objects. Instead, they are made with the world as background, or just a loosely 
defined ‘context of the conversation’. If the goal of the speaker is still assumed to be the unique 
identification of worlds or objects, we may expect a frequent use of the specific connectives. Also, 
many real-world meaning space dimensions can be divided into vast or possibly infinite numbers of 
regions. Take the property of walking, for instance. We can take walking to be a region in a meaning 
space dimension [ACTIONS THAT CAN BE TAKEN], with an infinite number of regions. Then, the guy 
that is walking may refer to thousands of persons, but the guy that is walking nand singing to millions 
of possibly billions. Similarly, John walks may be true in just one world, but John does not walk is 
true all the possible world in the Universe, minus that one world in which John does walk. Seen from 
this perspective, the negative connectives are uninformative almost to the point of uselessness. 

Still, fairly uninformative connectives such or and nor are still used regularly in human language.
45

 
One reason is that humans have another maxim to conform to, one that is not an issue for the 
simulation agents: 
 

Maxims of Quality (Grice 1975: 46) 
1. (…) 
2. Do not say for which you lack adequate evidence. 

 
A speaker may refer to the red or the green ball simply because he does not know whether the ball is 
red or green. The artificial agents by contrast always have all the existing information about the 
objects at their disposal.  

                                                
44

 Both  and  occurred in these situations.  seems a bit more frequent, but I would not dare to derive any conclusions 

from this about whether English or actually means  or  (see §3.3.1 for details on this debate). 
45

 We should keep in mind though that and is by far the most frequent connective in English: corpus-based research 

shows that it is about 6 times more frequent than or is (Ohori 2004: 61). 
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Also, the maxims of Quantity and Ambiguity may apply differently in the case of humans. First of 
all, complete unambiguity is never needed in real communication as humans have a large amount of 
background knowledge they can use to aid interpretation of an utterance. The agents in the simulation 
on the other hand are completely ignorant of everything in the world around them except what they 
see in their sensors. Also, humans may consciously break Grice’s conversational maxims if they do 
not want to achieve the goal of accurate communication: they may choose to be deliberately 
ambiguous or uninformative in order to manipulate their partner, out of laziness, etc.  

Summarising, we seen have that real human communication is or may be different from the 
simulation in all its aspects. The communicative goals may be different, the world is infinitely more 
complex, the agents are more complex and have much more background knowledge and the rest of 
the language is more complex and allows for conjunction of many categories. 

Extending the simulation to the real world is thus very difficult and this leaves us with the question 
what it is we have actually proved. The question of external validity is an issue for all experiments in 
social science (e.g. Porte 2002: 45–47), and also for all computer simulations of complex phenomena. 
A famous example of the latter are Artificial Life simulations, whose applicability to biological 
reality is often questioned (e.g. Miller 1995). Recently, Bickerton (In Press) has expressed similar 

concerns about language evolution simulations specifically. Luc Steels himself, the founding father of 
the Language Games paradigm to which the Sierra-Santibañez simulation belongs, explicitly refuses 
to make any claim of empirical validity of his simulations to humans or animals (e.g. Steels 1996: 
339). He merely aims to explore the theoretical possibilities of the evolution of meaning. 

Ultimately then, we should limit ourselves to concluding that the simulation has demonstrated the 
beneficiality of observing a subset of Grice’s maxims to achieving a certain limited goal, namely 
discriminating topics from background objects, and that in turn what connective best observes Grice’s 
maxims depends on how many objects need to be discriminated from how large a background. 
Tantalisingly, we notice that in a number of situations that are, within the limited bounds of the reality 
of the simulation, the ones most reminiscent of human communicative situations, Grice’s maxims are 
best observed by use of the connectives  or . However, the value of this result depends wholly on 
the somewhat indeterminable equivalence of the model to reality. 
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8 The nature of the compositionality of connectives 
A crucial part in the simulation run by Kirby (2001) is the representation of the meanings that are to 
be lexicalised. This meaning representation is the yardstick we use to decide whether some signal is 
holistic or compositional: it is compositional if it is composed of several elements corresponding to 
different elements of the meaning representation; it is holistic if it collapses several elements of the 
meaning into one signal. 

This problem is another tough nut to crack if we wish to apply the Iterated Learning Model to the 
problem of holistic and compositional logical connectives in human language. Unfortunately, all I am 
able to do in this chapter is describe why the model of Kirby (2001) cannot properly represent the 
particular kind of compositionality displayed by the connectives. The rest of the chapter is a slightly 
speculative exploration of what kinds of changes could be made to the model so it could do the trick. 

