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1. Introduction

One of the key aspects that distinguishes humans from other species is that humans
use a complex communication system that is - among other things - symbolic, learnt,
compositional and recursive, whereas all other species’ communication systems
typically lack these properties. It is often thought that this unique human feature is the
key to understanding the nature (and nurture!) of human cognition. In order to
understand the foundations of this distinction between humans and other species,
scientists study the origins and evolution of language.

Traditionally the origins and evolution of language has been studied by biologists,
anthropologists, psychologists, palaeontologists, philosophers and linguists - although
the Linguistic Society of Paris had strangely enough banned any studies on this issue
between 1866 and 1974, because too many theories were proposed that were hard to
verify at the time. With the recent advancements in computational resources an
increasing number of simulations studying various aspects of language origins and
evolution have emerged (see, e.g., Briscoe, 2002; Cangelosi & Parisi, 2002; Kirby,
2002; Steels, 1997 for overviews).

Mostly, these computational studies incorporate a multi-agent system that can learn,
or evolve, a communication system of varying complexity that allows the system to
communicate about a predefined set of meanings. However, as human communication
is about the real world, understanding the underlying principles of language requires
an understanding of the mechanisms with which the languages’ meanings are rooted
in reality. Models based on predefined meanings therefore face what is often referred
to as the symbol grounding problem (Harnad, 1990). Few studies have tried to tackle
this problem using robotic models of language origins and evolution, most notably
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(Marocco, Cangelosi & Nolfi, 2003; Steels, Kaplan, McIntyre & van Looveren, 2002;
Steels & Vogt, 1997; Vogt, 2000a).

In this chapter, I will present an overview of robotic (and other related) studies on the
evolution of language. The aim is to present why robotics is a fruitful approach to
study language origins and evolution, identify the main topics, report the major
achievements and problems and provide a roadmap to future studies. Although I will
cover most robotic studies on the evolution of language, the overview is not
exhaustive and will, for instance, not cover studies on language learning robots, such
as (Oates, Eyler-Walker & Cohen, 2000; Roy, 2000; Steels & Kaplan, 2000; Sugita &
Tani, 2005), since these deal with human-robot interaction rather than with multi-
robot communication.

In the next section, I will provide some theoretical background on language evolution,
discuss an alternative view on the symbol grounding problem and present some
foundations toward studying language evolution using robots. In Section 3, I will
present an overview of topics that have been studied in language evolution robotics.
These topics will be illustrated with case studies and a critical review of the
approaches taken. An outlook to future endeavours is presented in Section 4. Section
5 concludes this chapter.

2. Background

The question of why humans have evolved the ability to use natural language is one of
the most intriguing in contemporary cognitive science, and possibly one of the hardest
problems in science (Christiansen and Kirby, 2003). Looking at recent collections on
the evolution of language (e.g., Hurford, Knight & Studdert-Kennedy, 1998; Wray,
2002; Christiansen & Kirby, 2003), we can find that most prominent questions
include: For what purpose has human languages evolved? How have human sound
systems evolved? How have we become symbolic species? How have we established
a shared signalling system of symbols? How has syntax emerged? How has linguistic
diversity emerged? How do languages change through time? Among these questions,
the emergence of syntax is considered by many to be the most important question
(Kirby, 2002).

One of the most prominent debates regarding language evolution concerns the nature
versus nurture paradigm. On the one side, many scholars adhere to the nativist
approach, which aims at explaining language universals in terms of biological
adaptations (Chomsky, 1980; Pinker & Bloom, 1990). Only a few modellers take up
this approach by developing models that try to evolve an innate Universal Grammar
(e.g., Briscoe, 2000; Nowak, Plotkin & Jansen, 2000; Yamauchi, 2004). On the other
side of the debate are those who believe language is an empirically learnt system
(Elman, Bates, Johnson, Karmiloff-Smith, Parisi & Plunkett, 1996, MacWhinney,
1999) or a culturally evolved system (Tomasello, 1999). Most computer modellers
follow the cultural evolution paradigm and assume that language is a complex
adaptive dynamical system (Steels, 1997).

A complex dynamical system is a system of which the total behaviour is an indirect,
non-hierarchical consequence of a set of interacting elements. A complex adaptive
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dynamical system is a complex system where “the behaviour of individual elements
and the nature of the interactions may change thus giving rise to a higher-order
dynamics” (Steels, 1997, p. 3). If we view individuals of a language community as
interacting elements who change their linguistic behaviour in order to conform to
other individuals, we can regard the language community as a complex adaptive
dynamical system. When individuals interact culturally, they try to form conventions
in order to communicate successfully. To this aim, they may invent new elements in
the language, adopt elements from other individuals and strengthen or weaken
elements that are effective or ineffective. If we further assume that individuals tend to
reuse strong elements, these elements will give further rise to other individuals
adopting and strengthening these elements. As a result, these strong elements will
become shared among larger groups of individuals, in a similar way ant paths are
formed. The process by which this is achieved is called self-organisation. So,
according to this paradigm, language is assumed to have evolved through self-
organisation resulting from cultural interactions and individual learning.

Related to this, Kirby and Hurford (2002) extended this view by regarding language
evolution as an interplay “between three complex adaptive systems:

Learning.
During ontogeny children adapt their knowledge of language in response to the
environment in such a way that they optimise their ability to comprehend
others and to produce comprehensible utterances.

Cultural evolution.
On a historic (or glossogenetic) time scale, languages change. Words enter and
leave the language, meanings shift, and phonological and syntactic rules
adjust.

Biological evolution.
The learning (and processing) mechanisms with which our species has been
equipped for language, adapt in response to selection pressures from the
environment, for survival and reproduction.” (Kirby & Hurford, 2002, p. 122)

learning bias

Phylogeny
Glossogeny ?/ Learning influences

language change

Evolution provides prior

Emergent universals
effect selection

TN

Figure 1: This figure illustrates how the three adaptive systems interact to explain the
emergence of language. (Adapted from Kirby & Hurford (2002).)

Figure 1 illustrates the interaction between these three complex adaptive systems. The
remainder of this chapter will primarily focus on studies involving the complex
adaptive dynamical system approach, as this is - up to now - the most studied
paradigm in robotic studies.

Although, as mentioned, questions relating to the emergence of syntax are generally
considered the most important questions, it has been argued that the first important
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questions should relate to the emergence of symbolic communication (Deacon, 1997,
Jackendoff, 1999). Traditional cognitivist approaches in artificial intelligence have
assumed that human cognition can be seen as a physical symbol system (Newell &
Simon, 1976). Physical symbol systems are systems that can store, manipulate and
interpret symbolic structures according to some specified rules. Assuming this is a
correct characterisation, we need to define symbols. Cognitivists have treated symbols
as internal structures that - following De Saussure (1974) - relate representations of
meanings with arbitrary signals or labels. In Al both these internal structures and
labels are symbols. In these approaches, it is left unspecified how the meaning relates
to reality, which has caused famous fundamental problems such as the frame problem
(McCarthy & Hayes, 1969), the Chinese Room problem (Searle, 1980), and the
symbol grounding problem (Harnad, 1990). The main issue with these problems is
that in the cognitivist approach, symbols are neither situated — i.e. they are not
acquired in interaction with an environment, nor embodied — i.e. they are not based on
bodily experiences (Clancey, 1997; Pfeifer & Scheier, 1999).

To deal with these problems of cognitivism, Brooks (1990) proposed the physical
grounding hypothesis, which states that intelligence should be grounded in the
interaction between a physical agent and its environment. In the physical grounding
hypothesis, Brooks has argued that symbols are no longer necessary; intelligent
behaviour can be established by parallel operating sensorimotor couplings. Although
physically grounded systems are both situated and embodied, from the point of
linguistics, Brooks’ hypothesis is problematic, since human language is indeed
considered to be symbolic.

