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Abstract

This paper reports on an experiment in which two mobile
robots solve the symbol grounding problem in a particular
experimental setup. The robots do so by engaging in a series
of so-called language games. In a language game the robots
try to name an object that is in their environment first by cat-
egorizing their sensing, then by naming this categorization.
When the robots fail to categorize or name, they can adapt
their memory in order to succeed in the future. At the start
of each experiment, the robots have no categories or names at
all. These are constructed during the experiment. The paper
concludes that in the investigated experiment the robots solve
the symbol grounding problem as a result of the co-evolution
of meaning and lexicon.

Introduction

One of the hardest problems in Al and robotics is the so-
called symbol grounding problem (Harnad 1990). The sym-
bol grounding problem deals with the question how seem-
ingly meaningless symbols become meaningful in relation
to the real world. For robots this problem can be translated
to the problem how sub-symbolic representations of events
and perceptions can be transformed into a symbolic repre-
sentation such that these symbols can be used meaningfully.

Recently several attempts have been made to solve the
symbol grounding problem in learning robots. Exam-
ples of such implementations are (Billard & Hayes 1998;
Rosenstein & Cohen 1998; Steels & Vogt 1997).

In (Billard & Hayes 1998) a student robot tries to learn
a lexicon from a teacher robot by learning through imita-
tion. The teacher robot has a preprogrammed lexicon about
some sensorimotor couplings. The student robot follows
the teacher by means of phototaxis and while the teacher
communicates its sensorimotor actions, the student tries to
couple these communicated signals with its own sensorimo-
tor activation. The couplings are represented in a neural
network architecture called DRAMA, which implements a
Willshaw network.

In the work of (Rosenstein & Cohen 1998) a robot has
been developed that categorizes its sensorimotor activity by
categorizing the time series of this activity with the so-called
method of delays. The sensorimotor activity is described by
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delay vectors, which reconstruct the original time-series in
its phase space. By categorizing these delay vectors with
the delay vectors of stored prototypes, the robots construct
clusters of concepts like chase, escape, contact etc..

Steels and Vogt have conducted experiments where two
autonomous mobile robots develop a grounded and shared
lexicon from scratch (Steels & Vogt 1997). The robots play
a series of so-called language games in which they try to
communicate the name of a light source that is in their envi-
ronment. When a language game fails, the robots may adapt
their memory in order to succeed in the future.

This paper reports on an experiment that implements the
latter work, which has been reported in (Mogt 2000). Dif-
ference with the earlier work is that the current experiment
1) incorporates a prototype based categorization, similar to
(De Jong & Vogt 1998), 2) reveals significant improvement
of performance and 3) is more controlled, so the results can
be analyzed more reliably. The next section presents the
symbol grounding problem in some more detail and gives a
workable definition of a symbol. The implemented model is
explained in the section called ‘language games’. The sub-
sequent section presents the experimental results. And the
final section provides a discussion.

The symbol grounding problem

The symbol grounding problem occupies many robotics sci-
entists as each robot that uses symbols has to deal with this
problem in one way or another. Stevan Harnad identified
three subphases needed to solve this problem: (1) iconiza-
tion, (2) discrimination and (3) identification (Harnad 1990).

Iconization is the process in which the sensing takes place.
Sensing the world leads to the formation of what Harnad
calls an iconic representation. This can be compared with
the representation of the sensing of a real world object on
the retina.

When an agent has formed iconic representations of the
objects sensed in the world, the agent has to find if and
how one representation is distinctive from another. This is
called the problem of discrimination. Discrimination still
yields sub-symbolic information and can be highly ambigu-
ous (Harnad 1990).

Finding categorizations that invariantly recognizes the
object is called identification. Identification yields the sym-
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Figure 1: The semiotic triangle illustrates the relations be-
tween referent, form and meaning that constitute a sign.

bolic structure that one is interested in. Although the first
two subproblems may be very complex, their implementa-
tion in this paper is relatively simple. The main focus of this
paper deals with the process of identification.

In Harnad’s description a symbol is defined in terms of phys-
ical symbol systems (Newell 1980). More specifically, it is
defined as a category name (Harnad 1993). The problem
with such a definition is that there is no direct link to reality;
this is why the symbol grounding problem is raised in the
first place.

