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Abstract
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compositionality than a predefined semantics without such a selection mechanism.
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1 Introduction

One recent trend in models of language learning is the emergence of an increas-
ing number of models simulating certain aspects of the origins and evolution
of language, see [9,11,25,45] for overviews. This paper presents a new model to
study the emergence and dynamics of compositional structures in languages
whose semantics are connected with a simulated world. Although this world
is far from realistic, it can be — and has been — implemented physically using
real robots [50].

The ability to form compositional structures — as part of syntax — is one of
the key aspects of human language. Here is a definition of compositionality
that was taken from a web-site of a recent series of conferences on composi-
tionality:® “Compositionality is a key feature of structured representational
systems, be they linguistic, mental or neuronal. A system of representations
is compositional just in case the semantic values of complex representations
are determined by the semantic values of their parts.” For instance, the sen-
tence “give me the book” can be described semantically as give (me, thebook),
where the word “give” maps onto the action give, “me” onto the person me and
“the book” onto the object thebook. In contrast, holistic expressions have no
structural relations between parts of the expressions and parts of their mean-
ings. In “kicked the bucket” when used to mean died, for instance, no part
of the expression has a relation to any part of the meaning died (apart from
the aspect of tense).*

One of the frequently asked questions in studies on language origins and
evolution is: how could compositional structures in human languages have
emerged? One line of research assumes that compositional structures emerged
from exploiting (e.g. random) regularities found in protolanguages based on
holophrases [68], a line of research that has been adopted by many computa-
tional modellers, most notably [6,20,23]. In these studies, it was shown that
compositional structures in language can emerge when the learning examples
do not cover the entire language (i.e., there was a bottleneck on the transmis-
sion of language [20]), provided the learners have a predefined mechanism for
acquiring compositional structures. Other researchers have assumed that the
ability to use syntax has evolved as a biological adaptation [34], as modelled
in, e.g., [8]. Yet other modellers have assumed that compositional structures
can emerge based on competition between exemplars [2] and self-organisation

3 See  http://www.phil-fak.uni-duesseldorf.de/thphil/compositionality/ ~ and
http://www.cognition.ens.fr/nac2004/.

* Note that these examples are extreme and “easy” examples of compositionality.
There are many other interesting aspects of compositionality that are not covered
by these examples. The given examples, however, suffice for the purpose of this

paper.



in a production system [47]. Note that in all computer models developed so far,
learning mechanisms have been implemented that can acquire compositional
structures. Hence, all studies use the assumption that a specialised learning
mechanism has evolved prior to the 'emergence’ of compositional languages,
and therefore investigate the conditions that favour the emergence of composi-
tionality. This assumption is adopted here too, and it is left for future research
to investigate how this learning mechanism could have evolved.

Early computational studies on the origins and evolution of language have
focused on the formation of lexicons in systems with predefined meanings
[19,30,33,43,66]. These were followed by experiments on lexicon formation in
systems connected with the real world [48,10,38,50,51,56,58]. Meanwhile re-
search on the emergence of syntactic structures, such as compositionality, also
gained popularity. Usually these models have incorporated a predefined se-
mantics [2,6,8,23] — or even no semantics at all [18,70]. The researchers of
these ‘ungrounded’ studies have justified their design choice by saying that
they only look at how syntactic structures can emerge and that this choice
allows them to concentrate on that particular aspect. In a way they are right,
because it will have helped them to focus on the emergence of syntax and their
results are definitely insightful. However, it seems realistic to assume that the
semantics of languages have arisen from a co-development of language and
meaning in an embodied interaction of individuals with the real world, see,
e.g., [16,27,67]. Omitting such interactions could have important consequences
on the emergence of language in these individuals and hence in the population
as a whole.

The world in which we have used and developed language is already highly
structured. Apples, for instance, all have roughly the same shape, but some
can have different colours. So, a red apple can be categorised based on its shape
and colour as object (shape (round) ,colour(red)). In a way, one could say
that parts of the object’s regular properties map directly on parts of the
semantic description of the object. By exploiting these regularities, e.g., based
on statistical correlations, it appears plausible that such structures have been
utilised in natural languages. This idea is elaborated upon in the current
study in which it is assumed that syntactic structures co-evolve with semantic
structures. More formally, the following twofold hypothesis is proposed:

(1) The emergence of compositional linguistic structures is based on exploit-
ing regularities in (possibly random and holistic) expressions, cf. [68],
though constrained by semantic structures.

(2) The emergence of combinatorial semantic structures is based on exploit-
ing regularities found in the (interaction with the) natural world, though
constrained by compositional linguistic structures.

This hypothesis is investigated using a simulated multiple robot model.



Up to now, only a few studies have used (simulated) robots as a research plat-
form to investigate the emergence of compositional (and other grammatical)
structures in language [10,31,32,47,59]. The current work is an extension of
the work presented in [59], which is based on the Talking Heads experiment
[50] and implements the language game model [43] in combination with the it-
erated learning model [6,23]. The model further incorporates machine learning
techniques on grammar induction adapted from [14,55]. In the experiments the
effect is investigated of evolving compositional languages following the iterated
learning model, but with semantic development in connection to the simulated
Talking Heads world. In particular, the effect on the language dynamic and
its stability of using different social strategies for language acquisition [56,63]
and imposing a transmission bottleneck is studied.

The next section presents the simulation platform, the language game model
and the iterated learning model. Section 3 then explains the grammar inducer
used to evolve compositional structures. Experimental results are presented
in Section 4 and these are discussed in Section 5. Finally, Section 6 concludes
the paper.

2 Talking Heads

The original Talking Heads experiment [3,50] consisted of a set of agents
that could embody themselves in a pan-tilt camera (thus becoming a physical
robot) with which they could look at a scene that was displayed at a white
board. The scene typically contained coloured objects of a certain shape about
which the population tried to evolve a lexicon. The experiment was connected
to the Internet, which allowed human users to interact with the system by,
e.g., adding and removing agents to the population.

The current model is based on a simulation of this Talking Heads experi-
ment and is part of the THSim toolkit [60]. This toolkit, including its source
code, is freely downloadable from the Internet® and allows users to investigate
many aspects of lexicon formation and to repeat the experiments described in
this paper. THSim implements different versions of language games and the
iterated learning model.
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Fig. 1. The semiotic square illustrates the processes and used memory sources (on-
tology O and grammar G) of a language game between two agents: a speaker /teacher
and a hearer/learner. See the text for details.

2.1 The language game

In short, the model implements a situation in which the population of one
generation transmits their language to the next generation by engaging in
language games [43]. The language game (Fig. 1) is played by two agents: the
speaker, which is typically an agent from the older generation, and the hearer,
which is typically an agent from the new generation. In the language game,
both agents perceive (p) a context C' containing a given number of objects.
For each object, the agents extract features (f) that describe the objects’
properties. The speaker selects one object as the topic (or target) and may
inform the hearer non-verbally which object is the topic. This is similar to
pointing. If the hearer is not informed, it considers all objects in the context
as a potential topic.

Both agents — individually — form a category (or meaning m) that distinguishes
the topic (or each potential topic) from the rest of the context. If no such
category can be found, a new one may be constructed and added to the agents’
private ontologies O. The categorisation is modelled using the discrimination
game model [44], explained in Section 2.4.

The speaker then tries to encode the topic’s category into an expression (e),
which the hearer then tries to decode. If there is more than one way to encode
or decode an expression, the agent selects the way that has the highest score,
based on a number of weights that indicate the effectiveness of grammatical
entries and their semantic properties. These weights are adapted according
to the effectiveness of each game. If there is no way to encode or decode an
expression, the agents construct new knowledge by inventing new rules or
inducing rules from heard expressions. This new knowledge is then added to
the agents’ private grammars §.

® http://www.ling.ed.ac.uk/ paulv/thsim.html.



Two different types of language games are implemented for the current study:
observational games and guessing games.®

Observational game: The speaker informs the hearer which object is the
topic, thus establishing joint attention prior to the verbal communication.
How this is done in real life is unimportant for the purpose of this paper, but
children and caregivers seem to engage in joint attention quite frequently
[53] and robots could do this using pointing [51]. Weights are adapted fol-
lowing Hebbian learning, as explained in Section 2.7.

Guessing game: The speaker does not inform the hearer about the topic,
but the hearer has to guess which object is the topic, given the context and
the utterance. The hearer then informs the speaker about its guess and the
speaker provides the hearer with (corrective) feedback about whether the
hearer guessed right or not. It is unclear whether children actually receive
corrective feedback [4], but recent analysis indicate that they may [13].
Weights are adapted according to reinforcement learning.

These games differ mainly in the social strategy used to communicate, in par-
ticular with respect to the information about the topic handed over to the
hearer. As a consequence of these different strategies, the learning mecha-
nisms differ as well. For a comparison of these models with respect to lexicon
formation, consult [56,63].

It is important to note that at the start of each agent a’s lifetime, the ontology
O, and grammar G, are empty. Further, O, and G, are private representations
and thus may differ from one agent to another. How the ontologies are repre-
sented, used and constructed is explained in Section 2.4. How the grammars
are represented, used and induced is explained in Sections 2.6 and 3. First,
however, the iterated learning model is introduced and then the Talking Heads
world is presented.