MEANING

FORM REFERENT

Figure 2: The semiotic triangle illustrates the relations that constitute a sign. When
the form is either arbitrary or conventionalized, the sign can be interpreted as a
symbol. (Adapted from Ogden & Richards (1923).)

It has been argued that the true problem of the cognitivist approach lies in the
definition of symbols. If we were to accept there must be symbols, they should be
defined as structural couplings connecting objects to their categories based on their
sensorimotor projections (Clancey, 1997; Maturana & Varela, 1992). I have argued
(Vogt, 2002b), however, that such a definition is already present from the semiotic
theorist Charles Sanders Peirce (1931-1958). Peirce has defined symbols as a triadic
relation between a referent, a meaning and a form' as illustrated in the semiotic
triangle (Figure 2), where the relation between meaning and form is either arbitrary or
conventionalised such that the relation must be learnt. Similar (or related) definitions

! Peirce actually used the terms object, interpretant and representamen to denote what I call referent,
meaning and form respectively. Throughout the text I will also use the terms label, word and signal
interchangebly to denote a form.
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are very common among linguists and other cognitive scientists, e.g., (Barsalou, 1999;
Deacon, 1997; Lakoff, 1987). To distinguish between the cognitivist and Peircean
definitions of symbols, I have coined Peirce’s definition semiotic symbols (Vogt,
2002b).

In this definition, the term meaning requires extra care. According to Peirce, the
meaning of a symbol arises from the process of semiosis, which is the interaction
between form, meaning and referent. This means that the meaning is the mental effect
determined or caused by the symbol. This way, I have argued that the meaning
depends on how the symbol is constructed and with what function. As such, the
meaning of a symbol can be regarded as a functional relation between its form and
referent based on an agent’s bodily experience and interaction with the referent. The
experience is based on the agent’s history of interactions with the referent and/or
form. The ways these bodily experiences are represented and memorized form the
internal representation of the meaning. The actual interaction between an agent and a
referent ‘defines’ the functional relation. (Note that I will use the term category to
denote the internal representation of meaning. In addition, as is common in linguistics
I will sometimes use the term meaning interchangeably with the term category when
discussing the robotic models.)

I have argued that when the semiotic definition of symbols is adopted, the symbol
grounding problem no longer exists as a fundamental problem (Vogt, 2002b). This is
primarily because semiotic symbols are per definition meaningful and grounded. The
problem, however shifts into a hard technical problem, which I have called the
physical symbol grounding problem, and which relates to the construction of the
triadic relation between referent, meaning and form (Vogt, 2002b).> (In the remainder
of this paper, I will use the term symbol to denote a semiotic symbol. When I refer to
the cognitivist sense of a symbol, this will be made explicit.)

So, when studying the origins of symbolic communication, the symbols should arise
from an interaction of an agent with its environment; this justifies the use of robotic
models. Preferably physical robots are used, but simulated robots can offer a suitable
platform too (see Pfeifer & Scheier, 1999), since experiments with real robots may be
very time consuming and costly. Ideally, the experiments have an ecological validity
in that the robots have a “life task” to solve (Ziemke & Sharkey, 2001), but - as will
become clear - most robotic models so far have little or no ecological validity.

During the course of language evolution symbols have become culturally shared in a
population, i.e. the members of a language society have learnt more or less similar
meanings and referents of signals. Learning the meanings of words is - in principle - a
notoriously hard problem. In a seminal work, Quine (1960) has shown that when you
hear a novel word, this word can - logically - have an infinite number of meanings. He
illustrates this point by considering a linguist studying a language that he or she does
not know. The linguist observes a native speaker exclaiming “gavagai!” when a rabbit
scurries by. It would be natural for the linguist to note that gavagai means rabbit, but

* This problem is similar to the anchoring problem (Coradeschi & Saffiotti, 2000), which deals with the
technical problem of connecting traditionally defined symbols to the real world, see Vogt (2003a) for a
discussion.
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logically, gavagai could mean an infinite number of different things, such as
undetached rabbit parts, a running rabbit Or even it is going to rain
today. Deciding which meaning to associate with a signal is an extremely hard
problem for robotic models, but humans solve this task seemingly very easily.
Researchers in child language acquisition have proposed a number of constraints and
means to reduce the number of possible inferences as to the meanings and referents of
words. Examples include representational constraints, such as a whole object bias
(Macnamara, 1982) or a shape bias (Landau, Smith & Jones, 1988); interpretational
constraints, such as mutual exclusivity (Markman, 1989) and the principle of contrast
(Clark, 1993); and social constraints such as joint attention (Tomasello, 1999),
corrective feedback (Chouinard & Clark, 2003) and Theory of Mind (Premack &
Woodruff, 1978) that allows individuals to understand that others have intentions
similar to themselves. For an overview, consult, e.g., Smith (in press).

Once a shared symbolic communication system was in place, humans are thought to
have developed a protolanguage (Jackendoff, 1999). Some have argued that the
protolanguage was formed from unstructured expressions of multiple words
(Bickerton, 1984), others have argued that expressions of the protolanguage were
mainly single holistic utterances (Wray, 1998). It is widely assumed that from the
protolanguage, grammatical structures have emerged that resemble modern languages
(Bickerton, 1984; Jackendoff, 1999; Wray, 1998). Some scientists believe this
transition was due to a biological adaptation in the brain (Bickerton, 1984; Pinker &
Bloom, 1990); others think that the language itself has adapted to become learnable
(Deacon, 1997). Although there have emerged many ungrounded computational
models that simulate this transition (Batali, 2002; Brighton, 2002; Kirby, 2001), this
area is still largely unexplored in robotics (but see Steels 2004; Vogt in press a). One
idea on which robotics can contribute to the study of grammar evolution is that robots
can exploit structures that occur in the interaction between robots and their
environment. Both the world and our interaction with the world contain combinatorial
structures that could serve as the basis of the semantic structures, which - in turn -
form the basis of the syntactic structures in languages. For instance, objects, such as
apples, can have different colours, sizes or other properties, which could serve as the
basis of what could be called adjective noun phrases, such as “the red apple”. Another
structure that could be exploited is that actions are typically performed by a subject on
an object, which could have resulted in the universal tendency of languages to have
expressions combining subjects, objects and verbs.

Philosophically, the physical symbol grounding problem has provided sufficient
ground to favour robotic models over what I call ungrounded models (i.e., models that
have predefined meanings or no meanings at all), but what about more pragmatic
reasons? Here I mention two reasons: First, ungrounded models may be built on false
assumptions. For instance, in most ungrounded models, all agents have the same
meanings. This is clearly not a realistic assumption, because in real life meanings
arise from interactions of an individual with its environment and with other
individuals, and therefore each individual will have different experiences. In addition,
when the model uses a population turnover, in realistic models, the older experienced
agents should have a matured set of meanings, while the new agents have not
developed any meanings at all. Ungrounded models are completely ignorant about
this. Ungrounded models also tend to assume that hearers can observe both the
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communicated signal and its meaning. Clearly, humans do not observe the meaning of
a word that resides in a speaker’s brain, because that would make the signal redundant
(Smith, 2003). In an idealised world, humans can observe a word’s referent, though -
as mentioned - logically each word can have an infinite number of meanings (Quine,
1960) and a learner has to infer the word’s meanings. In robotic models, the meanings
typically develop during an agent’s lifetime. As a result, meanings are private and
may differ substantially from agent to agent. Moreover, as a matter of principle,
robots cannot observe other agents’ internal representations, unless the experimenter
‘cheats’, which can be useful if, for instance, joint attention is hard to achieve as in
(Vogt, 2000a).

