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Abstract

In this paper we discuss issues relating to modelling language evolution in large populations of au-
tonomous agents that are situated in a realistic environment where they have to evolve and learn means
to survive for extended periods of time. As we intend to build such a model in relation to the recently
started New Ties project, we identify three major problems that are expected for such a model. The

paper proposes some solutions and discusses future directions.

1 Introduction

Language evolution is a hot topic in today’s sciences;
especially in the field of computational modelling,
see, e.g., (Cangelosi and Parisi, 2002; Kirby, 2002)
for overviews. Typically, the computer models stud-
ied are simple, clear and provide useful insights into
the origins and evolution of language. However, lan-
guage is a complex phenomenon and this paper pro-
vides an outlook toward more complex models of lan-
guage evolution.

The computational studies that have been proposed
and studied so far have been very useful in investigat-
ing particular questions raised by theorists and em-
piricists in related disciplines, e.g., (De Boer, 2000)
and sometimes these studies even have developed
new hypotheses (Steels, 1998; Kirby and Hurford,
2002).>1 One limitation of today’s state-of-the-art,
however, is that most studies only focus on one, or
possibly a few aspects of language evolution. This,
in itself, is not problematic, but the models that are
used to study these aspects typically discard all (or at
least many) other aspects in their models, most no-

INote that these and other studies on which we base our argu-
ments are selected for their high influence in the field. The critiques
(or comments) made on these studies apply to all other modelling
studies published so far. It should also be noted that although the
critiques given are negative, this does not mean that we do not ap-
preciate, like or even adhere to the studies discussed.

tably those aspects that have some additional form of
complexity with it.

For instance, the studies presented in Vogt (2000)
have investigated how a population of physical robots
could develop a shared communication system that
was perceptually grounded in their environment.
However, the population in these studies was of size
2, the agents only communicated about 4 objects that
were always present in a context, there was no pop-
ulation turnover, there was no grammatical structure
in the communication system and there was no eco-
logical function for the language. These studies have
gradually been increased in terms of, e.g., larger pop-
ulation sizes and the number of objects — though with-
out perceptual grounding (Vogt and Coumans, 2003),
or evolving simple grammars — though still with small
populations of size 6 (Mogt, 2005).

These issues, however, are not really points of cri-
tique, but merely an observation of the state-of-the-
art. Refraining from complex models is very useful
and justifiable. For instance, increasing the number of
aspects that one includes in his studies will increases
the complexity of one’s models in terms of degrees of
freedom of, e.g., learning, interactions, analysis and
— very important — computational power. So, looking
at one — or few — aspects of language evolution has
many advantages and allows one to investigate struc-
turally what happens inside his models. However, the
limiting complexity can have a pitfall for our studies.



For instance, the assumption of using a population
of size 2 (cf. Kirby, 2001) or ignoring generational
turnover (cf. Steels, 2004) can have a huge impact on
the qualitative results of the experiments (Smith and
Hurford, 2003; Vogt, 2005). (Note that the studies
that discovered such flaws themselves ignore other
aspects that, undoubtedly, will lead to qualitatively
different results as they too are limited in their set up.)

To what extent then, do we need to complicate our
models in order to become more realistic and achieve
results that are more likely to be alike real language
evolution? The most perfect model of real human lan-
guage evolution would be the result of reconstructing
the real thing. This, however, is not what we want —
even if we could do it. However, we should attempt
to build models that are beyond our current level of
complexity to allow testing hypotheses in large scale
simulations that take into account more degrees of
freedom in order to become more realistic with re-
spect to the current models. Our aim with the recently
started New Ties project? is to implement a bench-
mark simulation that allows a level of complexity far
beyond the current state-of-the-art.

In the next section, we will briefly introduce the
New Ties project and address some problems we
think we will encounter. We will discuss how we
think we can tackle some of these problems in Sec-
tion 3. Finally, Section 4 concludes.

2 ldentifying the problems

The New Ties project aims at setting up a large scale
multi-agent simulation in which the population is to
learn and evolve a social culture and individual ca-
pabilities that enables them to (co-)operate viably in
their environment.® The environment will be mod-
elled loosely after the Sugarscape environment (Ep-
stein and Axtell, 1996), which will have a spatial grid,
different food sources, tokens, different types of ter-
rain and a large population of agents (Gilbert et al.,
2005). We assume that the agents have capacities that
will loosely reflect the capacities of early homo sapi-
ens. The agents, which are genetically specified, are
supposed to develop a repertoire of behaviours that
allow them to survive for extended periods of time.
The aim is to have these behaviours develop through
individual adaptation, cultural and genetic evolution.
The environment will be constrained in such a way
that the most efficient way to survive is to develop

2See http://www.newties.org.