2.2 The iterated learning model

The iterated learning model (ILM) [6,7,23,26] is a generic framework for sim-
ulating language evolution. The model (see Fig. 2) iterates over generations
where the population is divided into two groups: adults and learners. The
adults have passed the stage of learners and are assumed to have mastered

6 In THSim, a third type of language game is implemented, which I have called
the selfish game [56]. This game implements a cross-situational statistical learner
[65], which is based on the cross-situational learner proposed by Siskind [37]. In
cross-situational learning, the learner infers word-meanings from the co-variances
of words with their meanings across different contexts/situations. Currently, this
game has only been implemented to simulate lexicon formation.
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Fig. 2. A schematic view of the iterated learning model. A population of agents A’
from generation G(n) acquires the language L(n) by playing language games (as
hearer) with agents A from generation G(n — 1). After a given number of language
games, generation G(n — 1) ’dies’ and a new generation G(n + 1) is added to the
population. Now generation G(n) teaches this new generation and the cycle repeats.

the language. The learners enter the population as novice language users and
acquire the language from scratch by observing the behaviour of adult speak-
ers. The ILM cycles around iterations in which a given number of language
games are played. At the end of each iteration, the adults ‘die’ and are re-
placed by the learners, who in turn are replaced by novel learners. This cycle
then repeats. In short, the ILM involves a simplified model of a population dy-
namics and vertical transmission of language, i.e. the cultural transmission of
language from one generation to the next where the output of one generation
is the input to the next generation.

In most implementations of the ILM, including the current, the agents of all
generations have the same ‘phenotype’, i.e. there is no biological adaptation
but the languages evolve culturally [6,23,70]. An exception in this respect is
the work by Kenny Smith, who studies the effect of biological adaptations on
the learnability of lexicons [40].

2.8 The Talking Heads world

In the Talking Heads simulation (Fig. 3) a population of agents evolve lan-
guage to communicate about their world. The world W consists of a set of
geometrical coloured objects o; € W, of which an arbitrarily selected subset
of a fixed size appears at randomly selected locations in a display to form the
context C of a language game (upper left window in Fig. 3). In all experiments
reported in this paper, the context size was fixed at 8 objects.

Each object is described with six different perceptible features: the (r)ed,
(g)reen and (b)lue components of the rgb colour space, a (s)hape feature, and
the (x) and (y)-coordinates of the objects’ locations. In the current study, the
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Fig. 3. A screen shot of the THSim toolkit. The upper left window shows the context
of a language game, the upper right window contains the tool’s control panel, the
lower left window shows the details of a language game, and the lower right window
shows some statistics of the simulation.

agents only extract the first four features (rgbs). All features have real values
between 0 and 1 and are designed such that they can be calculated by a real
robot — in fact the features are highly similar to those used in the real Talking
Heads experiment [50].

The shape feature f;; of object o; is calculated as follows:

A
foi=25 1 (1)

where A, is the area of object o; and Ay ; is the area of the smallest bounding
box that can be drawn around object i. For example, a circle has a shape
feature of f3 = 2 727,22 — 1= 7% — 1, squares have features f; =1 and triangles
features of fs = 0. The objects in the world are designed such that for two
different shapes shape; # shape; it holds that the shape features are different,

i.e., fsi # fs,; (with the exception of squares and rectangles).

The world contains a total of 10 different shapes and 12 different colours,
which are — more or less — basic colours with a non-uniform distribution in the
rgb space, but well distinctive from each other. Each shape can be combined
with each colour, hence the world has 120 different objects. The objective



of the simulation is that the population develops a language from scratch to
communicate successfully about their world.

2.4  The discrimination game

Each agent a constructs its private ontology O, by playing discrimination
games [44]. The objective of the discrimination game is to find one or more
categories for an object (the topic) that distinguishes this topic from all other
objects in the context. In case of failure, the agent expands its ontology in order
to improve its discriminative ability for future games. The ontology contains
the basic building blocks for constructing the categories (or meanings), which
the agents use as an internal representation of the world’s objects.” Categories
are represented by prototypes ¢ = (ci,...,¢,), which are points in an n-
dimensional conceptual space [16]. The region in the space of which the points
are nearest to a prototype is defined as the category of this prototype.

The dimensions of the conceptual space are called quality dimensions [16],
and it is along these dimensions that the agents construct their ontology. The
quality dimensions the agents use are directly related to the feature qualities
the agents detect when seeing an object: r, g, b and s. With these qualities,
the agents can construct various conceptual spaces, such as, for instance, a
colour space using rgb, a shape space using dimension s or a ‘redgreen’ space
using rg. For convenience, the spaces are denoted as a string indicating their
dimensions, such as rgbs denotes the conceptual space of all available dimen-
sions. For the sake of consistency, the meanings of sentences are assumed to
cover all dimensions rgbs. The meanings are stored in a holistic conceptual
space (spanned by all dimensions), or they can form a composition from other
conceptual spaces, such as the colour space combined with the shape space.
Meanings cannot be constructed from overlapping spaces, so combinations of
rgb with gs are not allowed.

The basic units of the ontologies are called categorical features c;. These are
points in one dimension ¢, which segment dimension 7 into areas of which
the categorical features are the central points. Categories are constructed by
combining the categorical features of different dimensions. Combining the di-
mensions leads to the formation of a conceptual space, as shown in Fig. 4.

In a discrimination game, played by both the speaker and the hearer, each
individual agent tries to distinguish the topic o; € C from all other objects in
the context o € C'\{o0;}. (In a guessing game, the hearer plays a discrimination

T Sometimes the term category is used instead of meaning. For convenience, these
are used to denote a representation. Obviously there are important differences be-
tween meanings and representations as I have discussed elsewhere [57].
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Fig. 4. This figure shows an example of how an ontology can be interpreted and used
in terms of a conceptual space. The two quality dimensions red and green, each
with three categorical features (points) form 3 regions in each dimension (left).
When combined, these dimensions form a conceptual space that has 9 different
categories (right). Note that the number of categorical features is not fixed, nor is
the number of different conceptual spaces.

game for each object in the context.) Each agent a categorises all objects in the
context o; € C by taking for each feature f;; the categorical feature ¢; € O,
that is nearest to f; ;, and then combining each dimension to form the category
c; = (c1,...,¢,). The topic’s category c; is distinctive if it is not a category
for any other object in the context, i.e. Vo; € C': 0; # 0, = c¢; # c;.

If the topic’s category is a distinctive category, it becomes the topic’s meaning
my. Otherwise, the discrimination game fails — and consequently the whole
language game likewise — and the agent adds each of the topic’s features as
exemplars of new categorical features to its ontology O,, unless the exemplar
already exists in O,,.

One further remark on notation is required at this stage. Assuming the 4
quality dimensions used in the current implementation, I denote an object’s
category as a 4-dimensional vector with the order rgbs. For example, a red
square is written as (1,0,0,1). The meanings from lower dimensional conceptual
spaces are denoted differently. For example the colour red is denoted by the
list [1,,0g, Op] and the shape square is denoted by [15]. I use this distinction
for convenience. The vector notation is a more common notation and stands
for the meaning as a whole. The list notation allows us to form more complex
meanings using its elements and combine them with possibly other lists, as
will be described shortly.

10



R;:  S/rgbs — A/rgb B/s 0.85

Ry:  S/rgbs — B/s A/rgb 0.06
R;:  S/rgbs — C/rb D/gs 0.1
Ry S/rgbs —  redsquare/[13-2°,00%,0%%,002,121]  0.25
Rs:  A/rgb —  blue/[09%,052,1)7] 0.2
Rs:  Ajrgb — yellow/[12?,12°,007] 0.9
R;:  B/s —  triangle/[02-®] 0.8
Rg:  B/s —  double/[02-01] 0.01
Ry:  C/rb - rue/[19-1,191] 0.1
Rip: D/gs —  greenagon/[131,0.52"] 0.1
Ry;: D/gs —  double/[0.52°",00-%"] 0.01

Table 1

An imaginary grammar used in the examples of the text. The rules are realistic
with respect to the model, apart from the strings which are based on English. In
the model, strings are constructed from random letters taken from a subset of the
English alphabet. See the text for a detailed explanation.

2.5 The grammar

Each agent a constructs its private grammar G, ontogenetically, starting from
an initially empty set. The grammar is defined as a set of rules R that are
schemas (or rewrite rules), which may be either holistic or compositional.
Table 1 provides an example grammar. In this grammar, S, A, B, C and D
are syntactic categories.® The rules indicate how the left hand sides rewrite
to the right hand sides. Some rules (R; — R3) rewrite to compositional rules
and the others rewrite to single word utterances. The bold-face strings after
the slashes indicate the conceptual space which is covered by the syntactic
category.