Second, robotic models can actually exploit the nature of the interaction with the
environment. I have already mentioned exploiting structures for constructing semantic
structures. In addition, interactions and feedback mechanisms could be exploited to
reduce the number of possible meanings of an expression. If the response of an action
induced by a communication act is positive, the agents participating in the
communication could use the positive reward to reinforce the used association
between expression and meaning, thus allowing the agent to learn a word’s meaning
more easily.

3. Topics and case studies

This section presents an overview of some robotic studies on the evolution of
language. The overview is not exhaustive; for instance, I will not discuss the very
interesting study on the evolution of communication channels by Quinn (2001), nor
will I discuss language learning models based on human-robot interaction, such as
(Oates et al., 2000; Roy, 2000; Sugita & Tani, 2005). Instead, the focus will be on
language development in multi-robot systems, providing a clear review of the topics
studied showing the state-of-the-art. The topics in this section are — more or less —
increasingly complex. First, I present how semiotic symbols can be constructed. The
learning of conventions is the subject of Section 3.2. Section 3.3 then presents studies
on the emergence of grammar. In all these sections, meaning formation is only treated
as forming an internal representation of meaning (or category), rather than in a

functional manner. The functional development of meaning is discussed in Section
3.4

3.1 Constructing semiotic symbols

The first problem that needs to be solved is the physical symbol grounding problem
(i.e. creating the semiotic triangle). The problem can be decomposed into three parts:
(1) Sensing and pre-processing of raw sensorimotor images, (2) categorisation or
meaning construction, and (3) labelling. The labelling problem is either trivial (in case
of using arbitrary forms) or it is based on learning conventions through language. In
this subsection, I will assume the trivial solution and focus on the sensing, pre-
processing and meaning formation. Learning conventions will be discussed later.

3 Although this is not necessarily more complex than the evolution grammar, it is treated at the end of
this section because it is helpful to have the background provided in the first three sections.
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The discussion of how semiotic symbols can be constructed is presented for
individual robots. Constructing a semiotic symbol usually starts with a sensori(motor)
stimulation based on the robot’s interaction with the real world (when embedded in
communication, construction can also start upon ‘hearing’” an expression).
Sensorimotor stimulation can be based on a scene acquired by a camera, which may
be static as in the Talking Heads experiment (Steels et al., 2002), or dynamic as in
more recent experiments of Luc Steels (Steels, 2004; Steels & Baillie, 2003); the
activation of infrared, sonar or simple light sensors (Vogt, 2003a); the flow of
sensorimotor activity (Billard & Dautenhahn, 1999; Vogt, 2000b); or the activation of
a sensorimotor coupling (Vogt, 2002a). Often, the raw data is pre-processed to reduce
the huge amount of data. Typically regions of interest are identified and some feature
extraction algorithm is used to describe such regions in terms of feature vectors. How
this is done can be quite complex and is not discussed further in this chapter, for
details consult the individual papers. When the sensing is based on the activation of
sensorimotor couplings, pre-processing may not be required (Vogt, 2002a).
Furthermore, in simulations, the image is often more abstract, such as a bitstring
representing mushrooms (Cangelosi & Harnad, 2000) or just random vectors (Smith,
2003), which do not require any more pre-processing.

At the heart of creating semiotic symbols lies - technically - an agent’s ability to
categorise the (pre-processed) perceptual data. Once these categories are in place, the
agent can simply associate a label (or form) to this category, thus constructing the
symbol. (Whether this symbol is useful or functional is another question, which will
be dealt with in Section 3.4.) A number of techniques have been developed that allow
a robot to construct categories from scratch with which it is able to recognise or
discriminate one experience from another. These techniques usually rely on
techniques that have been present in Al for quite some time, such as pattern
recognition and neural networks. Some researchers use neural networks to associate
(pre-processed) sensorimotor images with forms, e.g., (Billard and Dautenhahn, 1999;
Cangelosi & Harnad, 2000; Marocco et al., 2003), which - although they work well -
makes it hard to analyse how the meanings are represented. Moreover, these
techniques are often inflexible with respect to the openness of the system (see Section
3.2), because typically, the number of nodes in a neural network are fixed. Another
technique that is frequently used in grounded models of language evolution is the
discrimination game (Steels, 1996b).

The aim of the discrimination game is to categorise a sensorimotor experience such
that this category distinguishes this experience from other experiences. If such a
distinctive category (or meaning) is found, the game is considered a success. If it fails,
a new category is formed based on the experience that is categorised, such that
discrimination can succeed in a future situation. This allows the agent to construct a
repertoire of categories from scratch, as illustrated in Figure 3.
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Figure 3: An illustration of three subsequent discrimination games using a prototype
representation. The figure shows three instances of a combined feature space and a
conceptual space. The x and + are feature vectors of observed objects (e.g., the
location of an object in a 2D plane), the * denotes a prototype, while A and B are
categories. Each individual plot represents one discrimination game. In game (a), the
robot observed 2 objects (x and +), but has not yet formed any categories.
Consequently, the game fails and a new category (A) is added to the conceptual space
of which the feature vector of the target object serves as an exemplar for its prototype
- the * in figure (b). In the second situation (b), again two objects are observed, which
are now both categorised with category A. In this case, no distinction can be made.
Suppose the + was the target (a.k.a. the topic) of the discrimination game, then a new
category is formed by adding the feature vector + to the conceptual space as the new
prototype of category B in figure (c). Note that this alters the initial category A. In the
third game (c), both objects can be categorised distinctively. Irrespective of which one
is the topic, the discrimination game succeeds. Typically, when a discrimination game
succeeds, the prototype is moved slightly in the direction of the topic’s feature vector.

The discrimination game illustrated in Fig. 3 has successfully been implemented in
the Talking Heads simulation THSim (Vogt, 2003c).* Experiments have shown that
the discrimination game is typically a fast learning mechanism and is very robust in
using different representations for categories. The original implementation used
binary trees (Steels, 1996b), which was used in various robotic experiments (Steels
etal,, 2002; Steels & Vogt, 1997) and simulations (Smith, 2003). Other
representations that were used include binary subspaces (de Jong, 2000), radial basis
function networks (Steels and Belpaeme, in press), neural networks (Berthouze &
Tijsseling, 2002), predicate logic (De Beule, 2004; Sierra-Santibafiez, 2001) and
different variants of the prototype representation (Vogt, 2003a, 2004, in press a).

The discrimination game is context dependent; the robot always contrasts the topic
with respect to other objects in the context. This has the consequence that the game
may succeed, even if the observed feature vector has a relatively large distance to the
category’s prototype, leading to an overextension of symbols. However, after a while,
the categories become finer grained, thus allowing the agents to resolve
overextensions. It is a well known fact, however, that young children also tend to
overextend during early word-learning (Bloom, 2000).

* THSim is freely downloadable from http://www.ling.ed.ac.uk/~paulv/thsim.html.
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One way of organising the space of categories is by using a hierarchical layering
where the top layer has only one category (or a few), while the lower layers have
increasingly more categories allowed. This way, the top layer has the most general
category and the bottom layer the most specific category. One way of implementing
such a hierarchy is by using a binary tree (cf., Steels, 1996b) or binary subspaces (cf.
de Jong, 2000). Although most implementations of the prototype representations have
only one layer, Vogt (2004) presents a hierarchically layered version of prototypical
categories. It was shown that when agents using such a layered version and had a built
in preference for selecting the most general categories to communicate about using
the language game model (see next section), the emerging lexicons revealed a Zipf
distribution on the frequency with which word-meaning pairs were used. This is
interesting, since such a distribution is a very sound universal tendency observed
across the world’s languages (Zipf, 1949). Similar to Zipf’s principle of least effort
explanation for the emergence of this distribution, Mandelbrot (1965) has explained
the emergence of such a distribution based on the principle of minimal cost. These
explanations always focused on the minimising the cost for producing and interpreting
speech sounds. However, given that in Vogt’s (2004) simulations agents minimise the
(computational) cost for categorising objects, this may provide an alternative or
additional explanation for the emergence of Zipf’s law.