The meaning representation used in Kirby (2001) is a bit vector. Bit vector meanings are defined as 
feature vectors representing points in a meaning space (cf. the description of Brighton, Smith and 
Kirby 2005: 185–186). A meaning space is defined by a number ND of dimensions, each of which is 
divided into a number NR of regions. A meaning space thus defined is filled with a set of NR

ND 
possible points. For instance, a meaning space M specified by ND = 2 and NR = 2 for each dimension 
would be represented by the set M = {(a,a),(a,b),(b,a),(b,b)} of meaning space points. 

The meaning representation described here is similar to the representation Sierra-Santibañez uses for 
objects in her (2001) simulation. In this simulation, a meaning space over objects is used, each point 
in the meaning space representing a possible object. The dimensions in the meaning space are the 
perceptual features of the objects, e.g. COLOUR, SIZE or HEIGTH. The regions represent the values that 
each of these features can accommodate. For instance, the meaning dimension of size could take three 
values: LARGE, MEDIUM and SMALL. 

For the representation of the logical connectives in a bit vector, an obvious strategy prima facie 
would be to construct a meaning space Mcon based on their truth tables, as follows: 

 
ND = 4; NR = 2 for each dimension D 
 
D1  (1,0) D1 = 1 if the connective yields true if antecedent and consequent are both true 
 D1 = 0 if the connective yields false if antecedent and consequent are both true 
 

D2  (1,0)  D 2 = 1 if the connective yields true if antecedent is true and consequent is false 
 D2 = 0 if the connective yields false if antecedent is true and consequent is false 
 

D3  (1,0) D3 = 1 if the connective yields true if antecedent is false and consequent is true 
 D3 = 0 if the connective yields false if antecedent is false and consequent is true 
 

D4  (1,0) D4 = 1 if the connective yields true if antecedent and consequent are both false 
 D4 = 0 if the connective yields false if antecedent and consequent are both false 
 
Set of possible meaning space points Mcon 

 

(0,0,0,0) ‘NEVER’ (0,1,0,0) ‘BUT’ (1,0,0,0) ‘ ’ (1,1,0,0) ‘AM’ 
(0,0,0,1) ‘ ’ (0,1,0,1) ‘MN’ (1,0,0,1) ‘ ’ (1,1,0,1) ‘ ’ 
(0,0,1,0) ‘ALTHOUGH’ (0,1,1,0) ‘ ’ (1,0,1,0) ‘MA’ (1,1,1,0) ‘ ’ 
(0,0,1,1) ‘NM’ (0,1,1,1) ‘ ’ (1,0,1,1) ‘ ’ (1,1,1,1) ‘ALWAYS’ 

 
In a system like this, we could get a holistic representation for an entire meaning like (1,0,0,0) ‘ ’. 
Such a holophrase could be and, like in English. The compositional connectives would be completely 

{
 

}
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unlike those in English, though. They may consist of up to four meaning particles, each corresponding 
to one or more of the meanings features Dx. For instance, if a lexeme ka had evolved to represent [D1 
= 0  D2 = 1], another lexeme poom existed meaning [D3 = 1] and finally ba means [D4 = 0], then a 
compositional representation for (0,1,1,0) ‘ ’ might be ka-poom-ba. 

The bit vector representation in Kirby (2001) appears inspired by word morphology. The derivation 
of compositional connective representations in logic (mirroring language to an extent, see §3.4) is 
more like syntax than like morphology. Each of the connectives is a function, so it needs to be in a 
particular syntactic juxtaposition with its arguments: we cannot take the propositions out of the 

equation if we want to describe compositional connective representations. Also, the syntax is 
recursive: connectives can be applied to each other so that sentences of arbitrary length can be 
constructed. Bit vectors, on the other hand, are of finite length and their meaning components come in 
a fixed order. 

It may seem that we could just try and expand the meaning representation used in Kirby (2001). 
Other studies into the emergence of compositionality have been done using predicate logic (De Beule 
and Bergen 2006; Kirby 2000), some successfully employing recursive predicates (Kirby 2002). The 
findings about regular and irregular lexicalisations from the (2001) study could be replicated with 
these more complex meaning representations (Simon Kirby p.c.). 