By definition, all sentences S cover all dimensions of the entire conceptual
space rgbs; the other syntactic categories cover a space of lower dimension-
ality, such as colour rgb (A), shape s (B), ‘redblue’ rb (C) and ‘greenshape’

8 Although the rules make the grammar look context-free, it is not because in the
current implementation, all non-terminals of the sentence (i.e. A, B, C and D in the
example) rewrite to terminals. Hence, the grammar is finite. Strictly speaking, the
grammar is also not regular, since the top rules can contain two non-terminals, but
the grammar could be represented by a regular grammar. Future research aims to
extend the current model to grammars that are context-free.

11



gs (D). The terminal slots (rules Ry — Rj;) rewrite to single words, such as
“redsquare” and “blue”. (Note that Ry is a holistic rule.) Sentences are defined
to cover all dimensions in order to reduce the search space of possiblities.

Compositions can be formed by applying terminal slots of the appropriate
syntactic category to compositional rules (using the composition operator o).
For instance, rules R5 and R; can be applied to rule R; to form the composition
R, 0 R50 R7, which rewrites to the sentence “bluetriangle”. In addition, we can
apply the same terminal slots to rule Ry to form the composition Ry 0 R; o Rj
obtaining “triangleblue”. Both compositions have the meaning (0,0,1,0). The
meaning of a rule (and consequently the composition) is formed from the
categorical features listed between square brackets, as described below.

The categorical features are denoted as a value with its dimension in subscript
and its category weight w(c;) in superscript. For instance, 13-% is a categorical
feature in the quality dimension for red (r) with a weight of w(1,) = 0.25.
The features can be combined to construct a meaning. Each possible meaning
of R, must cover the holistic conceptual space of rgbs, so they must include
a categorical feature from each dimension. The two possible meanings that
can be formed from the list [12-%°,00:%,09*°, 03, 12"] are thus mj = (1,0,0,1)
representing a red square and mj = (0,0, 0, 1) representing a black square. We
can calculate the meaning wez’ghts w for these meanings as the average of the
Category weights used in the meaning. So, meaning m; has meaning weight
wjy = 0.20 and m} has meaning weight w}] = 0.19. In general, the meaning
weights are calculated as the average Welght of the categorical features used
in the meaning, i.e.

1 d;
i_d—ZwC]k (2)

where d; is the dimension of the rule’s covering conceptual space. The meaning
weights w are updated to indicate how well they have been used as the rule’s
meaning (Section 2.7). So, in the example, rule m} represents R, better than
m}, because 0.20 > 0.19. The agents use these weights to learn the proper
meaning of a rule, based on a selectionist competition.

Each rule R; further has a rule weight p;, as given in the final column of Table

1, which indicates the effectiveness of the rule in previous language games.
Given these weights one can calculate the score s; of rule R; by:

{ piw; if R; has specified meanings,
S; =

Pi if R; rewrites into non-terminals.

12



If we have a composition @ R; to form a sentence with one or more components
R;, we can attribute a score to this composition. This score is the product of
the rules’ scores s;, i.e.

OR;

where @ R; is a shorthand for the composition. Suppose we have the compo-
sition Ry o R5 o R; to mean (0,0,1,0), then o(R; 0o Rs 0 R7) = $1 - 85 87 =
(0.85) - (0.2 9202402} . (0.8 - &8) = 0.02176. In contrast, the competing com-
position Ry o R; o Rs, with the same meaning, has score o(Ry 0 R; o R5) =
(0.06) - (0.2 - 82402402} . (0.8 - &8) = 0.001536. The score o(@R;) is used to
select among competing rules when encoding or decoding an expression.

The arithmetic mean is used for calculating the meaning weights and the prod-
uct is used when calculating the scores, in an analogy with probabilities. In
this analogy, the selection of category features is considered as an indepen-
dent process (hence summation), but the construction of compositions is not
(hence multiplication).

2.6 FEncoding and decoding

Encoding and decoding are straightforward techniques to match the meaning
of the language game’s topic with a set of possible compositions or to match an
expression and (possible) meaning with a set of compositions. When there are
multiple ways of encoding or decoding an expression, then the composition
with the highest score o(@®R;) is selected. Encoding and decoding can be
described as follows:

Encoding: If a speaker/teacher tries to produce an expression, it searches
for all possible compositions in its grammar that match the meaning. For
example, if the speaker tries to encode an utterance for meaning (0,0,1,0)
using the grammar shown in Table 1, it will come up with compositions
R; o R5 0 Ry and Ry o Ry o R5. Based on the scores calculated as described
in Eq. 4 above, the speaker will select the highest scoring composition and
produces the utterance “bluetriangle”.

Decoding: If a hearer receives an utterance, it will interpret the expression.
(Utterances are received without word boundaries, so there may be different
ways to segment a sentence.) The hearer creates a temporary list by search-
ing its grammar for compositions that decode the utterance and removes
from this list all compositions whose semantics do not match any of the
possible meanings in the given language game. In the current implementa-
tion of the observational game, there is only one possible meaning, but in

13



the guessing game there are typically more.

Suppose, for example, the hearer receives the utterance “bluetriangle”
in an observational game with the topic’s meaning (0,0,1,0). Further as-
sume that the hearer has the grammar of Table 1. The utterance is then
interpreted with composition R; o R5 o R7, which the hearer selects as in-
terpretation. If there are more possible parses, the hearer selects the one
with the highest score o(@R;). In this example, the observational game is
a success, because the hearer found an interpretation matching the topic’s
meaning. If the topic has a different meaning, the observational game fails.

Now suppose that the hearer receives the utterance “redsquare” in a
guessing game with a context of three categorised objects: a red square with
meaning my = (1,0,0, 1), a black square with my = (0,0,0,1) and a yellow
square mz = (1,1,0,1). The utterance can be interpreted in two ways, both
using the holistic composition R4. The interpretation matching m; has a
score of o(R4)" = 0.050 and the one matching my yields o(R4)" = 0.047.
The hearer selects m; as the topic’s meaning and if this topic (the red
square) is the object intended by the speaker, the guessing game succeeds,
otherwise there is a mismatch in reference and the game fails.

2.7 Adaptation of weights

When the language game has finished, the effectiveness of the game is evalu-
ated. Depending on the outcome, both agents adapt the weights which they
use to calculate the scores:

Success: If the language game is a success, both the speaker and hearer
increase the weights p; of the rules R; that are part of the composition
according to:

pi=mn-pi+1—n (5)
where 7 = 0.9 is a constant learning parameter. In addition, rules R; that
are part of a competing composition are laterally inhibited following:

P =M"p; (6)

Furthermore, the weights of the categorical features that constitute the
meaning of the successfully used rules are increased by

w(cik) =n-wlck) +1 -1 (7)

The competing categorical features in the same rules and the categorical
features that constitute competing rules are inhibited:

w(cjk) =1 w(cj) (8)
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Mismatch: (Guessing game only.) In case of a mismatch, only the hearer
decreases the weights of the rules and its used categorical features according
to:

Pi =1"Pi )
and
w(Cik) =1 - wlcik) (10)

Note that the lateral inhibition of the rule weight p; helps to disambiguate
different grammatical structures, while the lateral inhibition of the categorical
features’ weights w(c;, k) helps to disambiguate the meaning of a rule. Rules
are said to compete if they are part of a composition that parsed the distinctive
category (speaker) or utterance (hearer), but were not selected.

The equations ensure that the weights remain between 0 and 1, while the
choice of n = 0.9 allows the weights to maintain a rather long history of
past experiences. The choice of this update rule is not extremely important
(Steels and Kaplan, for instance, use a different update rule [49]), but it has
been found that the current equations work better than when associations
are updated using a frequency counter, together with a Bayesian learning
model. This is mainly because with the currently used functions, the scores
fluctuate faster, thus strengthening competition, than would be the case in a
probabilistic model.

3 Grammar induction

If the speaker cannot produce an utterance or if the hearer fails to interpret an
utterance, the agent in question has to expand its linguistic knowledge. The
speaker may invent new knowledge and the hearer may induce new knowledge.
New compositional structures can only be constructed by the hearer.

3.1 Speaker’s invention

If a speaker is not able to produce an utterance, the grammar is insufficient to
encode the meaning and new knowledge has to be invented. This is done in one
of the two following ways: exploitation and holistic creation. These invention
mechanisms are similar to those used in [23,24].

Exploitation: The speaker does not invent new compositional rules, but can
exploit an existing rule if this rule is able to encode a part of the sentence.
For instance, if a speaker with the grammar of Table 1 wishes to produce
an utterance to express the meaning (0,0,1,1), then both the compositions
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Rio0R507 and Ry 070 Rs produce a partial encoding covering the meaning
part [Op, Og, 1p]. The speaker then invents a new rule in which it associates
the complement of the meaning, [15], with a newly constructed word, such
as “rectangle”. This leads to the construction of the new rule:

Ris: B/s — rectangle/[12°!] 0.01

This rule is then immediately applied to utter the expression “bluerectangle”
using composition R; o R5 o Ryy, which has the highest score (o(R; o R5 0
Ri) =3.4107% and o(Ry 0 Ry3 0 Rs) = 2.41077).