When the sensing typically yields only one region of interest (i.e. there is only one
object or action), the discrimination game can only be applied in contrast to some
sensorimotor images that are in the robot’s memory. In such cases different models
can be used as well. The classification game was used in experiments with Sony’s
AIBO where whole (segmented) images of the camera were stored as exemplars
(Steels & Kaplan, 2000). The identification game was used to categorise the motor
flow of robots following each other (Vogt, 2000b). The latter used a pre-processing of
the raw sensorimotor flow based on constructing delay vectors from time series
(Rosenstein & Cohen, 1998). The identification game is very similar to the
discrimination game in that the delay vector (or feature vector) is categorised with the
nearest prototype, provided its distance was within a certain threshold. If not, the
delay vector is added to the ontology as an exemplar.

As mentioned, once a category, which is a representation of the meaning in a semiotic
symbol, is in place, the category can be associated with a form. This form may be
arbitrary, but in language they need to be conventionalised. In language evolution
models, this is often modelled by interactions called language games (Steels, 1996a)
which will be explained hereafter.

3.2 Sharing semiotic symbols

Among the biggest problems in modelling language evolution using robots is the
development of a shared communication system, which is related to Quine’s problem
of the indeterminacy of meaning. The models will have to include some mechanism to
established shared or joint attention to some object or event. Since human children
face the same problems when they grow up, it is important that robotic models are
based on what is known about how children learn language.

Another important aspect relates to the openness of human languages. Unlike the
communication systems of other animals, human languages are open systems (i.e.
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new words, meanings, objects, agents and grammatical structures appear, disappear
and change rapidly). Many models assume that language is a closed system, for
instance, by fixing the number of signals and meanings. Although this occurs in some
grounded models (Billard and Dautenhahn, 1999; Cangelosi & Parisi, 1998; Marocco
et al.,, 2003), it most frequently occurs in ungrounded models (e.g., Smith, 2002;
Oliphant, 1999). Furthermore, in order to maintain efficiency in an open language
system, humans must learn these changes; they cannot be innate, as is for instance the
case with Vervet monkeys (Seyfarth & Cheney, 1986).” Most models of language
evolution (both grounded and ungrounded) acknowledge this principle and allow
agents to learn language (Smith, 2002; Cangelosi & Harnad, 2000; Oliphant, 1999).
However, there are some models that violate the idea of language acquisition by using
genetic algorithms to evolve the communication system (e.g., Marocco et al., 2003;
Cangelosi & Parisi, 1998). One widely used open system is the language game model,
which has successfully been implemented on physical robots to study the emergence
of lexicons (Steels et al., 2002; Steels & Vogt, 1997).

3.2.1 The language game
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Figure 4: The semiotic square illustrates the working of a language game. See the text
for details.
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The language game, which is illustrated in Fig. 4, typically involves two agents - one
speaker and one hearer - and a context of objects and/or actions. Both agents perceive
(p) the context, extract feature vectors (f) and categorise these with meanings (m),
e.g., by using the discrimination game. The speaker selects one object as the topic and
tries to produce an utterance (u) based on its lexicon. The lexicon is typically an
associative memory between meaning representations (or meanings for short) and
forms, see Fig. 5 (a). Each association has a score oj; that indicates the effectiveness
(or occurrence frequency) of the association based on past interactions. These
lexicons, like the ontologies, are private and thus can differ from one agent to another.
The speaker searches its lexicon for an association that corresponds to the meaning of
the topic and that has the highest score. If such an association is found, the
corresponding form is uttered. When hearing a form, the hearer searches, for this

> Note that although it is believed that Vervet monkeys learn the meaning of their alarm calls, the calls
themselves are believed to be innate.
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form, the association that has the highest score (6;;>0) for those meanings that are in
the context or that relate to the topic, if this is known.
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Figure 5: Figure (a) shows a typical open association matrix where forms w; are
associated with meanings m; with some strength (or score) 6;;. Due to the openness of
the system, N and M may grow - in principle - indefinitely and need not have the same
values. However, since the memories are limited in size, N and M are bounded. When
the speaker of a language game tries to produce an utterance about meaning m;, it
searches the corresponding column for the highest score o;; and finds its utterance w;
in that row. When the hearer tries to interpret a word w;, it searches the corresponding
row for the meaning m; with the highest score ©j, provided this meaning is
pragmatically possible (i.e. it should fit the context). Figure (b) illustrates the update
of scores in case of a successful language game. Suppose that the association between
word w, and m, was used successfully, the strength of Gy, is increased, while all
competing associations Gj; and O»; are laterally inhibited (i.e. those associations that
are in the same row or column as the successful association: i=1,3,4,....N and

j=134,...M).

Typically, the success of the game is evaluated and if the game succeeds, the used
association are reinforced, while competing associations are laterally inhibited as
illustrated in Fig. 5 (b). If the game fails, the scores of the used associations are
decreased. These adaptations ensure that successfully used elements tend to be reused
again and again, while unsuccessful ones tend to get weaker. This serves a self-
organisation of the lexicon shared at the global population. At the start of an agent’s
lifetime, its lexicon is empty, so initially, most language games fail. When they do,
the lexicon needs to be expanded. When the speaker encounters a meaning that has no
association in its lexicon, the speaker can invent a new form. When the hearer
receives a form that has no association in its lexicon, it will adopt the form associated
this with the meaning of the topic or with the meanings of all objects in the context if
the topic is unknown. In this way, the language is an open system.
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3.2.2 Lexicon grounding on mobile robots

Figure 6: The LEGO vehicles used in the first physical implementation of language
games.

The first implementation of the language game on a physical system was done using
LEGO robots, such as shown in Figure 6 (Steels & Vogt, 1997). In this experiment,
the robots evolved a lexicon to name the different types of light sources in their
environment, which they could detect using very simple light sensors mounted on the
front of the robots. In order to acquire a sensory image of their environment, the two
robots participating in the game first approached each other to stand facing each other
at a close distance, after which each robot rotated 360 degrees. The raw image was
then pre-processed to identify the different light sources, which were then described in
feature vectors. The speaker selected a topic and ‘pointed’ at this object, so that the
hearer could identify the topic as well. Then both robots played a discrimination game
to categorise the topic’s feature vector. When the discrimination game succeeded, the
remainder of the language game was played as explained above. Note that the type of
language game in which the speaker points at the topic, thus establishing joint
attention, has become known as the observational game (Vogt, 2000c; 2002b).

Although the experiments were very successful, many problems have arisen during
the development of the model (for more up-to-date details consult Vogt, 2000a;
2000c; 2002b; 2003a). Most problems had to do with the inconsistencies between
what the two robots had seen during a language game, thus leading to different
contexts, and with the difficulty in achieving joint attention by means of pointing.
Importantly, these problems have helped in realising the effect that the false
assumptions in ungrounded models have on the soundness and realism of their results.
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Figure 7: This semiotic landscape shows the associations between referents (L;),
meanings (m;) and word-forms evolved for two robots in one of the robotic
experiments on lexicon grounding. As can be seen, each referent was categorised
using different meanings in different situations, but only a few forms were used to
name the referents. The thickness and type of the line indicate the frequency with
which associations were used. See the text for more details.