In this paper an alternative definition of a symbol is used.
This definition is consistent with a physical symbol system
and is taken from the theory of semiotics. Such a symbol
will be called a semiotic symbol to indicate its distinction
from the conventional use of symbols. In this theory accord-
ing to C.S. Peirce (Peirce 1931) a symbol can be equaled
with a sign. A sign is defined as a relation between a refer-
ent, form and meaning as illustrated in the semiotic triangle,
see figure 1. Following (Chandler 1994), the three elements
are defined as follows?:

Referent A referent is the thing “to which the sign refers”.

Form A form is “the form which the sign takes (not neces-
sarily material)”.

Meaning The meaning is “the sense made of the sign”.

According to Peirce, a sign becomes a (semiotic) sym-
bol when its form, in relation to its meaning “is arbitrary
or purely conventional, so that the relationship must be
learned” (Chandler 1994). The relations can be convention-
alized in language. A nice side effect of this definition is that
the semiotic symbol is per definition grounded, because the
symbol has an intrinsic relation with the referent. The only
task that remains to be solved is to construct the semiotic
relation, which remains a hard problem.

Related to the symbol grounding problem is the anchor-
ing problem (Coradeschi & Saffiotti 2000). According to
Coradeschi and Saffiotti, “anchoring is the process of cre-
ating and maintaining the correspondence between sym-
bols and percepts that refer to the same physical object”?
(Coradeschi & Saffiotti 2000). As with the symbol ground-
ing problem, an anchor in the current paper is created upon

INote that the terminology is somewhat different than Peirce’s.
Peirce uses object, representamen and interpretant for referent,
form and meaning resp.. The adopted terminology is consistent
with the terminology used by (Steels & Kaplan 1999)

2Note that Coradeschi and Saffiotti use the term symbol in the
classical sense. Their use does not refer to the semiotic symbol.
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Figure 2: The semiotic square illustrates the guessing game
scenario. The two squares show the processes of the two
participating robots. This figure is adapted from [Steels and
Kaplan, 1999].

the construction of the semiotic symbol. As long as the
semiotic symbol proves to be a good one (i.e. when it is
re-applicable), the anchor is maintained. This is because,
by definition, the semiotic symbol relates to the referent
whether or not it is perceived, hence the dotted line in the
semiotic triangle (Chandler 1994).

Special notice should be given to the notion of meaning.
As is assumed here, a meaning is a distinctive categoriza-
tion of the perception of a referent that is used in the lan-
guage. The first constraint is cf. (Peirce 1931), the latter
is cf. (Wittgenstein 1958). Furthermore, it is assumed that
the meaning co-evolves with the lexicon (Steels 1997). This
means that the development of the lexicon gives rise to the
development of meaning and vice versa.

L anguage games

The goal of the experiment presented here is that two mobile
robots develop a shared and grounded lexicon from scratch
about the objects that the robots can detect in their environ-
ment. This means that the robots construct a vocabulary of
form-meaning associations from a tabula rasa with which
the robots can successfully communicate the names of the
objects.

In the experiments, the robots play a series of guessing
games (Steels & Kaplan 1999). A guessing game is a variant
of the language games in which the hearer of the game tries
to guess what referent the speaker tried to verbalize. The ba-
sic scenario of a guessing game is illustrated in what Steels
calls the semiotic square (Steels & Kaplan 1999), see fig-
ure 2. A guessing game is played by two robots. One robot
takes the role of the speaker, while the other takes the role
of the hearer. Both robots start sensing their surroundings,
after which the sensory data is preprocessed. The robots
categorize the preprocessed data, which results in a mean-
ing (if used in the communication). After categorization,
the speaker produces an utterance and the hearer tries to in-
terpret this utterance. When the meaning of this utterance
applies to one or more segments of the sensed referents,
the hearer can act to the appropriate referent. The guess-
ing game is successful if both robots communicated about
the same referent. The robots evaluate feedback about the
outcome of the guessing game, i.e. whether the robots com-



Figure 3: The LEGO robots in their environment.

municated about the same referent. This feedback is passed
back to both robots so that they can adapt their ontology of
categories (used as meanings) and lexicon.

Below follows a description of the experiments. For more
details, consult (Vogt 2000).