Holistic creation: If the speaker cannot encode any part of the topic’s mean-
ing, then a holistic rule is created. For instance, no part of meaning (0,1,1,1)
can be encoded with the grammar given in Table 1. Hence, a new word is
created and the association is added to the grammar. For example, the
speaker might add rule

Rip: S/rgbs — cyanrectangle/[09%, 151,190, 1091] 0.01

to its grammar. This rule is immediately incorporated to produce the ut-
terance “cyanrectangle”.

In the simulation, words are constructed as a random string of letters from a
given alphabet 3. The strings have a length 2 < [ < 8 where the length follows
a probability distribution of f(I) o< }, which is typical for human languages
[69]. When new rules or meanings are added to the grammar, all weights are
initialised with value p = 0.01.

3.1.1 Interpretation and induction

When the hearer is not able to decode an utterance, the hearer has to induce
the utterance’s meaning, such that it is consistent with the speaker’s intention.
In case of the observational game the hearer already knows the topic, in the
case of the guessing game the speaker will now hand over this information.
The core of our interest now lies in the grammar induction, which at this stage
is the same for both the observational and guessing game.

In modern psycholinguistics it is widely assumed that humans learn grammar
from observing other humans’ linguistic behaviours, e.g., [28,29,54], rather
than by tuning parameters in relation to some innate universal grammar as
proposed by [12]. According to Tomasello, Lieven and co-workers, analysis
of interactions between mothers and children reveal that children seem to
gradually construct grammatical schemas based on similarities (or alignments)
found in different sentences used by their caregivers.

Consider, for example, the following two sentences:
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(1) I love Mum.
(2) I love Maria.

If a learner hears these two phrases for the first time, then the learner can
infer that both ‘Mum’ and ‘Maria’ belong to the same linguistic category, and
that the segment ‘I love’ belongs to something else.

This type of learning has been implemented computationally as an alignment-
based learner (ABL) [55], where the learner induces grammatical structures
from sentences stored in linguistic corpora. This learner is based on alignment
learning combined with some selection criterion. Van Zaanen shows that cal-
culating the probability of hypotheses based on past experiences yields a good
selection criterion. The current model implements ABL, but incorporates a
selection criterion based on the weights as explained in the previous section.
(Kirby’s models [22-24], too, uses alignment learning, but his more recent
models [23,24] are without any selection criteria.)

Basically, there are three different induction mechanisms: exploitation, chunk-
ing and incorporation. These induction mechanisms are followed by an addi-
tional step called generalise and merge explained in Section 3.1.2.

Exploitation: Exploitation is used when the learner is capable of decoding
only a part of the sentence. In that case, the learner adds a new rule to cover
the remaining part of the sentence, similar to the speaker’s exploitation
rule. Again consider the grammar of Table 1. When the hearer receives the
expression “bluerectangle” to mean (0,0,1,1), this parses partially to the
composition R; o R50?, covering meaning [0y, Og, 1p]. In this case a new rule
is constructed with non-terminal B as its head, the word “rectangle” and
meaning [12-9]. Le., rule

Ris: B/s — rectangle/[100!] 0.01

is added to the learner’s grammar. (Note that the utterance does not par-
tially decode into Rs0? o R5 because of the wrong word order in this com-
position.)

Chunking: Chunking is incorporated when an utterance-meaning pair is not
(partially) parseable, but when a part of the utterance-meaning pair aligns
with stored holistic rules, or more precisely with stored utterance-meaning
pairs. In each game where the hearer receives an utterance and success-
fully categorises the topic, it stores the utterance-meaning pair in the set
of instances Z, such as shown in Table 2. When an utterance cannot be de-
coded or exploited, then the learner searches alignments between utterances
and stored instances. For each found alignment, the learner also checks for
alignments at the semantic level. For the instances that have alignments at
the semantic and utterance level, the learner keeps track of the frequency
with which these instances have been observed previously. The learner then
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redsquare (1,0,0,1) 3
bluetriangle (0,0,1,0) 3
yellowtriangle (1,1,0,0) 3
triangleyellow (1,1,0,0) 1
greendouble (0,1,0,0) 2
ruegreenagon  (1,1,1,0.5) 2
ruedouble (1,0.5,1,0) 1

Table 2
An example list of stored instances of utterances (1st column), their meanings (2nd
column) and their frequencies (3rd column).

decides to make a split where it appears most effective based on the fre-
quencies or, in case of a tie, based on the largest common chunk. It then
will add the new rules to the grammar as illustrated in the following ex-
ample. (Note that the incorporation of an instance-base deviates from Van
Zaanen’s ABL and is inspired by the memory-based learning techniques,
which uses nearest neighbourhood classification, as used in [14].)

Suppose, for example, the hearer receives the word “redcircle” with mean-
ing (1,0,0,0.57). The following alignments will then be found in Table 2:

f instance utterance
a. redsquare (1,0,0,1) | redcircle (1,0,0,0.57
b. redsquare (1,0,0,1) redcircle (1,0,0,0.57
C. bluetriangle (0,0,1,0) | redcircle (1,0,0,0.57
1,1,0,0) | redcircle

1,1,1,0.5) | redcircle
1,0.5,1,0) | redcircle
1,0.5,1,0) | redcircle

ruegreenagon 1,0,0,0.57
1,0,0,0.57

1,0,0,0.57

f. ruedouble

3 ( )
3 ( )
3 ( )
d. 3 yellowtriangle ( 1,0,0,0.57)
2 ( )
1 ( )
1 ( )

o~ o~ o~ o~ o~ o~

g. ruedouble

Two notes are necessary here: 1) Alignments can only be made either at the
start or at the end of an utterance, so alignments “redcircle”, “redcircle” and
“redcircle” are not allowed. This restriction does not hold at the semantic
level. For example, the semantic alignment between (1,0,1,0) and (1,1,1,1) is
valid. With this restriction, it is assumed that connected parts in the string
belong to one part of the meaning, which in future models may be further
decomposed, and — above all — it prevents the emergence of meaningless
substrings as was the case in Kirby’s models [23,24]. And 2) “greendouble”
is also not taken, because there is no alignment in the semantics.

The selection of which chunks are made now follows two criteria:
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(1) The frequencies of identical chunks in the utterance are summed. This
will yield three possible chunks with a maximum total frequency of 3:
i. redcircle with (1,0,0,0.57) according to (a.),

ii. redcircle with (1,0,0,0.57) according to (b.), and

iii. redcircle with (1,0,0,0.57) according to (e.) and (g.).
(2) The chunk that has the largest syntactic alignment is selected.
So, given these restrictions the hearer will choose to chunk the pair “red-
circle” (1,0,0,0.57) according to line (a.) and the learner adds the following
rules to its grammar:

Ri: S/rgbs — E/rgb F/s 0.01
Ri3: E/rgb — red/[129,023%,000] 0.01
Riy: F/s — square/[12:01] 0.01
Ri5: F/s — circle/[0.57%-01] 0.01

This will lead to some redundancy, because R, is — apart from the non-
terminal labels — the same rule as R;. However, this will be repaired in the
generalise and merge step described shortly.

Incorporation: The incorporation is done when no compositional structure
can be induced. In this case, the utterance-meaning pair is adopted holisti-
cally. For instance the reception of utterance “lightgraycircle” with meaning
(0.25,0.25,0.25,0.57) would result in the incorporation of:

Rip: S/rgbs — lightgraycircle/[0.250:°",0.25%%",0.250.01,0.573-°"]  0.01

It is important to note that in the instance-base Z all instances are stored the
way they are received. This is in contrast to the grammar, which stores the way
they can be rewritten; thus the instance-base allows the learner to search all
instances they way they have been heard, which aids in finding an effective way
to chunk up utterances based on past experiences, while not being restricted
by previously made compositions which may not be effective. Moreover, the
instance-based alignment learning can be used to ‘unlearn a previously learnt
rule, when — based on later instances — other rules can describe the data better.
Although it is unclear as to what extent humans store both whole utterances
as exemplars and generalisations of these, there is growing evidence that both
types of storage are used [29]. Most convincing evidence of this dual storage
is found in relation with the storage of morphologically complex words [1].

These induction mechanisms differ from Kirby’s model [23,24] mainly in four
ways. First, the exploitation rule is an implicit property of Kirby’s chunking
mechanism. Second, Kirby’s chunking mechanism allows alignments to be un-
connected (as in reddouble), which, as mentioned, can lead to the emergence
of substrings that have no semantic content, but it can also lead to an ex-
plosion of string length [42]. Third, the current chunking mechanism uses an
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instance-base for finding effective chunks. In Kirby’s model, learners are re-
stricted by previously made constructions, so they cannot unlearn a previously
learnt compositions. This is also partly caused by the fourth difference with
Kirby’s model, where new rules subsume old ones which are deleted from the
grammar. In this model, all rules are memorised, even the old ones, which al-
lows the adaptation of weights to serve as a competitive selection mechanism,
giving way for a self-organisation of language [46].

3.1.2 Generalise and merge

When new rules are induced, there may emerge some redundancies and other
side effects that need to be dealt with. In order to deal with this, two post-
operations have been introduced: generalise and merge.