The inconsistencies between the robots’ sensory images were due to the fact that
when two physical bodies were standing opposite of each other, then each individual
sensed something different, for instance, because one robot obscured the visibility of
an object, or the distance from a light source was too large for one of the robots to
detect it. Also differences in the sensitivity to noise of the sensors and different
lighting conditions played a significant role. So, although the robots were designed to
talk about the ‘here and now’ (something what young children also tend to do), the
hearer may not have seen what the speaker was talking about. Moreover, even if the
hearer saw the speaker’s topic, it could have detected a completely different sensory
image of this object. Interestingly, the self-organisation and adaptiveness of the
language game model partly solved this problem. By allowing an agent to acquire
many categories, which they could employ in different situations for the same
referent, while maintaining only one or two forms associated with a referent, the
robots could communicate about the referents consistently and reliably. So, the robots
acquired (near) one-to-one mappings between referent and form, and one-to-many
mappings between referent and meaning and between form and meaning (Fig. 7). One
consequence of this result is that the model thus might help us explaining how we deal
with notions such as family resemblance (Wittgenstein, 1958) and object constancy. It
is beyond the scope of this paper to repeat this argumentation, for details consult
(Vogt, 2000c; 2003a).
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Problems with respect to the unreliability of pointing made us look at other ways to
solve the mapping problem. While trying to model how the robots could estimate the
reliability of pointing, based on Steels and Kaplan (1998), it was found that the
speaker’s pointing was not necessary, provided the agents could verify the success of
the game in order to provide rewards to the learning mechanism. This has lead to the
development of what has become known as the guessing game, which has also been
applied in the Talking Heads experiment (Steels et al., 2002). In the guessing game,
the hearer guesses the speaker’s referent and then success of the game is evaluated by
the speaker who can - in case of failure - provide corrective feedback on the word’s
meaning. In the LEGO robots (and the Talking Heads) this was done by the hearer
‘pointing’ (unreliably) at the object it guessed the speaker referred to, thus allowing
the speaker to verify success, which was then signalled back to the hearer. In case of
failure, the speaker could then point at its topic to provide the hearer with feedback in
order to the hearer to acquire the proper meaning. But since this was adding another
source of noise and the world only contained 4 light sources, associating the form
with a randomly chosen meaning appeared just as effective (Vogt, 2000c).

Experiments comparing the guessing game with the observational game (the game
where the speaker points at the topic prior to the verbal communication) have shown
that both methods can achieve high levels of communicative success. Although the
high levels are reached faster by playing observational games, the lexicons that
emerge from the guessing games contain more information, meaning that a form is
used more specifically and consistently in naming a referent. This latter result is
explained by realising that when hearers have to guess the referent of an utterance, the
words have to be informative. When the hearer already knows the topic, this is not
required. It has been argued that in both games a strong competition between
associations exists, and that the guessing game provides more pressure to
disambiguate the language (Vogt, 2000a; Vogt & Coumans, 2003); an effect that has
recently been confirmed in a simple ungrounded model (Wedel, 2005).

Although many researchers in child language acquisition believe there is ample
evidence of caregivers providing corrective feedback with respect to the meaning of
words (Chouinard & Clark, 2003; Brown & Hanlon, 1970), its availability is
controversial (Bloom, 2000). Since corrective feedback may be unrealistic and joint
attention - in principle - cannot be assumed to be precise, a third game was developed.
This selfish game® is based on the principle of cross-situational learning (Hurford,
1999; Siskind, 1996), or more precisely cross-situational statistical learning (Vogt &
Smith, in press). The idea is that the robots learn the meaning of a word solely based
on co-variances that occur across different situations. Unfortunately, cross-situational
statistical learning (CSSL) did not work on the in the LEGO robot experiments,
because the environment was very minimal and few variations could be detected
across situations - even when variation was imposed by the experimenter (Vogt,
2000a; 2000c). Work by Andrew Smith (2003) and recent simulations of the Talking
Heads (Vogt, 2004; 2003b) have proved that CSSL may become a viable learning
strategy. Although the learning mechanism is much slower than the observational and
guessing game models and coherence between the agents in the population is hard to

® The - unfortunately chosen - term selfish game refers to the selfishness of the robots’ not caring about
the effectiveness of the game.



In: Angelo Loula, Ricardo Gudwin, Jodo Queiroz (Eds.) Artificial Cognition Systems. Hershey, PA.:
Idea Group. pp. 176-209. 2006

achieve (Vogt & Coumans, 2003), results can improve if additional constraints on
acquiring the meaning of new words, such as mutual exclusivity (Markman, 1989) are
added (Smith, 2005).

3.2.3 Talking Heads and other related work

Probably the best known robotic experiment regarding language evolution is the
Talking Heads experiment (Belpaeme, Steels & van Looveren, 1998; Steels et al.,
2002). This large scale experiment consisted of several installations distributed across
the world and connected with each other through the Internet.” Each installation
contained two physical robots embodied as pan-tilt cameras connected to a
computational unit. Each camera (or Talking Head) was oriented towards a white
board on which geometrical coloured figures were pasted. The population contained a
large number agents that could migrate from one site to another through the Internet;
at each site, each agent then played a given number of guessing games. If an agent
participated in a game, it first embodied itself inside a Talking Head. The speaker
would select an arbitrary object from a randomly selected region of interest (a subset
of the white board) as topic. The speaker then indicated (or ‘pointed’) to the hearer
what the region of interest was, thus establishing the context, and the guessing game
(explained above) started. Feedback was evaluated by the hearer ‘pointing’ at its
guessed topic.

Human users could interact with the experiment by launching agents, which they
could send around the different installations, and by changing the words agents had
acquired with words given by the human user. So, new agents entered the population
and others left regularly. Furthermore, at the physical sites, people were allowed to
alter the geometrical world, thus introducing new objects and removing others.
Although this made the experiment largely uncontrolled, it added to the openness of
the system. Two experiments were launched; the second and longest experiment had
lasted for about 7 months in which a total of approximately 6,000 agents had played
roughly 400,000 guessing games. The average communicative success was around
60% during this period (see, van Looveren, 2001; Steels et al., 2002 for detailed
results). Although many agents had participated, one must realise that not all agents
were present during the entire experiment; most were probably only present for short
periods. Furthermore, although there was no central control of the language, some
agents were present almost the entire experiment and were thus likely to have a large
impact on the lexicon that evolved. Nevertheless, the Talking Heads experiment was a
significant contribution in showing that a large open system of robotic agents was able
to evolve a stable, though dynamic set of shared semiotic symbols in a world that had
many different and varying conditions, especially with respect to the illumination.

Another related set of experiments on mobile LEGO robots and in simulations was
carried out by Billard and colleagues (Billard & Dautenhahn, 1999; Billard & Hayes,
1999). In these experiments, a (group of) learner robot(s) learnt a lexicon through
interacting with a teacher robot that had its lexicon predefined. Although these
experiments did not explicitly study the origins and evolution of language, the
experiments are related, since the experiments involved autonomous robot-robot

7 See http://talking-heads.csl.sony.fr.



In: Angelo Loula, Ricardo Gudwin, Jodo Queiroz (Eds.) Artificial Cognition Systems. Hershey, PA.:
Idea Group. pp. 176-209. 2006

communication and imitation learning. The robots were designed using a dynamical
recurrent associative neural network architecture (DRAMA) that fully connected three
sensorimotor modules: a communication input/output module, a sensor input module
and an actuator output module. In essence, the learner robots were to follow the
teacher in an environment that contained different patches on the surface (objects or
places of interest) that the robots could communicate about. In addition, the robots
could communicate about proprioceptive states and events, such as orientation,
inclination and action. Interestingly, although the design was set up such that the
robots avoided problems involved with pointing in, e.g., Steels and Vogt (1997), they
were faced with other problems concerning the establishment of joint attention. These
were mainly caused by the delay with which learners observed the objects or events
the teacher talked about. The model was a closed system in the sense that the lexicon
for the teacher was predefined with a fixed number of words. This disallowed the
introduction of completely new objects without altering the teacher’s lexicon.
Although different numbers of learners were allowed in the system, it might have
proved difficult to allow a fully open system in terms of population dynamics, where
agents continuously enter and leave the society.