Theexperimental setup

The experiment makes use of two LEGO robots. The robots
are equipped with a.o. four light sensors, two motors, a ra-
dio module and a sensorimotor board, see figure 3. The light
sensors are used to detect the objects in the robots’ environ-
ment. The two motors control the robots movements. And
the radio module is used to coordinate the two robots’ be-
havior and to send sensor data to a PC where most of the
processing takes place.

The robots are situated in a small environment (2.5 x
2.5m?2) in which four light sources are placed at different
heights. The light sources act as the objects that the robots
try to name. The different light sensors of the robots are
mounted at the same height as the different light sources.
Each sensor outputs its readings on a sensory channel. A
sensory channel is said to correspond with a particular light
source if the sensor has the same height as this light source.

The goal of the experiments is that the robots develop a
lexicon with which they can successfully name the different
light sources.

Sensing, segmentation and feature extraction

As a first step towards solving the symbol grounding prob-
lem, the robots have to construct what Harnad calls an iconic
representation. In this work, it is assumed that an iconic rep-
resentation is the preprocessed sensory data that relates to
the sensing of a light source. The resulting representation
is called a feature vector in line with the terminology from
pattern recognition, see e.g. (Fu 1976).

A feature vector is acquired in three stages: sensing, seg-
mentation and feature extraction. The remainder of this sec-
tion explains these three stages in more detail.

Sensing During the sensing phase, the robots detect what
is in their surroundings one by one. They do so by rotating
720° around their axis. While they do this, they record the
sensor data of the middle 360° part of the rotation. This way
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Figure 4: The sensing of the two robots during a language
game. The plot shows the spatial view of the robots” envi-
ronment. It is acquired during 360° of their rotation. The
figures make clear that the two robots have a different sens-
ing, since they rotate at different locations. The y-axis shows
the intensity of the sensors, while the x-axis determines the
time (or angle) of the sensing in PDL units. A PDL unit
takes about j—osecond, hence the total time of these sensing
events took circa 1.5s.

the robots obtain a spatial view of their environment for each
four light sensors, see figure 4.

The robots rotate 720° instead of 360° in order to cancel
out nasty side effects induced by the robots’ acceleration and
deceleration.

Figure 4 shows the sensing of two robots during a lan-
guage game. Figure (a) shows that robot O clearly detected
the four light sources; there appears a peak for every light
source. The two robots do not sense the same view as can be
seen in figure (b). This is due to the fact the robots are not
located at the same place.

Segmentation Segmentation is used by the robots to ex-
tract the sensory data that is induced by the detection of
the light sources. The sensing of the light sources relates
in the raw sensory data with the peaks of increased intensity.
As can be seen in figure 4, in between two peaks the sen-



sory channels are noisy. So, when the noise is reduced from
the sensory data, all connected regions that have non-zero
sensory values for at least one sensory channel relate to the
sensing of a light source.

The segmentation results in a set of segments { Sy }, where
Sk = {Sk,05- - +»Sk,n—1}, Where n is the number of sensory
channels (4 in this case) and s ; = (7%,i,0, - - - » Tk,i,m ). The
sensory channel data 75 ; ; represents the sensory data af-
ter noise reduction and for all j = 0,...,m there exist a
Tr,i,; > 0 (m is the length of the segment). Each segment is
assumed to relate to the detection of one light source.

The set of segments constitute what is called the context
of the guessing game, i.e. Cxt = {S1,...,Sn}, where
N is the number of segments that are sensed. Each robot
participating in the guessing game has its own context which
may differ from another.

Feature extraction In order to allow efficient categoriza-
tion based on invariant properties of the detected segments,
features are extracted. Each segment may be of different
length. But, in order to categorize the segments efficiently, it
is useful to have a consistent representation of the segment.
In order to allow a proper categorization of the segments it
is useful to extract some invariant features from these seg-
ments. Thus the feature extraction is used to describe a seg-
ment with a consistent representation that contains some in-
variant property of the detected signal.

One can see in figure 4 that for each peak there is a differ-
ent sensory channel that has the highest intensity. After seg-
mentation, each peak is described by a segment that contains
the sensory data after noise reduction. The sensory channel
with the highest intensity corresponds with the light source
the segment relates to. This correspondence can be used as
an invariant property of the segments.