Although we cannot compositionally represent connectives in this syntactic manner without 
including the propositions, we may be able to abstract away from that problem by representing 
including variable proposition placeholders P and Q in the connective meanings. We could thus 

assume that, say,  is represented in our minds as P Q[(P  Q)  (¬P  ¬Q)]. 
It is obvious that this would be putting the cart before the horse. The very reason that a 

representation like P Q[(P  Q)  (¬P  ¬Q)] can be said to be equivalent to  are the functions 

,  and ¬ in the representation. We still have not represented the meanings of those functions. 

The functions of predicates are noticeably absent in all simulations of compositionality I have 
discussed. These simulations assume that intensional meanings, the predicate-argument structures 
themselves, suffice as a meaning representation. The need has not yet been felt to enrich these 
predicates with function to compute the ‘true meaning’—the Fregean extension—of predicate-
argument structures. 

We do need to represent these functions with the connectives. What allows all the 16 connectives to 
be compositionally represented with syntactic derivations is the fact that the set of their 16 functions 
has the special property that applying one set member to another one will always result in the 
meaning of another set member, provided that the same arguments are used every time. This is unlike 
all other predicates in language, the application of whose functions results in a new meaning each 
time, ad infinitum. 

The best representation we have for connective functions are the various incarnations of the truth 
table. We have seen above that this truth table is in no way morphologically mirrored in the words for 
the connectives is existing natural languages. Instead we have holistic words for a few base 

connectives (and ‘ ’, or ‘ ’, not ‘¬’ and nor ‘ ’), which are applied to each other to create other 

connective functions
46

. Ultimately, it looks like the synthetic ‘Bickertonian’ scenario for the evolution 
of compositionality is more appropriate in the case of the connectives than an analytic one: words 

                                                
46

 Nor is taken by many (e.g. Gazdar & Pullum 1976; Jaspers 2005: 54) to morphologically reflect compositional 
meaning. (This morphological transparency is disputable, though, see §4.2 for discussion). The hypothesised meaning 
elements, are not and or, which are normally taken to correspond to the full connective meaning space points ¬ and . 
So, not and or are not ‘parts’ of the connective meaning of  in the sense of representing a subset of the meaning 
features that  is composed of (i.e. D1 = 0, D2 = 0, D3 = 0, D4 = 1). Instead, nor looks more like it was originally 
derived in the syntactic way, through iterated application of the functions of not and or. This syntactically derived 
word group not + or could later have fossilised into nor. 
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came first and these words were used in compositional representations later (cf. ch. 5). 
The question remains: why are some of the connectives used as base connectives, and why are other 

connectives derived by iterated application of these base connectives? 

No computer simulations exist that model the Bickertonian scenario for the development of 
connectivity. In a simulation that could somehow simulate the emergence of connective derivations 
by recursive application, we would need to expand not the semantic representations of the original 
model, but rather its learning mechanism. The learning mechanism in the original simulation 
discovered compositional rules by looking for correlations between bits of meaning and bits of 
holophrases. The learning mechanism in a simulation producing connective combinations would need 
more ‘creative power’ and learn how to apply connective functions to each other. 

There are numerous issues here, of course. Will the bottleneck principle, that led to compositionality 
and frequency effect in the first place, still work if we change the learning mechanism this radically? 
What would a learning mechanism look like that somehow ‘sees’ that it can apply the connectives to 
each other? I cannot begin to answer these questions here. 

I do remain confident that frequency would influence which connectives are used as base 
connectives, and which are derived by iterated application of these base connectives. A possible 
motivation for such an assumption could be the fact that combinatorial lexicalisations of connectives 
are, by definition, longer than holistic ones: a well-conformed observation by Zipf (1935) is that 
longer phrases tend to be less frequent. A system employing the most frequent connectives as base 
connectives would be optimal in this sense. 

 A final concern may be that even if we could evolve connective combination through function 
application, that would just assume that language syntax combines connectives like logic, ignoring 
the fact that language has its own idiosyncratic ways of combining connectives, too (cf. §3.4). That 
said, the current utterances produced by the ILM models—e.g. s, yuqeg or uhlbq in Kirby (2001)—do 
not look very much like natural language yet, either. Although I would like to hold myself to higher 
standards than the rest of the field here, I need to be realistic and defer the task of developing 
simulations that yield full-fledged human language to future generations of researchers. 
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9 Conclusions 
The objective of this thesis was to find a general solution to an old chestnut of semantics: the absence 
in natural language of single-morpheme lexicalisations for many possible logical connectives, which 
are lexicalised instead as compositions of other connectives. From an investigation of currently 
available accounts we concluded that a cultural evolutionary approach is needed, specifically one that 
pays sufficient attention to the compositional structure of language. 