Generalise: The generalisation step serves to exploit more regularities than
was done in the chunking step. For example, suppose an agent has the
following two rules in its grammar:

Ri;: S/rgbs — bluecircle/[09%,05%,10%,0.570%] 0.2

Ry: S/rgbs — yellowsquare/[13°,13°,00°,12°] 0.5

Further suppose that after receiving the utterance-meaning pair “bluesquare”
(0,0,1,1) was chunked with Ry — e.g., because its aligning instances had a
higher occurrence frequency — so that the following rules were added:

Rs: S/rgbs — A/rgb B/s 0.01
Ry A/rgb  —  blue/[0001,021,1001]  0.01
Rs: A/rgb — yellow/[13:011001 00011 0.01
Rs¢: B/s — square/[12:01] 0.01

The agent missed the opportunity to chunk rule R;. This is fixed by the
generalisation step, which will add the rule

R;: B/s — circle/[0.57291] 0.01

to the grammar as well. Effectively, the generalisation step chunks all pos-
sible rules that fits the initial chunk.

Merge: The merge step is adapted from Kirby’s model [23,24] and serves to
reduce redundancy in the grammar. Two types of merging are applied. First,
rules with different non-terminal labels that are effectively the same are
merged. For instance, in the ‘chunking’ example of the previous subsection,
the following rules were induced.
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Rip: S/rgbs — E/rgb F/s 0.01
Ri3: E/rgb — red/[13%,03%,00%] 0.01
Ry F/s — square/[13:01] 0.01
Ri5: F/s — circle/[0.57%-01] 0.01

R15 is a copy of rule R; in Table 1, only with different labels on the non-
terminals. The merging step merges these two rules (i.e., Rio is removed)
and then renames the labels E and F into A and B resp. for rules Ri3 — Ri5.
Second, rules that have the same non-terminal labels (or even different ones)
and the same word-forms, but with different meanings covering the same
conceptual space are merged. For example, the rules

R;: E/s — square/[19%] 0.21

Rj: F/s — square/[0.82%"] 0.01
are merged into:

Ri: E/s — square/[19%!0.8201] 0.22

where the scores of the two rules are added.

4 Experimental results

With the above models, three conditions were investigated whose results are
presented in this section without any additional discussions and clarifications;
these are presented in the next section. The first experiment is used as a base-
line experiment. In this experiment, the observational game and the guessing
were run with a population size of 2 (1 adult and 1 learner). Although this is
not a realistic population size, it allows us to investigate the basic behaviour
of the model and is a typical setting for most ILM studies, e.g., [6,23]. Each
agent, including the agents of the first iteration, started with an empty ontol-
ogy and grammar. In the current experiments, the adult of the first iteration
constructed the first version of the language, which then evolved over the iter-
ations. As the speakers cannot invent compositional structures, the language
of the first adult was holistic.

The second set of experiments investigates the effect of increasing the popu-
lation size from 2 to 6. In this experiment, the population contained 3 adults
and 3 learners, where the speakers of the language games are selected from
the adult population and the hearers from the learner population. This set of
experiments was carried without imposing a transmission bottleneck.

In the third set of experiments, a bottleneck on the transmission of language
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was imposed, both with a population size of 2 and 6. A bottleneck on the
transmission means that each learner learns from its teachers by observing
only a part of the teacher’s language. When the learners becomes adults, they
teach the next generation over another part of the language. In this set of
experiments, a bottleneck was imposed by selecting a subset of the world
as the set of objects from which contexts were selected. This subset differed
in each learning episode (or iteration), but its size remained fixed. It has
been shown in various studies with the ILM that imposing a bottleneck on
the transmission of the language provides a strong external pressure on the
emergence of compositional structures [6,23,41,70].

For all conditions, simulations were done with the observational game (OG)
and the guessing game (GG). The simulations were run for 250 iterations of
N language games each, where N = 2,500 if the population size is 2, and
N = 6,000 if the population size is 6. The N language games within an
iteration form the training phase. At the end of each iteration, before the
adults were replaced by the learners and new learners entered the population,
all agents were tested on a number of situations for certain aspects of their
communicative ability. In this test phase, 200 language games were played with
the adaptation and induction turned off, and where in each game each agent
encodes an utterance to convey the reference of one given topic and where
each agent decodes the utterances expressed by the other agents.

For each experiment, 10 different trials were run with different random seeds.
Some results are presented as averages over the 10 different trials and — where
necessary — together with their standard deviations. The results will be pre-
sented using 4 different measures calculated during the testing phase: compo-
sitronality, production coherence, interpretation accuracy and similarity.

Compositionality: The proportion of expressions that were encoded or de-
coded using compositional rules during the testing phase.

(Production) coherence: The fraction of agents that produced the same
utterance to name objects during the testing phase, averaged over the 200
games played during this phase. (Note that this measure disregards whether
the agents used the same grammatical rules.)

(Communicative) accuracy: The fraction of agents that could successfully
interpret the produced utterances of the other agents in the population,
averaged over the number of games played during the testing phase.

Similarity: The average proportion of the grammars of adults that are ac-
quired by the learners at the end of an iteration. This is based on internal
inspection, rather than on the testing situations.

All measures, except similarity, are reported graphically.
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Fig. 5. The results of the baseline experiments of the observational games (top) and
guessing games (bottom) show the evolution of compositionality (left), accuracy
(centre) and coherence (right) on the y-axes. The x-axes show the iterations. Each
line represents one trial..

4.1 Baseline experiments

The first set of experiments investigated the behaviour of both the OG and GG
with a population size of 2 and without imposing a transmission bottleneck.

Figure 5 shows the results of the baseline experiments for the OG (top) and
the GG (bottom). Compositionality (graphs on the left) rose in both experi-
ments swiftly to levels around 0.8. For the OG, this occurred already after two
iterations; for the GG this took about 10 iterations. After that, composition-
ality in the OG fluctuated in general between 0.7 and 0.9, but with quite some
drastic catastrophes where compositionality nearly disappeared for short pe-
riods. Compositionality evolved to an average of 0.73 + 0.24 at the end of the
final iteration. This means that at some points the languages changed from
compositional languages into holistic ones, though each time compositionality
reappeared. The GG revealed similar catastrophes in compositionality, though
less frequently. In addition, the general trend revealed an increase in compo-
sitionality to an average level of 0.89 + 0.07 at the end of the experiment.

Communicative accuracy for both game types also rose rapidly to values be-
tween 0.8 and 0.9 (Fig. 5 centre column). Although accuracy in the OG was
not affected strongly from the fluctuations in compositionality, in the GG this
was the case. Each time compositionality decreased, accuracy also decreased.

Coherence (graphs on the right) revealed more differences between the OG
and the GG. Whereas coherence fluctuated largely between 0.4 and 0.8 in
the OG without any clear increasing trend, coherence in the GG showed a
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Adult Learner

1 | S—Ifmia/[0,,0g,0,.785,.67s] 1.00 S—s1fmia/[0,,04,04,.675,.78s]  0.92

2 | S—»A/s B/rgb 0.99 S—A/s B/rgb 1.00

3 | S=»B/rgb A/s 5.7E-5 | S—»B/rgb A/s 0.06

4 | S—»C/r D/gbs 1.2E-5 | S—»C/r D/gbs 0.11

5 | S—ibfdib/[,.754, .75, 5] 0.11

6 | A—ibf/[.5] 1.00 | A—sibf/[.54] 1.00

7 | A—tdjdgdmf/[0s] 1.00 | A—fdjdgdmf/[0s] 1.00

8 | A—ide/[.635,.67s] 0.98 | A—ide/[.64,.675,.66,] 0.94

9 | A—boncm/[.59] 0.98 A—boncm/[.59, .58;] 0.83
10 | A—b/[.114] 0.77 | A—ggdkab/[.59;] 0.20
11 | Bodib/[Ly,.75,, .75, .69, .695]  0.98 B—dib/[1,, .69, .69 ] 1.00
12 | B—fkm/[1,,04, 0] 0.96 | Bofkm/[1,,0q,0,] 1.00
13 | Bom/[1,,04,1,] 0.87 B—m/[1,,04, 1] 1.00
14 | S—dggdkab/[0,,04,1;,.59] 0.20 B—d/[0,,04, 1] 0.02
15 | C—b/[1,] 0.08 | C—b/[1,,0,] 0.10
16 | S—bgl/[0,04, 15, .62] 0.11 D—gl/[0g, 15,615, .62] 0.11
17 | D—oncmm/[0g, 1p,.58;] 0.01 D—oncmm/[0g, 15, .58;] 0.01

Table 3

A fragment of a grammar that emerged in one of the baseline simulations of the
guessing game.

steady increase toward values near 1 similar to the trend of compositionality,
although the GG, too, revealed some large fluctuations.