For all sensory channels, the feature extraction is a func-
tion (s, ;) that normalizes the maximum intensities of sen-
sory channel ¢ to the overall maximum intensity from seg-
ment S, cf. eg. (1). This way the function extracts the in-
variant property that the feature of the sensory channel with
the overall highest intensity (i.e. the corresponding one) has
a value of 1, whereas all other features have a value < 1.

maxs, ; (7k,i,j) 1)
maxs,, (ma*XSk,i (Tkﬂ}j ))

The result of applying a feature extraction to the data of sen-
sory channel ¢ will be called a feature f;, S0 f; = @(sk,i)-

Segment Sy, can now be related to a feature vector f, =
(fo,-- -, fa—1), where n is the total number of sensory chan-
nels. Like a segment, a feature vector is assumed to relate to
the sensing of a referent. The space that spans all possible
feature vectors f is called the n dimensional feature space
F =[0,1]™, or feature space for short.

The reasons for this feature extraction are manifold. First,
it is useful to have a consistent representation of the sensed
referents in order to categorize. Second, the normalization to
the maximum intensity within the segment (the ‘invariance
detection’) is useful to deal with different distances between
the robot and the light source. Furthermore, it helps to an-
alyze the experiments from an observer’s point of view and

W(Sk,z‘) =

to evaluate feedback. Besides its use during feedback (see
below), the robots are not ‘aware’ of this invariance.

All above processes are carried out by each robot individ-
ually. These processes resemble the iconization process of
the symbol grounding.

Categorization

In order to form a semiotic symbol from the sub-symbolic
feature vectors, the robots have to relate the vectors to cat-
egories that are stored in their memories and that may be
used as the meaning of the referent the feature vector relates
to. The categorization of some referent should be distinctive
from the categories relating to the other referents, so it can
be used as the meaning of this referent.

Categorization is modeled with the so-called discrimina-
tion games (Steels 1996b). Each robot individually plays a
discrimination game for the (potential) topic(s). A topic is a
segment from the constructed context (described by its fea-
ture vector). The topic of the speaker is arbitrarily selected
from the context and is the subject of communication. As
the hearer tries to guess what the speaker intends to com-
municate, it considers all segments in its context as a poten-
tial topic. The result of the discrimination game should be
a categorization that distinguishes the topic from all other
segments in the context. When the robot fails to find such
a categorization, it can adapt its ontology in which the cate-
gories are stored.

Let a category ¢ = (c,v, p, k) be defined as a region in
the feature space F. It is represented by a prototype ¢ =
(zg,.--,Zn—1), Where n is the dimension of F, and v, p
and « are scores. The category is the region in F in which
the points have the nearest distance to c.

A feature vector f is categorized using the 1-nearest
neighbor algorithm, see e.g. (Fu 1976). Each robot cate-
gorizes all segments this way.

In order to allow generalization and specialization of the
categories, different versions of the feature space F, are
available to a robot. In each space a different resolution is
obtained by allowing each dimension of F to be exploited
up to 3* times. How this is done will be explained soon.

The different feature spaces allow the robots to categorize
a segment in different ways. The categorization of segment
Sy, results in a set of categories Cy, = {co, .- -, cm }, Where
m < A

Suppose that the robots want to find distinctive categories
for (potential) topic S;, then a distinctive category set can be
defined as follows:

DC = {c; € Cy | V(Sk, € Cxt\{S¢}) : ~¢c; € Ci}

Or in words: the distinctive category set consists of all cat-
egories of the topic that are not a category of any other seg-
ment in the context.

If DC = 0, the discrimination game is a failure and some
new categories are constructed. Suppose that the robot tried
to categorize feature vector f = (fo,..., fn—1), then new
categories are created as follows:



1. Select an arbitrary feature f; > 0.

2. Select a feature space F that has not been exploited 3*
times in dimension 4 for A as low as possible.

3. Create new prototypes ¢; = (zo, ..., Zn—1), Where z; =
fi and the other z,. are made of already existing proto-
types in Fy.

4. Add the new prototypical categories ¢; = (c;,v;, p;, £;)
to the I;eature space Fy, withv = p = 0.01 and k¥ =

1— 2
max

The score v indicates the effectiveness of a category in the
discrimination games, p indicates the effectiveness in cate-
gorization and « indicates how general the category is (i.e.
in which feature space F, the category houses). « is a con-
stant, based on the feature space F, and the feature space
that has the highest resolution possible (i.e. Fxyax)- The
other scores are updated similar to reinforcement learning.
It is beyond the scope of this paper to give exact details of
the update functions.