An alternative approach of evolving a shared vocabulary in a robotic model was
issued by Marocco et al. (2003), in which a genetic algorithm (GA) was used to
evolve a lexicon to coordinate interactions of a robot arm with two different objects: a
sphere and a cube. The arm was a configuration of three segments with a total of 6
degrees of freedom. The controller was an artificial neural network, of which the
weights were evolved using a GA. Fitness was not calculated based on
communication, but was assessed by counting the number of appropriate interactions
of the robots with the objects: the arm had to touch the sphere and avoid the cube. It
was shown that a reasonably well shared lexicon evolved that improved the fitness.
The problem with this approach is that Marocco et al. used a GA as a model of
evolution, but the system lacked a learning episode of each individual. This is
therefore not a realistic model of language evolution; rather these simulations use a
GA as a machine learning technique to optimise the robot controller, which makes use
of the evolved lexicon. A more realistic approach using a GA is to let the GA evolve
the connections of the controller and/or the initial values of the weights in the neural
network and then use a learning mechanism to adjust the weights of individuals while
they interact with each. An example of such an approach is in Cangelosi and Harnad
(2000), which will be discussed in Section 3.4.

3.3 The emergence of grammar

As mentioned, one of the most distinctive features of human languages is the high
degree of compositionality they contain. This means that the utterances of human
languages are highly structured in that parts of the utterances map onto parts of the
whole meaning of these utterances. For instance, in the phrase “orange square”, the
word “orange” refers to the colour orange and the word “square” to a square. In
contrast, in a holistic phrase such as “kick the bucket” (referring to dying), no part of
the utterance refers to a part of its meaning. One influential hypothesis suggests that
during the course of evolution, human languages have changed into compositional
languages from initially holistic protolanguages (Wray, 1998). Many ungrounded
models have been developed, which provide support to this idea (Brighton, 2002;
Kirby, 2001; Smith, Brighton & Kirby, 2003).
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What Brighton, Kirby, K. Smith and others (BKS for short) have shown is that when
learners learn the language of an adult population while observing only a part of the
language (i.e. there is a transmission bottleneck), holistic languages are not sufficient
to allow for stable learnable communication systems. This can be understood by
realising that when the learners become adults and start communicating to the next
generation of learners, they have no means to produce expressions about
objects/meanings they have not encountered before. Compositional languages,
however, could allow a learner to produce utterances for previously unseen meanings
when the learnt structures can be combined. For instance, if an agent has learnt the
proper structures from the phrases “orange square”, “orange triangle” and “red
square”, it would be able to produce the phrase “red triangle”, even though it would
never have encountered a red triangle before. BKS have shown that - given a
predefined structured semantics and a learning mechanism that can discover such
compositional structures - a compositional language can emerge from an initially
holistic language, provided the language is transmitted through a bottleneck. In a way,
the language changes to become more learnable for future generations.

This approach has recently been implemented in a simulation of the Talking Heads
experiment, in which the semantics was not predefined, but co-developed with the
language (Vogt, 2005; in press a; in press b; in press c). The agents could detect four
perceptual features of objects: the three components of the RGB colour space and one
feature indicating the shape of an object. The semantic structures developed from a
combination of the discrimination game to construct categorical features (elements in
one dimension) and an inducer to discover conceptual spalces8 of one or more
dimensions that could serve to represent linguistic categories, such as colours or
shapes (note that there was no restriction on which dimensions would constitute a
conceptual space - all possible combinations were allowed). On the other hand,
syntactic structures could be discovered by looking for coinciding substrings at the
utterance level, in a very similar way to the approach taken in Kirby (2001). The
model thus investigated the following twofold hypothesis:

1. The emergence of compositional linguistic structures is based on exploiting
regularities in (possibly random and holistic) expressions, though constrained
by semantic structures.

2. The emergence of combinatorial semantic structures is based on exploiting
regularities found in the (interaction with the) world, though constrained by
compositional linguistic structures.

The model combines the two most familiar approaches taken in modelling language
evolution: the iterated learning model (ILM) of BKS and the language game model.
The iterated learning model typically implements a vertical transmission of language,
in which the population contains adults and learners, the learners learn from
utterances produced by adults. At some given moment the adults are replaced by the
learners and new learners enter the population and the process repeats, thus providing
a generational turnover. Typically (a part of) the language is transmitted from one
generation to the next in one pass; without competition, but see Kirby (2000) for a

¥ The term conceptual spaces (Girdenfors, 2000) is used to denote an n-dimensional space in which
categories are represented by prototypes. The conceptual space is spanned by n quality dimensions that
relate to some (preprocessed) sensorimotor quality. Girdenfors (2000) has argued that conceptual
spaces can form the semantic basis for linguistic categories.
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model with competition; and in a population of size 2, i.e. with 1 adult and 1 learner.
The integration of the ILM with the language game allows for competition between
different rules and structures, but it requires more passes through the language in
order for the language to be learnt sufficiently well.

The experiments reported in Vogt (in press a) have revealed that learners from the
first generation already develop a compositional structure, even in the absence of a
transmission bottleneck. The reason for this rapid development of compositionality is
to be sought in the statistically high level of reoccurring structures in both the feature
spaces (thus speeding up the development of semantic structures) and in the signal
space (thus increasing the likelihood of finding structures at the syntactic level), see
Vogt (2005) for a detailed analysis. In the case that the population was of size 2, this
compositionality was rather stable, but when the population increased to a size of 6, a
transmission bottleneck was required to provide stability in compositionality.
(Instability of compositionality means that the compositional languages collapse and
holistic ones take over.) This difference can be understood by realising that when a
learner learns from only one adult, the input received by the learner is consistent,
allowing them to adopt the compositional structures reliably. When multiple learners
learn from multiple adults, who do not speak to each other, then the input to each
learner is highly inconsistent, making it harder to learn the language and to converge
on the language.
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Figure 8: The results of an experiment comparing the guessing game (left) with the
observational game (right). In the experiment, the language is transmitted from one
generation to another during an iteration (x-axis). The graphs show the evolution of
compositionality, which measures the degree with which produced or interpreted
expression have a compositional structure. Each line shows the evolution in one run
of the experiment. The experiment was done with a population of size 6 and with a
transmission bottleneck of 50%.

With the ‘larger’ population size of 6 agents, compositionality was only stable over
multiple generations when the guessing game model was used. When the
observational game was used, the transmission bottleneck caused compositional
structures to remain longer in the population, but they eventually died out (Fig. 8).
Like for the experiments on lexicon development, the differences between the
guessing game and observational game could be explained by the pressure to
disambiguate competing structures. Where in the guessing game this pressure is high,
because the hearer has to guess the speaker’s topic based on the received expression,
this pressure is absent in the observational game, because the hearer already knows
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the topic and the information of the expression is redundant. It appears that the lack of
this pressure allows the meanings to drift through the conceptual spaces. If the
meanings are part of a whole meaning, i.e. they are part of a compositional structure, a
meaning shift affects a larger part of the language. However, when the meaning is
associated holistically, a shift has little effect on the rest of the language.
Consequently, the shift of meanings makes the language less stable and thus harder to
learn than holistic structures.