Table 3 shows a fragment of the grammars of one adult and one learner at
the end of a typical iteration in one simulation run of the GG. The fragment
is rather small; typically learners acquired approximately 100-125 rules and
adults ended up with more or less 125-150 rules. The adult of this particular
example acquired 161 rules, the learner 110. In the fragment, we can see that
the adult and learner acquired both holistic rules (1, 5, 14, 16) and compo-
sitional rules (2 — 4). It is interesting to note that the rule weights of the
learner’s compositional rules are higher than those acquired by the adult. The
table also shows how the adult’s holistic rules 14 and 16 have become com-
positional in the learner’s grammar. (Learner rules 3, 10 and 14 can decode
adult rule 14, and the learner rules 4, 15 and 16 decode adult rule 16.) Rules
concerning the expression “ibfdib” show a meaning shift (rules 2, 5, 6, 11).
Note that the adult has two ways to construct “ibfdib”. The grammar con-
tains some ambiguities in the form of polysemy (adult rules 1, 10, 11 and 15,
and learner rules 1 and 15) and synonymy (learner rules 9 and 10). One could
argue that rules 8, 9 and 16 are also polysemous, but the ambiguous categories
are so close to each other that one also could argue that they constitute only
one meaning.

Summarising, with a population of size 2, both the current OG and GG models
show that compositionality can be achieved, even in the absence of a trans-
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Fig. 6. The results of the experiments with a population size of 6. The figures
show the results of the observational games (top) and guessing games (bottom) on
compositionality (left), accuracy (centre) and coherence (right).

mission bottleneck. The GG, however, appears more stable than the OG, but
neither is completely stable.

4.2 Increasing population size

In the second experiment series, the population size is increased from 2 to 6,
which means that the population in these experiments consisted of 3 adults
and 3 learners.

Figure 6 shows the results of this experiment. For both the OG and GG, com-
positionality increased to a high level in the first few iterations. After that,
compositionality soon decreased. For the OG, the final value of composition-
ality was on average 0.2240.10; for the GG this was 0.16 +-0.11. This decrease
was more drastic and instable for the OG than for the GG, where in some runs
compositionality remained for a while or even recovered. It is striking to see
that in the OG accuracy seems to benefit from the decrease in compositional-
ity (it rose to 0.83 & 0.05). The opposite is true for the GG, where accuracy
first decreased with the drop in compositionality, but then recovered slightly
to a final value of 0.64 4+ 0.06. In both cases, coherence increased gradually to
various levels. In the OG, coherence reached a level of 0.57 £ 0.09, and in the
GG a level of 0.82+0.07 was reached. So, compositionality appears to have an
antagonising effect on coherence: when compositionality decreases, coherence
increases.

When looking at the grammars that evolved, we can measure various things.
Similarity, for instance, measures the proportion with which the learner pop-
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Fig. 7. The average percentage with which rules of types A — E have been used most
frequently during one iteration for the baseline experiments of the observational
game (OG) and the guessing game (GG). The types of rules are A: S—rgb s, B:
S—s rgb, C: S—r gbs, D: holistic rules, and E: all other rules.

ulation has acquired the grammars of the adult population. At the end of
the 250st iteration, similarity was found to be 0.71 4 0.05 for the OG and
0.66 £+ 0.07 for the GG. Throughout the evolutions, these values remained
fairly constant.

Figure 7 shows a distribution of different types of rules that emerged as dom-
inant rules for an agent in an iteration. A rule is assumed to be dominant if
it is used most frequently by an agent within one iteration. Since the most
prominent structure in the environment combines colours with shapes, it is
expected that if this structure is exploited most frequently, a dominance of
rules of types A and B (i.e. rules that combine colour with shape) would be
observed. In fact, the most dominant compositional rule found in both the
OG and GG is one that combines the r component with the conceptual space
covering gbs. Analysis of the rgb space for the used colours actually shows
that for some colours the combination with equal values in the r dimension
and different values in the gbs space occurs up to 5 times more often. How-
ever, as we would expect, given the low levels of compositionality, the most
frequently used rules in all these experiments were holistic rules (type D).

4.8 Imposing a transmission bottleneck

The third set of experiments is used to investigate what happens when a bot-
tleneck on transmission is imposed. Figure 8 shows the results of imposing a
bottleneck of 50% on a population of size 2. Only compositionality is shown,
which in both cases increase rapidly to a high level and remain there through-
out the evolution. With 0.90 £ 0.06 compositionality in the GG is higher at
the end than in the OG, which yielded 0.81 + 0.08.
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Fig. 8. Compositionality for a transmission bottleneck of 50% for a population size
of 2. A transmission bottleneck of 50% means that all training phases considered
only 60 out of 120 objects for inside the contexts. The results are shown for the OG
(left) and GG (right).
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Fig. 9. The results of the experiments with a population size of 6 and a transmission
bottleneck of 50%. The figures show the results of the observational games (top) and
guessing games (bottom) on compositionality (left), accuracy (center) and coherence
(right).

Figure 9 shows the results of the simulations with a population of size 6 and a
bottleneck of 50%. For the OG (top), compositionality tended to remain longer
in the simulations than without a bottleneck, but at some point the languages
colapsed into holistic systems within a few iterations (average of 0.23 + 0.10
at the end). Whenever this happened accuracy and coherence jumped to a
higher level. In the case of accuracy, this jump was from around 0.50 to 0.75;
for coherence this was from around 0.16 to around 0.51. Similarity decreased
slightly (40.05) with an overall average value of 0.71 + 0.02.

The GG (bottom) increased very rapidly to a high and stable level of compo-
sitionality in all runs (an average of 0.94 +0.02 at the end). This was followed
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Fig. 10. The average percentage of rule types used in the experiments of the obser-
vational game (OG) and for the guessing game (GG) with a 50% bottleneck. The
percentages relate to the rules of type A: S—rgb s, B: S—s rgb, C: S—r gbs, D:
holistic rules, and E: rest.
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Fig. 11. Compositionality for various transmission bottlenecks for a population size
of 6. A transmission bottleneck of 0% means that all objects were used in the
training phase. The results are shown for the final (250st) iteration of the OG (left)
and GG (right).

by accuracy, which rose rapidly to a level of around 0.8 after which it slowly
kept on rising toward an average level of 0.85 4 0.05. Coherence yielded more
fluctuations throughout the evolution, but its trend increased to an average
value of 0.751+0.10. After a sharp decrease of around 0.10 points in the first few
iterations, similarity remained more or less constant with an overall average
value of 0.65 + 0.02.

Figure 10 shows the distribution of dominant rules used throughout the ex-
periments with a bottleneck of 50%. As could be expected, given the low level
of compositionality, the distribution of the OG is much the same as without
a bottleneck (Fig. 7), with a peak in the holistic rules. As for the GG, nearly
all dominant rules combine colours with shape, most of which prefer the word
order with shape first (i.e. rules of type B: S—s rgb). This, therefore, nicely
reflects the environment’s structures.
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Figure 11 shows what happens to the level of compositionality at the end of
the experiments when the bottleneck is varied from 0 to 50% (0% bottleneck
means all objects are passed — i.e. there is no bottleneck). In all simulations
with the OG, compositionality did not remain stable and eventually disap-
peared (as in the previous experiments, compositionality did emerge at first).
In the GG, however, compositionality was high with a low standard deviation
for bottlenecks of 25% or higher. When the bottleneck was 8.3% or 16.7%, a
moderate level of compositionality was reached with a large standard devia-
tion. (The large standard deviation indicates that sometimes compositionality
was present, sometimes not.) Only when no bottleneck was imposed on the
GG, compositionality did not emerge.

5 Discussion

The previous section presented the results of the experiments done; in this
section I will try to explain why the results are the way they are. After com-
paring the current model with some closely related work, I will discuss the
rapid emergence of compositionality. Then I will discuss factors of instability
with a primary focus on the differences between the observational and guess-
ing games. The effect of increasing the population size is discussed in Section
5.4, after which I discuss the effect of the transmission bottleneck in Section
5.5.

5.1 Related work

The current work is mostly related to the iterated learning model developed
by Kirby [23,24]. Kirby’s model starts with a population of size 2 (1 adult
and 1 learner). Like in the current study, the adult produces utterances from
which the learner learns its language. When the learner receives an utter-
ance, it also observes its meaning. These meanings are predefined predicate
argument structures of the form p(x) or r(x,y). Apart from the selection-
ist learning mechanism and the instance-base used in the current paper, the
learning mechanisms of both models are basically the same. The first major
novelty in the current study is that the agents develop their own semantics
and thus discover their own semantic structures, which reflect the combinato-
rial structure imposed by the environment. (This aspect is further elaborated
in Section 5.2, but see also [61].) The second novelty is the application of the
guessing game, including its selectionist learning mechanism. In this game, the
learner only observes a context of possible objects from which it has to guess
what the speaker’s topic is. Kirby’s model is more closely related to the ob-
servational game, in that the hearer/learner receives both the utterance and
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topic (albeit the exact meaning in Kirby’s model and only the reference in
this model). The third important novelty — with respect to Kirby’s model - is
the increased population size, but that has also been studied in [17,42]. Other
related models using a ‘Kirby’ style implementation of the ILM are found in
[6,17,41,70]. All these studies predefine the semantics and have a population
size of 2.