The three scores together constitute the meaning score
B = é(u + p + k), which is used in the naming phase of
the experiment. The influence of this score is small, but it
helps to select a form-meaning association in case of an im-
passe.

The reason to exploit only one feature of the topic and
to combine it with existing prototypes, rather than adopting
the complete feature vector is to speed up the construction
of categories.

If the distinctive category set DC' # @, the discrimination
game is asuccess. The DC is forwarded to the naming game
that models the naming phase of the guessing game. If a
category c is used successfully in the guessing game, the
prototype c of this category is moved towards the feature
vector f it categorizes:

c:=c+e-(f—c) (2)

where € is the step size with which the prototype moves to-
wards f. This way the prototype becomes a more represen-
tative sample of the feature vectors it categorizes.

The discrimination game models the discrimination phase
in the symbol grounding problem.

Naming

After both robots have obtained distinctive categories of
the (potential) topic(s) from the discrimination game as ex-
plained above, the naming game (Steels 1996a) starts. In the
naming game, the robots try to communicate the topic.

The speaker tries to produce an utterance as the name of
one of the distinctive categories of the topic. The hearer
tries to interpret this utterance in relation to distinctive cat-
egories of its potential topics. This way the hearer tries to
guess the speaker’s topic. If the hearer finds a possible in-
terpretation, the guessing game is successful if both robots
communicated about the same referent. This is evaluated by
the feedback process as will be explained below. According
to the outcome of the game, the lexicon is adapted.

The lexicon L is defined as a set of form-meaning associ-
ations: L = {FM;}, where FM; = (F;, M;, 0;) is a lexical
entry. Here F; is a form that is made of a combination of
consonant-vowel strings, M; is a meaning represented by
some category, and ¢ is the association score that indicates
the effectiveness of the lexical entry in the language use.

Production The speaker of the guessing game tries to
name the topic. To do this it selects a distinctive category
from DC for which the meaning score y is highest. Then it
searches its lexicon for form-meaning association of which
the meaning matches this distinctive category.

If it fails to do so, the speaker will first consider the next
distinctive category from DC. If all distinctive categories
have been explored and still no entry has been found, the
speaker may create a new form as will be explained in the
adaptation section.

If there are one or more lexical entries that fulfill the above
condition, the speaker selects that entry that has the highest
association score . The form that is thus produced is uttered
to the hearer.

Understanding On receipt of the utterance, the hearer
searches its lexicon for entries for which the form matches
the utterance, and the meaning matches one of the distinctive
categories of the potential topics.

If it fails to find one, the lexicon has to be expanded, as
explained later.

If the hearer finds more than one, it will select the entry
that has the highest score ¥ = o + a - 1, where o = 0.1 is
a constant weight. The potential topic that is categorized by
the distinctive category that matches the meaning of the lexi-
cal entry is selected by the hearer as the topic of the guessing
game. l.e. this segment is what the hearer guessed to be the
subject of communication.

Feedback In the feedback, the outcome of the guessing
game is evaluated. This outcome is known to both robots.

As mentioned, the guessing game is successful when both
robots communicated about the same referent. This feed-
back is established by comparing the feature vectors of the
two robots relating to the topics. Previous attempts to imple-
ment feedback physically have failed, therefore it is assumed
that the robots can do this. Naturally, this problem needs to
be solved in the future.

If the hearer selected a topic after the understanding
phase, but if this topic is not consistent with speaker’s topic,
there is a mismatch in referent.

If the speaker has no lexical entry that matches a dis-
tinctive category, or if the hearer could not interpret the
speaker’s utterance because it does not have a proper lexi-
cal entry in the current context, then the guessing game is a
failure.

Adaptation Depending on the outcome of the game, the
lexicon of the two robots is adapted. There are four possible
outcomes/adaptations:

1. The speaker has no lexical entry: In this case the speaker
creates a new form and associates this with the distinctive
category it tried to name. This is done with a probability



P, =0.1.

2. The hearer has no lexical entry: The hearer adopts the
form uttered by the speaker and associates this with the
distinctive categories of a different randomly selected seg-
ment from its context.