Another interesting result that was found is that when learners are allowed to speak as
well, which is typically not the case in the BKS models, no experimentally imposed
transmission bottleneck is required for populations of 6 agents (Vogt, in press b).
Instead of starting to speak when they are adults, the learners now speak during their
development. In this way, the learners face the bottleneck earlier in life, because they
have to produce utterance about previously unseen objects. This may be an important
results, because it may help to explain why children are so good at learning grammar
early in life. Moreover, this property may even explain why children are thought to be
the driving force for the development of grammar in Nicaraguan sign language
(Senghas, Kita & Ozyiirek, 2004).

A recent study in which the population size was varied from 2 to 100 revealed that
this model can lead to compositional structures in larger populations (Vogt, in press
c). Interestingly, at first when the population becomes larger (up to 40 agents), the less
frequently compositionality is stable, but when the population becomes even larger,
compositionality emerges even more frequently at a high stable level.

A more complex model implemented in an extended physical version of the Talking
Heads experiment is being developed by Steels and his co-workers (Steels, 2004;
Steels & Baillie, 2003). In this experiment the cameras do not look at a static scene
pasted on the white board, but the cameras observe a dynamic scene played in front of
them, such as ‘pick up red ball’. The events are processed through a visual processing
system, which - although advanced - is still very limited. Only slow movements can
be captured and only a few objects can be recognised, but only after training the
visual module. The pre-processed events are then matched with top down generated
world knowledge, which is represented in the form of predicate calculus of which the
basic building blocks are predefined (Steels & Baillie, 2003).

Using these event descriptions, the guessing game (or description game) proceeds.
Where possible, the agents use the knowledge (lexicon, syntax and semantics) they
already acquired, but when events or semantics cannot be described with the given
knowledge, new parts of the language is invented, abducted or induced. New words,
semantic categories, syntactic categories and hierarchical structures can be
constructed using some complex techniques, which are largely based on existing
techniques from computational linguistics. This way grounded construction
grammars (Lakoff, 1987) can develop, as some preliminary experiments have shown
(Steels, 2004). The experiments reported so far were carried out with two robots of
one generation, which took turns in taking the role of speaker.

Although wusing such small populations without a population turnover is not
uncommon in robotic models (see, e.g., Steels & Vogt, 1997; Vogt, 2003a), the results
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achieved may not be stable in larger populations with a generational turnover as
shown in Vogt (in press a; in press c). However, given that the model also
incorporates the guessing game, which is in favour for a strong selective pressure on
the competition between different structures in the language, the model is likely to
scale up in terms of population size and population dynamics. Apart from the higher
complexity in experimental set up and learning mechanisms, one of the main
differences between Steels’ model and my own is that in Steels’ model the speaker
can invent new grammatical structures, whereas in my model, this can only be
achieved by the hearer. Although it is unclear what the implications are for this
distinction, experiments with my model have confirmed that the productive power of
speakers - even though they do not invent new compositional structures - has a
positive effect on the stability of the evolved grammars (Vogt, in press b).

3.4 Ecological models

All models discussed so far have completely ignored the ecological value of language
and thus fail to investigate the functional meanings of semiotic symbols. In human
societies language is clearly used to exchange information that can be used to enhance
some aspect of behaviour. For instance, language can be used to indicate the
whereabouts of food sources, the presence of predators or other dangers. So far, no
physical robot study has been carried in which the evolved language is used to
achieve something. There exist, however, a few grounded simulations in which the
language is used to coordinate activity that improves the viability of the artificial
organism.

Well known are the studies on the emergence of symbolic communication in a world
of edible and non-edible mushrooms (Cangelosi & Harnad, 2000; Cangelosi & Parisi,
1998). In these studies, the task of the agents was to approach the edible mushrooms
and avoid the poisonous ones. The mushrooms were perceptually distinguishable
through the encoding of a bitstring. The controller of the agents was implemented as a
multilayered feedforward network. In Cangelosi and Parisi (1998) the weights of the
network were trained using a GA, where the fitness was based on the organisms’
energy levels (the profit of eating edible mushrooms was smaller than the cost of
eating non-edible ones). As mentioned before, training a neural network using only a
GA 1is far from realistic for modelling language evolution, since it lacks a model of
language acquisition.

In Cangelosi and Harnad (2000) the agents do have a learning cycle in which the
neural network is adapted using backpropagation and the initial weights evolve using
the GA. Although this model is more realistic, backpropagation uses the output vector
of the target behaviour to update the weights. Cangelosi and Harnad (2000)
investigated two conditions: (I) one in which no communication was used to classify
edible and non-edible mushrooms, and (II) one in which communication was used.
They have shown that using communication achieved higher performance on
categorisation than in the condition without communication, provided the population
in condition II first evolved the ability to categorise the mushroom world using the
method of condition I. This is in contrast with the language game model, in which the
ability to categorise the world co-develops with the language. Given the rapid
changing nature of natural language, co-development of meaning and forms seems
more realistic.
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Interestingly, the analysis of the evolved neural networks has shown how the
networks had emerged different internal representations in both conditions. Condition
IT yielded a more structured representation of the categories, allowing Cangelosi and
Harnad (2000) to conclude that language influences the way in which the individuals
observe the world. A similar Whorfian effect (Whorf, 1956) has also been observed
with the language games (Steels & Belpaeme, in press). A nice property of Cangelosi
et al.’s experiments is that they show how language can emerge to improve the
population’s fitness, which was not defined in terms of communicative accuracy.

A related ecological experiment, where the categories co-developed with the language
was carried out by de Jong (2000). This simulation, which was inspired by the alarm
call system of Vervet monkeys, contained a number of agents, which were placed on a
2 dimensional grid of size Nx3.” At given times, a predator was present in one of the 3
rows; the row in which it was present resembled the type of predator. In order to avoid
the predator, the agents that were in that row had to move to another row. The agents
had a vision system with which they could see the predator, but this system was
subject to noise so the presence was not always detected. The agents were also
equipped with a language game model, in which they could develop categories that
represented their own position, location of the predator and the appropriate action to
take. The categorisation was modelled using the discrimination game with an adaptive
subspace representation that allowed the emergence of situation concepts (de Jong,
2000). Situation concepts relate — based on past experiences — perceptual categories
with actions that need to be performed in order to remain viable. De Jong showed that
the agents could successfully evolve a lexicon to avoid predators. Moreover, de Jong
successfully showed that the lexicon development can be classified as attractor
dynamics, thus providing support for considering the language game as a complex
adaptive dynamical system.

? See Loula, Gudwin and Queiroz (2003) for another grounded study on the emergence of alarm calls
among vervet monkeys.
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Figure 9: This figure illustrates the principles of the Braitenberg vehicles used in the
experiments of Vogt (2002a). Different sensorimotor modules connect the sensors that
are sensitive to a particular colour directly to the motors of the two wheels of the
robot. These reactive systems make sure that when one module is activated, the robot
will move towards the light source of the corresponding colour. Activation of a
coupling could be regulated by the need of some energy source, or by the
interpretation of a received signal. When a coupling was activated due to the need of
some energy source, this robot would try to produce an utterance that is associated
with this coupling (e.g., the “go-to-blue” signal in the figure), using the standard
guessing game. In turn, the hearer would interpret the signal, which could activate its
associated sensorimotor coupling. If both robots then ended up visiting the same
energy source, they receive energy which then served as a positive feedback
mechanism for updating the association scores in the lexicon.