The learning mechanism is highly similar to Van Zaanen’s alignment based
learner [55], although he combines the alignment-based learner with probabilis-
tic grammar inducers, similar to those described in [5]. Similar learning mech-
anisms have also been studied in [15,52]. Again, the main difference with these
models — apart from its implementation in an evolutionary model — is that the
semantics of the language develops from the agents perceptions of the world.
Another difference is that alignments are derived from an instance-base that
stores utterance-meaning pairs together with some new information, rather
than combining the existing grammar with the new information. The reason
for this choice is that the instance-base contains more information about the
most fruitful way to chunk up utterance-meaning pairs than could be done
when only the grammar is used, unless the grammar is build using all possible
parse-trees as is done in [5,55]. The problem with constructing all parse-trees is
that in the current model it is unknown where the most optimal word bound-
aries are. Hence, there would be an extremely large number of rules that need
to be stored. Alternatively, the model could rely only on the instance-base and
use memory-based learning as in [14]. The problem there is its computational
complexity. The current model has the advantage of relatively fast parsing
(decoding), and only has to generalise from the instance-base in case of fail-
ures. (Note that Gong et al. [17] use a similar approach to study the evolution
of compositionality, but store an instance-base of utterance-meaning pairs in
a buffer. If their buffer is full, they induce generalising rules and then empty
the buffer.) Although the current implementation is still unrealistic, there is
an increasing amount of evidence supporting the hypothesis of a dual storage
of both exemplars and generalisations, e.g., [1,29].

Another related piece of work is by Steels and co-workers. First, the Talking
Heads simulation is derived from Steels’ Talking Heads experiment (TH) [50],
which was an experiment studying the evolution of lexicons. Although slightly
different, the input to the agents in the current simulation is very similar to
the input that the TH received. In addition, where the TH used binary trees
to represent categories, here categories are represented as ‘prototypical’ cat-
egories without a hierarchical layering. Furthermore, the TH allowed every
combination of quality dimension to serve as a meaning, while here all 4 di-
mensions were required to form the meaning of the whole. (This was done in
order to keep the current model simple; future work will allow more complex
possibilities.) Recently, Steels has moved to a system in which robots (again
embodied as cameras) develop a case-grammar from analysing scenes played
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in front of the camera [47]. This closely related work is far more complex than
the current model, but seems to assume more. For instance, the lexicon and
consequently the meanings are predefined — this omits the co-evolution of lan-
guage and meaning, which may alter the outcome as we shall see shortly. In
addition, the model does not have a population turnover, which is also true for
Batali’s model [2]. As the current model has shown, successful development
of compositionality in the first iterations is no guarantee for success in later
iterations. However, Steels’ model relies heavily on the production of gram-
matical structures by the speakers and a recent study has shown that when
the learners in the current model also act as speakers (i.e. they can speak to
other learners or adults), compositionality remains stable, even in absence of
a transmission bottleneck [62].

5.2  The rapid emergence of compositionality

In most studies on the emergence of compositional structures using the iterated
learning model, compositionality emerges at later stages of the evolution, e.g.,
[23,24]. So, why does compositionality emerge so rapidly in these experiments?
To understand this rapid emergence, let us look at some differences between
Kirby’s model [23,24] and the current model. In Kirby’s model, compositional
rules can emerge, in which parts of an expression may have no semantic con-
tent. As a result, an uncontrolled growth of signal length can occur [42] and
the chance of discovering alignments in the expressions is relatively low, so the
regularities in linguistic structures will emerge at a later stage. The current
chunking algorithm is more restricted to split up expressions into two distinct
substrings, each part of which must be semantically covered by a part of the
whole meaning. In addition, this model has an inbuilt bias toward shorter
strings. Following Zipf’s law [69], the frequency distribution f of words with
string length [ is inversely proportional to this length, i.e. f o< [7%, where
a =~ 1. Together with an alphabet size of 15 letters, the probability of finding
aligning strings from the randomly generated words are high. A recent un-
published study, where the alphabet size was varied between 5 and 25, has
revealed that when the alphabet size increases, the level of compositionality
in the second iteration decreases proportionally. The level of compositionality
at the end for a GG with 50% bottleneck, however was unaffected.

A second difference between Kirby’s models and this one lies in the develop-
ment of semantics. In Kirby’s models, the semantics are predefined, but in the
current model they are constructed during development. Recent analysis has
shown that when agents have to discover a semantic structure from the Talk-
ing Heads environment, there are more possible combinations than when the
structure is predefined in terms of a colour and shape space (i.e. compositional
rules such as S—r gbs, S—rg bs etc. are also possible) [61]. Hence, as for the
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Fig. 12. Differences between an adult’s and learner’s language at a certain stage
during the learner’s development. The adult (left) has acquired an ontology that
maps onto the world reliably, but the learner (right) has not yet acquired all these
categories. In the adult’s conceptual space, the categories that overlap with the
learner’s central category EB are highlighted. In the learner’s conceptual space, the
adult’s categories are superposed as indicated by the dotted lines. See the text for
further details.

signal space with short signals and limited alphabet size, it is more likely to
find a structure that can be exploited in compositional structures. Once com-
positional rules are used successfully, their weights are reinforced and more
likely to be reused. As a compositional rule can be applicable in more situa-
tions than individual holistic rules, the rule weight of the compositional rule
soon wins the competition from the rule weights of individual rules.

Another consequence of the co-evolution of meaning and grammar is that
during development, the learner’s representation of meanings differs from the
adult’s representation, as illustrated in Figure 12. The figure shows a — for the
illustration perfectly structured — language of an adult and an intermediate
stage of a learner. The adult has 5 categories/words in the horizontal dimen-
sion and 6 categories/words in the vertical dimension. The learner has only
acquired 3 categories in the horizontal dimension and 4 in the vertical dimen-
sion. Suppose that expressions are composed with the vertical dimension first,
leading to expressions such as “aea”, “aefg”, “gha” etc. Furthermore, mean-
ings can be constructed in a similar way, so the learner can have meanings

DA, DB, EA, EB etc.

Around this stage of the development, the learner could learn the following
rules:

S —- YX P1

Y — jkm/[DYL,EY?] py | X — fg/[A"%, BYT] Ps
Y —  bi/[E¥?] ps | X — o/[BY¥ 06
Y —  c/[EV, Fv9] ps | X — kha/[B¥?,C*0] p;
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It is unlikely that the learner would have learnt all these rules in this way,
but when it is exposed to the adult’s language, it would undoubtedly have
acquired some of these rules.

A learner with a limited set of categorical features, as in the early stages of
development, is more likely to discover a semantic structure with respect to
a syntactic structure than a learner who has a fully pre-defined, ‘innate’ set
of categorical features, but no semantic structure. This effect is confirmed in
[61], where it was shown that the initial level of compositionality was lower
when the categorical features were predefined. However, the same study also
revealed that in the GG with a population of size 6, compositionality remained
stable in the absence of a bottleneck. This latter phenomenon can be explained
by the absence of a meaning shift (see below).

In summary, given the learning mechanisms for discovering and constructing
compositional structures, the rapid emergence of compositionality depends to
a large extent on the statistically high distribution of reoccurring structures in
both the signal and meaning spaces. This statistical effect is increased by the
ontogenetical development of categorical features. In addition, the selectionist
reinforcement of rule weights further boosts the emergence of compositionality.

5.8 Factors of instability

Given the seeming ease with which compositionality emerges, it is striking to
see that it is not stable in all circumstances. In many cases, holistic communi-
cation systems take over after a while. This is especially surprising, given both
the statistical nature of the data to be learnt and the learning mechanism with
an inbuilt bias toward compositionality. ®

As the instability most frequently occurs in simulations of the observational
game, it is good to start investigating the instability factors with respect to
this game. First it is important to realise that holistic communication systems
have a higher level of accuracy and coherence in the OG. This indicates that
— at least for the OG — a holistic system is easier to learn.

To see why this is the case, let us briefly return to the example illustrated
in Figure 12 and assume that the learner has acquired all signals that are
used by the adult. Suppose now that at a later stage in development the
learner acquired the same categorical features as the adult. Then the learner
could have acquired three names (“fg”, “o” and “kha”) in relation to the

9 Note that Kirby turns the surprise the other way around: he is surprised that
compositionality emerges when there is a bottleneck, rather than being surprised
that no compositionality emerges when there is no bottleneck [23].
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category that the adult names “0” in the X dimension, which is a refinement
of the earlier meaning B of the learner. Likewise, what the adult calls “bi”
relates to the category that the learner could have associated with “jkm”, “bi”
and “c”. Supposing there are 3 adults, the input to a learner is even more
diverse, because the different agents may have slightly different categorical
features themselves. So, different words could be spread even further through
the conceptual space, shifting the meaning of a word, such as “0” to either side
of the X dimension. Such shifts affect much of the conceptual space, making
the language unstable.

In the OG, this is — in a certain way — allowed without affecting the accu-
racy too much, because in this game the hearer knows the speaker’s topic.
If the hearer has an association of the topic’s meaning with the speaker’s
utterance, whether or not it is the learner’s preferred one, the game is consid-
ered successful. The weights are increased, while competing rules are laterally
inhibited. But as there are already many associations/rules competing and dif-
ferent adults may use different utterances, the chances that another rule will
take over are high. Consequently, a lot of unstable fluctuations are present in
the competition, which makes the language hard to learn.