3. There was a mismatch in referent: Both robots adapt the
association score ¢ of the used lexical entry: ¢ := 7 - o,
where 5 = 0.9 is a constant learning rate. In addition,
the hearer adopts the utterance and associates it with the
distinctive categories of a different randomly selected seg-
ment.

4. The game was a success: Both robots reinforce the asso-
ciation score of the used entry: ¢ := -0 + (1 — 7).
In addition, they lower competing entries (i.e. entries for
which either the form or the meaning is the same as in the
used entry): o := 5 - 0. The latter update is called lateral
inhibition.

The guessing game described above implements the three

mechanisms hypothesized by Luc Steels (Steels 1996a) that
can model lexicon development. (Cultural) interactions are
modeled by the sensing and communication. Individual
adaptation is modeled at the level of the discrimination and
naming game. The selection of elements and the individual
adaptations power the self-organization of a global lexicon.

So, the selection, generation and adaptation of the lex-
icon cause, together with the multiple interactions a self-
organizing effect in which the lexicon is structured such that
a consistent communication system emerges.

The coupling of the naming game with the discrimination
games and the sensing part makes that the emerging lexicon
is grounded in the real world. The robots successfully solve
the symbol grounding problem in some situation when the
guessing game is successful. This is so, because identifica-
tion (Harnad 1990) is established when the semiotic trian-
gle (figure 1) is constructed completely. This is done at the
naming level and it is successful when the guessing game is
successful.

Experimental results

An experiment has been done in which the sensory data of
the sensing phase during 1,000 guessing games has been
recorded, see also (Vogt 2000). From this data set it has been
calculated that the a priori chance of success when the robots
randomly choose a topic is 23.5%. Because the robots do not
always detect all the light sources that are present (figure 4),
their context is not always coherent. This leads to the fact
that there is a maximum success rate that can be reached,
called the potential understandability. The potential under-
standability has been calculated to be on the average 79.5%.

The 1,000 recorded situations have been processed on a
PC in 10 runs of 10,000 guessing games. Figure 5 shows
the communicative- and discriminative success of this ex-
periment. The communicative success measures the number
of successful guessing games, averaged over the past 100
games. The discriminative success measures the number of
successful discrimination games, also averaged over the past
100 guessing games.
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Figure 5: The communicative success (CS) and discrimina-
tive success (DS) of the experiments.
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Figure 6: The evolution of the number of meanings and
forms that have been used successfully by the robots in the
experiment.

As can be seen, the discriminative success reaches a value
near 1 very fast. Hence, the robots are well capable of find-
ing distinctive categories for the sensed light sources.

The communicative success is somewhat lower. It in-
creases towards a value slightly below 0.8 near the end.
Since this is close to the potential understandability, the
robots are well capable to construct a shared lexicon within
its limits.

Figure 6 shows the number of different meanings and
forms that have been used successfully in the guessing
games. As can be seen, the number of meanings are much
higher than the number of forms used. There are approxi-
mately 28 x more meanings used than forms. So, although
the robots construct many meanings in relation to the four
referents, the robots only use 16 forms to name them.

When investigating the results in more detail it has been
observed that the most frequently used forms count up to
7, see figure 7. Moreover, when these forms are used, they
almost uniquely refer to one referent. The number of mean-
ings most frequently used are also substantially lower as in
figure 6. It is clear that the referents are categorized differ-
ently in the different games, but that they are named rather
consistently. Although there is some synonymy (one ref-
erent is named with on the average two forms most fre-
quently), the amount of polysemy is very low (a form usu-
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Figure 7: The lexicon of a typical run after 10,000 guessing
games shown as a semiotic landscape. This figure shows the
relation between the referents (L), meanings (M) and forms
of both robots. The connections indicate the occurrence fre-
quencies of their use relative to the occurrence frequency
of the referent (between referent and meaning) and relative
to the occurrence frequency of the form (between form and
meaning).

ally names only one referent).

How the occurrence frequencies of the used forms evolve
is shown in the competition diagram of figure 8 a. As this
figure makes clear, the most frequently used form clearly
wins the competition to name light source L1. At the bottom
of the diagram, other forms reveal a weak competition. Sim-
ilar competitions have been observed for the other referents.
Such competitions show how the forms are well anchored to
the referents they name. It shows that the forms maintain a
relation with their referents and could therefore be used in
the absence of the referents, which is one of the key issues
of anchoring symbols (Coradeschi & Saffiotti 2000). This
property is achieved by allowing the forms to be coupled
with multiple meanings that categorize a referent on differ-
ent occasions. As a result, the competition between mean-
ings to categorize a referent is stronger (figure 8 b).