Such an approach was found in the computational model of the emergence of compositionality by 
Kirby (2000; 2001). This model demonstrates how, as a consequence of the transmission of language 
across generations of learners, frequent meanings evolve to be represented as irregular holistic 
phrases, whereas infrequent meanings are coupled with compositional representations. I have tried to 
apply this model to the research problem and thus hypothesised that (a) the connectives differ with 
respect to the frequency with which each of them needs to be expressed and (b) that the concept of 
regular and irregular lexicalisations from Kirby’s model can be applied to the particular kind of 
compositionality that is found in the representation of connectives. 

It proved a considerable challenge finding the right evidence for both these hypotheses. As for 
hypothesis (a), I could conceive of two factors that might give rise to a difference in frequency 

between the connectives. A connective may be used less, because human minds find it hard to reason 
with, or because it is less useful for communication. The first explanation remained unsubstantiated. 
Psychological theories of reasoning difficulty provided no obvious path to frequency data, while 
reasoning difficulty by itself was shown to make empirically false predictions about which 
connectives should be present in language. 

I have tried to substantiate the second explanation by using a simplified model of human 
communication, since there are obvious difficulties with extracting such frequency data from the real 
world. The model, Sierra-Santibañez (2001), was limited to what we might call the demonstrative 
function of language. It consisted of agents aiming to discriminate sets of topic objects from 
background objects. For this purpose the agents used descriptions involving perceptual properties of 
the objects, conjoined by the connectives. 

Even this limited communication model contained many variables influencing the frequencies of the 
connectives, such as number of topic objects, number of regions per meaning space dimension, etc. It 
was not immediately clear what setting of these variables would simulate natural communication best. 
This uncertainty called for an exploratory analysis of the effects of all the variables and their 
interaction effects. 

 The analysis of the simulation results revealed that some connectives thrived in a situation with 
many topic objects, while others fared comparatively better when there were many background 
objects. A hierarchy was discovered among the connectives with respect to the property of their 
response to changes in these two variables. The property itself was identified as specificity, a notion 
familiar from Gricean pragmatics.  

Adherence to Grice’s maxim of Quantity—‘be as specific as you need to be’—is considered to be a 
prerequisite for successful communication and is shown to be a condition for success in our 
simulation, too. Due to the particular position of  on the specificity hierarchy, adherence to the 

maxim of Quantity is best served by that connective in the case where there is one topic object and 
any number of background objects. On the other hand  or  work best in cases where the number of 
topic objects is larger than one, but not larger than the number of background objects. 

These two simulations settings seem to be ones most reminiscent of human communicative 
situations—within the limited bounds of the reality of the simulation, that is.  and  are the 
connectives most frequently used by the agents in those human-like situations, because they are the 
ones that best conform to the maxim of Quantity. We must be careful with extending the findings 
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from this model to the real world, though, because there is a lack of independent evidence backing up 
the external validity of this model for real world communication. 

Now that we had found some evidence that  and  /  may in fact be the most frequent among the 
16 connectives, I have tried to concretely apply Kirby’s model of the link between frequency and 
compositionality to the case of the connectives. However, it proved difficult to implement the 
particular way in which language constructs compositional lexicalisations of connectives. The 
learning mechanism in Kirby’s model develops compositional representations that are like word 
morphology, with a fixed order of meaning components and fixed length. However, connective 
combination in language is more like syntax: some connectives are used as base connectives, from 
which other connectives are derived by recursive application of their functions. In order to adapt the 
model to develop such representations we would have to radically change the learning mechanisms, 
up to a point were a lot of the basic tenets of the model—ones that cause the development of 
compositionality in the first place—might have to be altered. Investigating these problems was 
unfortunately not possible within the scope of a master’s thesis. 