One the other hand, when the language is holistic, words are stored in more
limited areas of the conceptual space. The chance of moving such a word
through the conceptual space is much lower, causing fewer fluctuations, and
is therefore easier to learn. When at some point, a less structured input is
presented to a learner, this can have the consequence that compositional rules
are less often successful, causing a decrease in their strength, making way for
more holistic rules to win the competition. Once such a process starts, holistic
rules become stronger and compositional rules weaker and the whole system
turns around within a couple of iterations.

In the guessing games, this effect is less strong and only occurs when there
is no bottleneck. This is because, in the GG, words are not allowed to move
over the meaning space so easily. If this happens, the chance of failure in
the game is high, because the hearers must guess the speaker’s topic: the
more possibilities there are, the more likely a failure. Failures do not come
unnoticed, but are immediately punished by inhibiting such rules. In addition,
when the right choices are made, these rules will be reinforced and competing
rules inhibited, thus strengthening the disambiguation in the competition. As
a consequence, the compositional rules are learnt properly — especially when
there is a bottleneck. When there is no bottleneck, the holistic rules tend to
enter the language more gradually. Though once a process is started, this can
lead to a cascade of failures in compositional rules, which then make way for
holistic rules.

In a way, this explains the difference between the OG and the GG in a sim-
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ilar way as was previously done in [56,63]. Because the OG has perfect joint
attention, there is little pressure to disambiguate the language; in fact ver-
bal communication becomes redundant as explained by the signal redundancy
paradoz [39]. This paradox states that if the agents have other means than lan-
guage to establish joint attention, verbal communication becomes redundant.
In the guessing game, there is a pressure to disambiguate ambiguities because
the topic is not given beforehand, but must be guessed from the expression.

The instability in compositionality is also a sign that results achieved by stud-
ies that do not use a population turnover, might draw the wrong conclusion
that once a compositional structure is learnt, this will persist in the language.
This is important, because many studies base their results on experiments
without a population turnover, such as [2,47].

5.4 The effect of population size

The first set of experiments in this paper used a population size of 2: 1 adult
and 1 learner, which is the same as typically done in experiments using the ILM
[7,6,23,24,41,70] — but see [17,42]. The results of the current study differs in a
large extent from the usual ILM studies in that the current experiments yielded
an emergence of compositionality in the absence of a bottleneck, whereas this
did not occur in the other experiments.

In addition, the current experiments showed that the model is well scalable to
a larger population size, while this has been proved difficult with Kirby’s ILM
model [42]. Moreover, when the population size is increased, the characteristics
of the other ILM studies reappear in that holistic languages emerge without
a bottleneck and compositional ones with a bottleneck.

The reason why the experiments with a population size of 2 yielded relatively
stable compositional systems in the absence of a bottleneck — as opposed to
the experiments of population size 6 — lies in the fact that a learner only
learns from 1 adult. As a consequence, the probability that words become
spread over the meaning space is less likely, and the bias towards compositional
rules generally wins over the advantages of having holistic rules. However, the
results also show that in some occasions, the system does become instable,
which suggests that in those cases, the ambiguity of the compositional system
becomes too large. Whether or not this is actually the case remains to be
verified in future experiments.

When the population size is larger, the learning takes place with input from
3 different individuals. As explained above, this can lead to a meaning drift
that makes the compositional system unstable when there is no bottleneck in
the transmission. When there is a bottleneck, however, the GG yields highly

35



stable compositional systems.

Compositionality in the current experiment emerged readily from the second
iteration onward (at least when it remained stable). Each iteration was run
for 6,000 games, which is equivalent to around 2,000 games for each learner to
acquire the language of around 120 objects. Are these many language games
really required for a stable communication system to emerge? Recent unpub-
lished simulations have revealed that when a total of 2,000 language games
(i.e. around 667 games per learner) are played, a stable and successful compo-
sitionality emerges for a guessing game in the presence of a bottleneck. How
this will scale up in terms of population size, number of objects and complex-
ity of the conceptual spaces (i.e. number of quality dimensions) remains to be
seen. For vocabulary systems, a relation has been found between the time of
convergence (7T') in communicative success and and the number of meanings
M and agents N following 7" o< S- N -In(N) [21]. Gong et al. [17] have shown
— in a similar simulation as the current one, but with a predefined semantics
— that stable compositional systems can emerge with a population of size 50,
though many of their parameter settings (e.g., number of meanings) have not
been specified. Preliminary studies on the further scalability of the guessing
game model indicate that compositionality can remain stable in populations
of at least 50 agents, though stability is not guaranteed.

In addition, work is in progress to extend the current model in a very large
scale simulation (1,000+ agents) on the evolution of language and culture in
the recently started New Ties!® project [64]. In this project many more ob-
jects and actions will become part of the agents’ environment, which they can
detect using more quality dimensions with fewer features, which — according
to Brighton [6] can yield more stable compositional systems than systems of
low dimension and large number of features (which is the case in the cur-
rent experiment).A selection mechanism will then be required to select which
quality dimensions will be used to form a sentence, rather than constraining
sentences to cover all dimensions as in the current model. This selection cri-
terion could be based on the ecological relevance and distinctiveness for the
agents in a particular context; an aspect that the current model lacks and
which may have a large impact on the development of language.

5.5 The influence of the bottleneck

Imposing a bottleneck on the transmission of language leads to the emergence
of compositionality in the GG. This confirms the results previously obtained

10 New Ties stands for: New Emerging World models Through Individual, Evolu-
tionary and Social learning. See http://www.new-ties.org.
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in, e.g., [7,6,23,24,41,70]. The emergence of compositionality under the influ-
ence of a bottleneck can be explained by noticing that the adults teach the
learners about certain previously unseen objects. The use of compositional
structures aids in doing so, as explained by the following example. Suppose
an agent has acquired the rules

S/rgbs — A/rgb B/s
A/rgb — blue/[0,,04,1] | B/s — square/[l;]
A/rgb — red/[1,,04,0s) | B/s — triangle/[0,]

from observing a blue square, a blue triangle and a red triangle. This agent be
able to communicate not only about these objects, but also about previously
unseen red squares. As a result of using compositional rules successfully, these
will be reinforced and hence be reselected and so on. The next generation
will then observe more structure, allowing to preserve and build up even more
structure.

Clearly the GG shows a high and stable level of compositionality under the
presence of a bottleneck. The OG, however, does not reveal this when the
population is larger than 2, although compositionality tends to remain longer
in the population. Apparently, the lack of pressure for disambiguation in the
OG (see above) is stronger than the pressure imposed by the bottleneck.

The size of the bottleneck does matter. It has been shown by Brighton that
— under certain conditions — the stronger the bottleneck is, the higher the
chance for stable compositional languages [6]. This result is confirmed by the
GG, where for bottlenecks stronger than or equal to 25%, compositionality is
very stable at more or less similar levels. When the bottleneck is weaker, the
stability is less secure (see the large standard deviations in Fig. 11), meaning
that compositionality is sometimes stable, sometimes not.

In the current experiments, a bottleneck on the transmission of language is
imposed by the erperimenter. It has been shown, however, that when learners
are allowed to act as speakers during their development, compositionality can
emerge in the GG with a population size of 6 in the absence of the imposed
transmission bottleneck [62]. This is understood when realising that when
learners start to speak, they are faced with a bottleneck, because due to their
developmental stage, they may encounter previously unseen (or unheard) ob-
jects. If, however, they have learnt parts of the objects’ meanings, they can
exploit these by producing a compositional expression. This is interesting, as
it may help to explain why children are so good at developing grammar, such
as observed in normal situations [29], or perhaps at inventing grammar as in
Nicaraguan Sign Language [36] and possibly creoles [35].
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6 Conclusion

The model presented in this paper provides a promising framework for study-
ing the emergence and dynamics of compositional structures in language by
exploiting both regularities found in the real world and (randomly generated)
regularities found in linguistic surface structures. As both human languages
and the world are highly structured, the model could be used profitable in the
development of robotic platforms too.

From a scientific point of view, the experiments show that, in the model, com-
positional structures can emerge such that they reflect the structures of the
world to a large extent. Factors influencing the emergence of compositionality
include induction mechanisms, structures of the world, (randomly generated)
structures in expressions and transmission bottlenecks. The latter confirms
findings by [6,23,41,70] and can be used to argue that “the poverty of the
stimulus solves the poverty of the stimulus” [70]. Moreover, the parallel devel-
opment of syntax and semantics also appears to have a positive effect on the
development of compositionality. The results also confirm earlier findings that
the guessing game appears to provide a better strategy to evolve qualitatively
more informative languages than the observational games do [56,63].

Current research focuses on scaling the experiments in terms of population
sizes [64], parameters affecting the current model, such as the alphabet size.
Future work will then scale the complexity of both the world and the agents
in order to provide an environment for more complex languages to emerge. In
addition, work is underway in order to extend the results of [62] regarding the
potential ability to explain the grammatical creativity found in children.
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