3In order to deal with the computational complexity of such a
large scale simulation, 50 computers will be connected through the
Internet in a peer-to-peer fashion.

co-operation. We allow the agents to evolve language
such that they can improve on co-operation.

Although eventually the aim is to have the popula-
tion evolve a drive and means to evolve language, we
will start by assuming that they have this drive and
means. This leaves us with the non-trivial problem of
having the agents develop a shared communication
system. Before identifying some of the problems, it
is important to realise that each agent starts its life-
time without any knowledge about the world, so it
has no representations of meaning and language. It
is also important to mention that each agent acts au-
tonomously; there is no form of telepathy or central
control regarding the behaviour of agents. We have
identified three major problems we have to deal with
in New Ties:

1. At each moment in time we aim to deal with a
population of around 1,000 agents or more. No
known experiment in language evolution has had
such a large population size. It is expected that
having all agents interact with all other agents
leads to an unrealistic scenario and requires a
huge number of interactions to arrive at a shared
language. However, the agents are distributed
spatially across the environment and we do not
expect them to travel fast, so the likelihood they
will meet every other agent during a lifetime is
expected to be low. Nevertheless, we do want
them to mix to some extent, but we also believe
that learning language in small communities is
both realistic and more efficient. So the problem
is, how do we control communication?

2. There are a relatively large number of different
objects (food items, tokens, agents, roads, places
etc.), which are perceived by agents through
a fixed, but relatively large number of feature
channels. In addition, there are many actions
that can be performed. How do we allow agents
to categorise the different objects/actions such
that they become sufficiently similar to allow
language learning (cf. Smith, 2003), and such
that these categories are not predefined (i.e.
there is typically no one-to-one relationship be-
tween object and category)?

3. The contexts in which communication take place
are acquired by the agents autonomously. As a
result, they may differ from one individual to an-
other (see Fig. 2). In addition, the languages of
two individuals may differ, for instance because
one of the individuals is still a “‘child’. In brief: if
a speaker communicates about one object in its
context, how will the hearer infer its reference?



And, how do the agents infer the effectiveness
of the interaction? These problems are loosely
related to what is known as the Theory of Mind
(ToM).

The next section will present some directions we
propose as solutions to this problem.

3 Proposed solutions

3.1 Largepopulations

In order to deal with large populations, we decided
not to treat it as a problem. Instead, we regard it as
an asset with which we can learn about how different
dialects and languages may evolve. Nevertheless, we
do not want each agent in the population to commu-
nicate with all other agents, as we believe this will
give us huge convergence problems. In addition, we
do not want each agent to communicate unrestrictedly
with another agent, as this may lead to unlimited chat
sessions among agents who happen to be near to each
other.

When an agent S sees another agent A in its visual
field, it will evaluate, for each object o; in the context,
the function:*

f(A,0)) =v1-SB(A) +vs - strA(o;)) + To (1)

where v; and v, are weights, SB(A) is the social
bond of S with A, strA(o;) is the attention strength
of object o;, and Ty, is a talkativeness parameter.

In order to favour communication with close kin
and ‘friends’, we introduce a social bond variable
SB(A), which is based on the social network an
agent constructs (Fig. 1). SB(A) is a function that
is proportional to the number of interactions between
two agents (it is assumed that agents can recognise
each other) and the effectiveness of such interactions
(cf. Gong et al., 2004). The relation between parents
and offspring will be treated separately. It is assumed
that kinship innately promotes SB(A) and may be
regulated genetically.

The attention strength str A(o;) is based on a (pos-
sibly large) range of aspects occupying an agent with
respect to one of the objects o; in the agent’s con-
text. For instance, if the agent is hungry, has no food,
but sees that another agent carries a food item F,
strA(F) gets a high value. The function is part of

4For the current presentation we are only discussing objects to
communicate about. Actions will be treated similarly, but are set
aside for the time being.
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Figure 1: An illustration of an agent’s (A) social net-
work. The thickness of the lines indicate the social
bond SB(A') of A with another agent A’. See the
text for more details.

the agent’s ToM and is defined in Section 3.3, Eq.
).

The talkativeness Ty is a bias of the agent to com-
municate. This bias may be genetically specified, but
may also be based on learning that communication is
useful.

The agent determines which object in the context
yields the highest attention strength and the result
of f(A4,o;) will be forwarded to an action decision
mechanism that evaluates which action the agent will
take. In this action decision mechanism, the action
communicate will compete with other possible ac-
tions, such as move-forward or eat. If the agent now
communicates about o;, f (A, 0;) will temporarily re-
main low for o; afterwards in order to prevent unre-
stricted communication.