Inspired by earlier work of Steels (1994) on ecological robot models, Vogt (2002a)
reported an experiment in which two simulated mobile robots developed a lexicon to
improve on their ability to remain viable over longer periods of time. The robots
operated in an environment that contained four different charging stations at which
they could increase their energy levels. The only way to get access to the energy was
to arrive at a charging station simultaneously. Each charging station had a different
colour and at some randomly selected momentlo, one robot initiated a game and
selected a charging station that was in its visual field. The robots played a guessing
game and the hearer would guess where the initiator was going to and activated the
corresponding sensorimotor coupling. When both robots arrived at the same charging
station, their energy levels would be refilled, thus providing a positive feedback loop
for updating the scores in their lexicons. The robots’ control mechanisms were based
on a simple Braitenberg vehicle (Braitenberg, 1984) and had four excitatory

' Currently, research is carried out to regulate the selection based on the need for energy and use the
evolved language to pass on knowledge how to survive in this environment.
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sensorimotor connections sensitive to the four different light colours, which they used
to navigate towards the corresponding light source (Fig. 9).

Each connection served as a category and when activated, they could activate an
associated form. This way, the semiotic symbols could be viewed as symbols that had
as referent the action of moving towards a charging station in order to refill their
energy supplies; the form is obviously the signal, which they conventionalised using
the guessing game; and the meaning was represented by the activation level (0 or 1) of
the sensorimotor connection that functioned as the “life-task” of the robots to
maintain their energy levels. This, then, could be an interesting step toward the
development of a robotic model in which the meanings of the symbols are truly
meaningful according to Ziemke and Sharkey (2001). A nice aspect with respect to
the implementation is that the meaning of the actions are not represented in terms of
the temporal (sensori)motor flow, as was the case in Vogt (2000b), but more directly
in the activation of a reactive mechanism. This is much in line with Brooks’ (1990)
remark that “once the essence of being and reacting are available” the development of
higher order functions, such as using language, would be rather simple.

4. Future trends

Up to date a lot has been achieved by using robots to study the origins and evolution
of language. However, it is clear from the overview in this chapter, that we are still far
from understanding the entire picture. Can we ever design a group of robots that can
evolve languages similar to human languages? Personally, I think that the human
brain and body is so complex that we may never be able to unravel all its secrets - like
we may never unravel the complete working of our universe, which is similarly
complex. Nevertheless, I think that we can use robotics profitably to answer some of
the questions that are posed in our effort to understand language evolution. Much
future research will need to focus on ecological models, models of grammar,
categorisation of more human-like concepts, and on models of the theory of mind.
Furthermore, the models will have to be scaled up at many levels, such as population
size, sensorimotor complexity, and complexity of the world in which the robots
operate.

A recently started European project called New Ties'' aims at developing a simulation
in which a large community of robots (over 1,000 agents) evolve a cultural society,
including language. The society ‘lives’ in an environment where they have to
cooperate in order to survive (Gilbert, Schuster, den Besten & Yang, 2005). The
agents will evolve and learn techniques to deal with the constraints set by the
environment in order to improve their viability (Griffioen, Schut, Eiben, Bontovics,
Hévizi & Lorincz, 2005). In addition, the agents will be designed to evolve language
as the motor for evolving the cultural society (Vogt & Divina, 2005). The techniques
these agents will use are heavily based on the language game techniques that have
been developed so far. One of the major innovations - apart from its complexity and
ecological setting - will be a design on the Theory of Mind, which at a later stage is
intended to become subject of the evolution.

" New Emerging World models Through Individual, Evolutionary and Social learning
(http://www.new-ties.org).
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Given that many problems in modelling language evolution on robots relate to the
difficulties in establishing joint or shared attention to the referent of the
communication, studies into the nature of this ability is extremely important. Only
few studies are known that investigate how joint attention can emerge, e.g., (Kaplan &
Hafner, 2004). One of the key aspects with respect to joint attention and related issues
is that agents need to infer the intentions of other agents. This ability can loosely be
characterised by the Theory of Mind (Premack & Woordruff, 1978). It may well be
that the Theory of Mind is one of the major innovations of the human species with
respect to language origins, and therefore its origins deserves more attention in
models of language evolution.

On the physical side of the implementation, research is starting to focus on the
development of more humanoid like platforms. Such implementations have more
complex sensorimotor systems, which inevitably will provide more complex data
from which a more complex language - in terms of grammar and vocabulary size - can
develop.

With respect to the origins and evolution of grammar and compositionality, research
needs to be done regarding the way learning mechanisms could have evolved that
allow individuals to construct grammatical and compositional structures. Up to now,
all studies on grammaticalisation have assumed that such learning mechanisms exist
and therefore only investigate how grammar can emerge given these mechanisms.

Another important direction that needs to be tackled is in relation to the grounding of
more abstract and higher level symbols, such as - for instance - number systems,
arithmetic, planning and ‘feelings’ (internal states). Up to now, all research has
focused on the emergence of language about events or objects that are directly
observable to the robots. We humans often use language to communicate about events
that happened in the past or that may happen in the future. Some work on the
development of time concepts is done (De Beule, 2004), but it would be good if a
robot could communicate, for instance, the presence of an interesting object at a
distant location, which the robot has visited before.

Most techniques used so far are based on simple language games where some aspect
of a visible entity is communicated in one direction to investigate learning techniques.
However, human language use is much more based on dialogues. Future robotic
models should investigate how dialogues can aid in evolving language. This could be
particularly interesting for applications where robots develop their own language in
order to cooperate in environments we don’t know, such as planets, or using sensors
that we find difficult to read, such as infrared, sonar or other exotic sensors.

5. Conclusions

In this chapter, an overview of robotic (and other grounded) models of language
evolution is presented. There are many reasons for using robotic models to study the
evolution of language. The most fundamental one is that robots - necessarily - have to
solve the symbol grounding problem (Harnad, 1990). It is argued that by using the
Peircean definition of symbols (or semiotic symbols), the symbol grounding problem
is solved, because these symbols are per definition grounded in the real world. This,
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however, shifts the problem in the physical symbol grounding problem (Vogt, 2002b),
which deals with constructing these semiotic symbols. More pragmatic reasons for
using robots to study language origins and evolution are:

1. Robotic models can reveal false assumptions that are typically incorporated in
ungrounded models, e.g., the assumption that all agents have the same
meanings and are given the meaning of a signal during communication, and

2. Robots can actually exploit the nature of the interaction with the environment
to develop certain structures in language.

The overview shows that in many areas, robots can successfully be used to study
certain aspects of language evolution, though the state of the art is still extremely
limited, especially when compared to human languages. The design of robotic models
is extremely hard and time consuming for many difficult problems need to be solved.
One of the most difficult problems that was identified in most models deals with the
robots’ ability to infer the referent of a heard utterance. If we assume that this ability
is the key aspect of a Theory of Mind (Bloom, 2000; Premack & Woodruff, 1978),
then the studies indicate that the evolution of a ToM is perhaps the most important
transition in human evolution with respect to language evolution.

Robotics has successfully been applied to study the emergence of small lexicons and
simple grammatical structures, and to study how language evolution can aid in
operating cooperatively in an ecological environment. Most of the models presented
started from the assumption that language is a complex adaptive dynamical system in
which language evolves through self-organisation as a result of cultural interactions
and individual learning. The studies reported have shown that the language game in
general provides a robust model in which robots can develop a culturally shared
symbol system despite (1) the difficulties they face in establishing joint attention and
(2) the differences in their perception and meaning development. The studies have
also revealed how agents can exploit structures they find in their interaction with their
environment to construct simple grammars that resemble this structure. Furthermore,
the studies reveal some of the effects that the nature of social interactions and the co-
development of language and meaning have on the emergence of language. In
addition, ecological models on the evolution of language indicate how the functional
use of language can provide feedback on the effectiveness of communication, which
individuals can use to learn the language. Concluding, robotics provides a fruitful
platform to study the origins and evolution of language, thus allowing us to gain more
insights about the nature and nurture of human language.
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