I do remain convinced that frequency has a very important role in explaining why only some 
connectives have single-morpheme lexicalisations, while others are derived syntactically from those 
connectives. The relationship between frequency and compositionality is well attested in natural 
language (e.g. Pinker 1999: 123–125) and the causes for its emergence have been demonstrated in 
Kirby’s Iterated Learning Model (Kirby 2000; 2001; 2002). Also, Zipf’s (1935) observation that 
shorter words are more frequent than longer ones has been confirmed by empirical evidence (e.g. 
Sigurd, Eeg-Olofson and Van de Weijer 2004) and has plausible causes in the principle of least effort 
(Zipf 1949; cf. also Vogt 2004). By definition, syntactical derivations of base connectives are longer 

and more complex than those base connectives themselves. A principle of least effort would surely 
favour a system in which the most frequently needed connectives are realized as single morphemes 
from which all others are derived. Such a system would allow the language user to use the shortest 
and simplest expressions on average. The evidence from our communication simulation suggests that 
those most frequent connectives might very well be  and  or . 

Where should research go from here? Of course there are the numerous issues with my account that 
should be resolved. There are important concerns about the realism and empirical validation of the 
model of communication: we need new models that are based on independent evidence on how, in 
what circumstances and with which goals human communication is conducted. In particular, more 
recent and sophisticated models of pragmatics than Grice’s (e.g. Sperber and Wilson 1995) should be 
included. We also need to develop a credible mechanism that could account for the way in which 
humans learn to represent connectives compositionality as a structure of repeated mutual application 
of connectives, possibly within the framework of the pre-existing models, but possibly not. 

Finally, perhaps research should also reconsider the properties of human mind. In this thesis I have 
proposed an explanation for the problem of connectives in human language that wholly separates that 
problem from the matter of ‘how humans reason’. Instead I have relied on environmental factors and 
a general need for communication as an explanation. On one hand it may seem that ignoring human 
minds is taking an important factor out of the equation—the limited research I did do on the possible 
connection between human reasoning and language connectives may have been insufficient. On the 
other hand, we should realize that possible innate preferences for connectives and human reasoning 
abilities themselves must be a result of environmental pressures and possibly a desire for 
communication. Instead of ignoring the facts of human reasoning, this thesis may well be taken to 
suggest a direction in which explanations for the evolution of those abilities might be found. 
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Appendices 

Appendix 1. The 16 two-placed logical connectives 

 
One DNF-disjunct; Actual situations 
 

symbol truth function alt. symbols / names remarks 
 {11} &; AND;    

   conjunction 
 
BUT

47
 {01}  non-commutative 

   
  
ALTHOUGH {01}  non-commutative 
 
 

 {00} NOR; referentially complete 

  Peirce’s dagger non-confessional 
   
Two DNF-disjuncts; Two belief states 
 

symbol truth function alt. symbols / names remarks  
AM {11,01} AM = And Maybe non-commutative 
   P AM Q  P 

 
MA {11,01} MA = Maybe And non-commutative 
   non-compositional 
   P MA Q  Q 

 
 {11,00} IFF; XNOR; XAND; non-confessional 

  biconditional 
 

 {01,01} W; XOR; 

  exclusive or 
 
MN {01,00} MN = Maybe Not non-commutative 
   non-compositional 
   non-confessional 
   P MN Q  ¬Q 

 
NM {01,00} NM = Not Maybe non-commutative 
   non-compositional 
   non-confessional 
   P NM Q  ¬P 

                                                
47

 I use the symbols BUT and ALTHOUGH for these connectives following Sierra-Santibañez (2001). The words are picked 
by analogy to the syntactic behaviour of but and although in English: but usually allows a positive statement in the 
antecedent and a negative statement in the consequent, while although has the reverse properties. However, the truth-
functional meaning of but and although in natural language equals that of . 
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Three DNF-disjuncts; Three belief states 
 

symbol truth function alt. symbols / names remarks  
 {11,01,01} OR; inclusive or;  

  disjunction 
 

 {11,01,00} material implication; non-commutative 

  conditional non-confessional  
 

 {11,01,00} backward implication non-commutative 

   non-confessional 
 
| {01,01,00} ; NAND; referenially complete 

  Sheffer’s stroke non-confessional 
 
Four DNF-disjuncts; Four belief states 
 

symbol truth function alt. symbols / names remarks  
ALWAYS {11,01,01,00} universal truth non-compositional 
   non-confessional 
 
Zero DNF-disjuncts; Zero belief states 
 

symbol truth function alt. symbols / names remarks  
NEVER {} universal falsehood non-compositional 
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Appendix 2.  English language lexicalisations of all 16 connectives 