Discussion

This paper presents research that investigates how two mo-
bile robots can solve the symbol grounding problem in a par-
ticular experimental setup by employing language games.
An alternative definition of a symbol has been adopted from
Peirce’s theory of semiotics, which has been coined a semi-
otic symbol. A semiotic symbol is defined by the relation
between a form, a meaning and a referent.

The experimental results show the robots can do so with-
out any preprogrammed semiotic symbols; these are con-
structed along the way. For this the robots categorize pre-
processed sensory data, which they then incorporate to name
them. The semiotic symbols are always constructed to name
some referent. When either the categorization or the nam-
ing fails, the robots adapt their memories so that they may

1 W
tyfo
0.8
0.6
[N

0.4
0.2

o S AN A N TR T e Ny N el

(o] 2000 4000 6000 8000 10000
LG
(a) referent-form

1
0.8
0.6

w
0.4 r
M-24

0.2 -

o P N I N Y

o 2000 4000 6000 8000 10000
LGs

(b) referent-meaning

Figure 8: (a) The referent-form competition diagram from
the same run as in figure 7. This diagram shows the compe-
tition between forms to name referent light source L1. (b)
The referent-meaning diagram shows the competition be-
tween meanings to interpret light source L1. In both dia-
grams the y-axis shows the occurrence frequencies of suc-
cessfully used forms or meanings over the past 200 games
relative to the occurrence of the referent. The x-axis shows
the number of games played.

improve performance on future occasions.

The results suggest that the co-evolution of meaning and
form is very crucial in the robots’ ability to solve the sym-
bol grounding problem. As the sensing of the robots may
differ a lot in different situations, there emerge many dif-
ferent distinctive categories (which are employed as mean-
ings). Hence there are one-to-many relations between refer-
ent and meaning. On the other hand, the interactive adap-
tation during the guessing games, allows the emergence of
one-to-many relations between form and meaning. Thus the
invariance of the identification (needed to solve the sym-
bol grounding problem, cf. (Harnad 1990)) creeps in at the
form-meaning level. This leads to the conclusion that com-
munication is very beneficial in solving the symbol ground-
ing problem. The same conclusion applies to the anchoring
problem as well.



When comparing the results of this experiment with the
ones reported in (Billard & Hayes 1998), where a student
robots learns a vocabulary from a teacher robot, one sees
one striking similarity and one difference. Most important
similarity is that the student robot learns and uses the vo-
cabulary correctly in about 71% of the communication. The
errors in learning were mainly due to differences in senso-
rimotor activation between the two robots, i.e. the inability
to construct a coherent context. This is the same reason why
the robots in this experiment could not communicate cor-
rectly to a very high degree, cf. the potential understandabil-
ity. The main difference with Billard and Hayes’ work is the
learning speed. In their experiments, the student robot learns
the vocabulary in approximately 70 teaching examples. In
these experiments it takes about 1,000 guessing games un-
til a high level of success is reached. This difference is to
be sought in the fact that the teacher robot in Billard and
Hayes’ experiments is preprogrammed with the lexicon. In
the guessing games, both robots start from scratch. Clearly,
the latter task is much more difficult, because initially much
synonymy and polysemy enter the lexicon in both robots. It
then takes a while to disambiguate the system.

It should be noticed that the current experiment solves
the symbol grounding problem in a relatively simple experi-
ment. It remains to be shown whether the model still works
in a more complicated environment and with different sen-
sor modalities. One such experiment is the Talking Heads
experiment (Steels & Kaplan 1999) where two immobile
robots equipped with a camera play guessing games to de-
velop a lexicon about geometrical figures. This experiment
shows that the model works with a different sensor modal-
ity, although the robots’ environment is still rather simple.
The model is also used to investigate human-robot interac-
tion (Kaplan 2000). To allow proper human-robot interac-
tion, the robots should be equipped with a sensor modal-
ity that has similarities to the human sensory system so that
the robot can develop human-like categories. Further work
that investigates the scalability of the model is currently in
progress.
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