 
Assume the following basic propositions: 

 
P the tiger is coming 
Q I brought a spear 
 

Their negations are: 
 
¬P the tiger is not coming 

¬Q I did not bring a spear 

 
Lexicalisations of connectives representing actual situations (one DNF-disjunct): 

 
P  Q  the tiger is coming AND I brought a spear 

 
P BUT Q – the tiger is coming AND I did NOT bring a spear 
 – the tiger is coming but I did NOT bring a spear 
 
P ALTHOUGH Q – the tiger is NOT coming AND I brought a spear 
 – the tiger is NOT coming although I have a spear 
 
P  Q  NEITHER is the tiger coming NOR did I bring a spear 

 
Lexicalisations of connectives representing two belief states (two DNF-disjuncts): 

 
P AM Q – the tiger is coming AND I brought a spear OR I did NOT bring a spear 
 – the tiger is coming AND maybe I brought a spear 
 
P MA Q – the tiger is coming OR the tiger is NOT coming AND I brought a spear 
 – maybe the tiger is coming AND I brought a spear 
 
P  Q – the tiger is coming AND I brought spear 

   OR the tiger is NOT coming AND I did NOT bring a spear 
 – I bring a spear IF and only if the tiger is coming 
 – I only bring a spear if the tiger is coming 
 
P  Q – the tiger is coming OR I have a spear, but not both 

 – I never have a spear when the tiger is coming,  
   and when I have one it won’t come 
 
P NM Q – the tiger is NOT coming AND I brought a spear OR I did NOT bring a spear 
 – the tiger is NOT coming AND maybe I brought a spear 
 
P MN Q – the tiger is coming OR the tiger is NOT coming AND I did NOT bring a spear 
 – maybe the tiger is coming AND I did NOT bring a spear 
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Lexicalisations of connectives representing three belief states (three DNF-disjuncts): 

P  Q the tiger is coming OR I have a spear 

 
P  Q if I have a spear the tiger is coming  

 
P  Q if the tiger is coming then I have a spear 

 
P | Q – it is NOT the case that the tiger is coming AND I have a spear 
 – not both the tiger and the lion are coming 

 
Lexicalisations of connectives representing four belief states (four DNF-disjuncts): 

P ALWAYS Q – the tiger is coming OR the tiger is NOT coming 
   AND I have a spear OR I do NOT have a spear 
 – this statement is always true 
 

Lexicalisations of connectives representing zero belief states (zero DNF-disjuncts): 

P NEVER Q – the tiger is coming AND the tiger is NOT coming 
   OR I have a spear AND I do NOT have a spear 
 – this statement is always false 
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Appendix 3. A pay-off table leading to an ESSS with separate signals for all 16 connectives 

Pay-off tables are representations of how useful actions are in certain situations. They are defined by: 
 

- a set of actions A 
- a set of situations T 

- a utility function t(t  T) a(a  A): U(t,a) = u 

 
The pay-off table below is defined in such a way that speakers and hearers will evolve an 
Evolutionary Stable Signalling Strategy (ESSS) in which there are separate messages for pairs of 
situations conjoined by each connective. 

The pay-off values for the situations P  Q, P BUT Q, P ALTHOUGH Q and P  Q have been assigned 

arbitrarily. The pay-off values of the other connectives have been calculated as averages of P  Q, P 

BUT Q, P ALTHOUGH Q and P  Q, depending on which of these four is part of the DNF-representation 

of that connective. 
 

Actions 

Situations a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 

P  Q 20.0 0.0 0.0 0.0 18.5 17.1 17.0 0.0 0.0 0.0 13.0 12.5 11.5 0.0 
P BUT Q 0.0 20.0 0.0 0.0 18.5 0.0 0.0 15.5 15.0 0.0 13.0 12.5 0.0 10.5 

P ALTHOUGH Q 0.0 0.0 20.0 0.0 0.0 17.1 0.0 15.5 0.0 14.0 13.0 0.0 11.5 10.5 
P  Q 0.0 0.0 0.0 20.0 0.0 0.0 17.0 0.0 15.0 14.0 0.0 12.5 11.5 10.5 

P AM Q  10.0 10.0 0.0 0.0 18.5 8.6 8.5 7.8 7.5 0.0 13.0 12.5 5.8 5.3 
P MA Q 10.0 0.0 10.0 0.0 9.3 17.1 8.5 7.8 0.0 7.0 13.0 6.3 11.5 5.3 

P  Q 10.0 0.0 0.0 10.0 9.3 8.6 17.0 0.0 7.5 7.0 6.5 12.5 11.5 5.3 
P  Q 0.0 10.0 10.0 0.0 9.3 8.6 0.0 15.5 7.5 7.0 13.0 6.3 5.8 10.5 
P NM Q 0.0 10.0 0.0 10.0 9.3 0.0 8.5 7.8 15.0 7.0 6.5 12.5 5.8 10.5 
P MN Q 0.0 0.0 10.0 10.0 0.0 8.6 8.5 7.8 7.5 14.0 6.5 6.3 11.5 10.5 

P  Q 6.7 6.7 6.7 0.0 12.3 11.4 5.7 10.3 5.0 4.7 13.0 8.3 7.7 7.0 
P  Q 6.7 6.7 0.0 6.7 12.3 5.7 11.3 5.2 10.0 4.7 8.7 12.5 7.7 7.0 
P  Q 6.7 0.0 6.7 6.7 6.2 11.4 11.3 5.2 5.0 9.3 8.7 8.3 11.5 7.0 
P  Q 0.0 6.7 6.7 6.7 6.2 5.7 5.7 10.3 10.0 9.3 8.7 8.3 7.7 10.5 

 
The condition that the pay-off table conforms to that makes it yield such an ESSS is the following: 
 

For tn(t1  T), a1(a1  ) such that 
(1) for an(an  A  an  a1  U(t1,a1) > U(t1,an)) 

(2) for tn(tn  T  tn  t1), a2(a2  A  a2  a1  U(tn,a2) > U(tn,a1) ) 
 
This means that every situation t1 must have an action a1 associated with it that has the highest pay-off 
for t1 (condition 1), and a1 must not be the action with highest pay-off for any other situation tn 
(condition 2). For each situation t1, the highest pay-off for that situation has been set bold in the table. 
The reader may verify that this action that yields this highest pay-off for t1 is not the action with the 
highest pay-off for any other situation. For further discussion cf. §4.5. 
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Appendix 4. The effects of NT, NB and NR on Ndisc for 10 of the 16 connectives 

The graphs depict the effects of number of topic objects NT (horizontal axis of each graph), number of 
background objects NB (separate lines in each graph) and number of meaning space regions NR 
(separate graphs) on the frequencies Ndisc of 10 of the 16 possible two-placed connectives. The graphs 
of , ALTHOUGH, AM/MA and NM/MN are identical to those of , BUT, TRUE and ¬ respectively, 

while ALWAYS and NEVER yield Ndisc = 0 in all situations, as detailed in §7.3.1 and §7.3.4. The 
connectives are all ranked in order of specificity. This page shows the positive connectives. The next 
page of the appendix shows the negative connectives. See §7.3.7 and §7.3.5 for more information on 
the notions of specificity and positive and negative connectives, respectively. 
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NT

75321

E
s
ti

m
a
te

d
 M

a
r
g
in

a
l 
M

e
a
n
s

1000

800

600

400

200

0

NB

1

2

3

5

7

 

Ndisc[BUT] at NR = 3

NT

75321

E
s
ti

m
a
te

d
 M

a
r
g
in

a
l 
M

e
a
n
s

1000

800

600

400

200

0

NB

1

2

3

5

7

 

Ndisc[TRUE] at NR = 3

NT

75321

E
s
ti

m
a
te

d
 M

a
r
g
in

a
l 
M

e
a
n
s

1000

800

600

400

200

0

NB

1

2

3

5

7

 

Ndisc[XOR] at NR = 3

NT

75321
E
s
ti

m
a
te

d
 M

a
r
g
in

a
l 
M

e
a
n
s

1000

800

600

400

200

0

NB

1

2

3

5

7

 

Ndisc[OR] at NR = 3

NT

75321

E
s
ti

m
a
te

d
 M

a
r
g
in

a
l 
M

e
a
n
s

1000

800

600

400

200

0

NB

1

2

3

5

7

 

NR=5 

Ndisc[AND] at NR = 5
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NR=2 

Ndisc[NAND] at NR = 2
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NR=3 

Estimated Marginal Means of NAN

At NR = 3
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NR=5 

Ndisc[NAND] at NR = 5
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NR=7 

Ndisc[NAND] at NR = 7
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