Given these mechanisms, we expect that there will
emerge a self-regulating communication drive, which
has a bias to communicate in small communities, but
does not exclude communication outside such com-
munities.

3.2 Categorising objects

Categorisation of objects will be based on the dis-
crimination game model (Steels, 1996a) and imple-
mented using a form of 1-nearest neighbourhood
classification (Cover and Hart, 1967). The aim of the
discrimination game is to categorise the object such
that it is distinctive from other objects that are in the
agent’s context. This need not require that the cat-
egory is a perfect exemplar of the object. Each ob-
ject has a number of perceptual features, e.g., shape,
colour, weight, location. Objects of a different type



object | f1 fo fs fa fs
A 03 07 02 04 01
Aq 08 02 02 04 05
T 00 00 04 03 03
TS 00 00 04 02 05
Ts 01 05 04 03 03
F 00 00 08 07 038
Fy 09 03 08 09 038
F; 00 00 08 08 0.6

Table 1: An example context with objects having 5
features f;. The objects include 2 agents (4;), 3 to-
kens (T;) and 3 food sources (F;). The features can
be perceived as direction (f1), distance (f), shapes
(f3), colours (f4) individual characteristics (f4).

may have exactly the same features when they are on
the same location. Some objects of the same type,
e.g., agents, have the same features in some dimen-
sions, but differ in others to allow identifying indi-
viduals.

Table 1 shows an example context containing 8 ob-
jects, each perceived with 5 features. Each object has
a direction and distance with respect to the perceiving
agent (features f; and f2). The objects 7%, T», F; and
F3 have f; = fo» = 0.0 indicating they are carried by
the agent in a ‘bag’. All objects of the same type
have the same shape (f3) and often the same colour
(f1)- Although for most objects colours are fixed, the
colour of food sources (F;) change over time, indicat-
ing the freshness and nutrition of the food. Although
individual characteristics (f5) may be the same for
different individuals of the same type, they are typi-
cally distinct; this is more so the case for agents (4;)
than for tokens (73) or food sources. Across different
types, similar individual characteristics can serve as a
perceptual basis for analogies.

Each object is categorised by finding for each fea-
ture the nearest categorical feature c; ;, which when
combined forms a category (cf. Vogt, 2005). Here 4
refers to the feature dimension, and j is the j-th cate-
gorical feature in that dimension. Suppose an agent’s
repertoire of categories (or ontology) includes cate-
gorical features cs; = 0.2, c32 = 0.5, c41 =
0.3, Ca2 = 04, C43 = 0.7 and Cq4 = 0.85. Then
objects A; and A, are mapped onto categorical fea-
tures c3,1 and c4,2, and the agent can form the cate-
gory e¢1 = (cs,1,¢4,2). In principle, all possible com-
binations of categorical features can be used as a cat-
egory, so categories ca = (c3.1) and c42 = (c4,2)
are also valid categories. In order to prevent a combi-
natorial explosion of the search space for categories,
we are designing heuristics to prevent searching all

possible combinations, such as looking for distinc-
tive categories of the lowest dimension, or by taking
combinations that form groups of objects.

Similar to the categorisation of Ay and Az, Ty, Tb
and T3 are categorised using categorical features cs o
and c4,1; the food source F; has categorical features
cs3,2 and ¢y 3; and Fy and F3 are categorised using
3,2 and ¢4 4. As mentioned, the aim of the discrim-
ination game is to find categories that distinguish an
object (or group of objects) from the rest of the con-
text. In this example, only F; has distinctive cate-
gories. When trying to categorise F3, for example,
the discrimination game fails, and the ontology has to
be expanded (recall that initially, each agent’s ontol-
ogy is empty). This is done by taking the features of
F3 as exemplars for new categorical features, yielding
c3,3 = 0.8 and c4,5 = 0.8. Of course when addition-
ally considering all different feature dimensions, the
agent may have had categorical features that would
distinguish each object from another.

In the language that will be constructed, agents
map categories to words. The agent can use a combi-
nation of categories to distinguish the object it wants
to communicate, thus forming a multiple word utter-
ance. We intend to use this possibility as a means to
develop a simple grammar.

3.3 Theory of mind and language games

Probably the biggest problem that this project has to
deal with is what we loosely call the Theory of Mind
(ToM). When a speaker communicates something to
another agent, the hearer has to infer what the speaker
refers to. When the language is well developed, this
may not need to be problematic, but when the com-
munication system of an agent is undeveloped or
when the agents speak a different language, this is ar-
guably one of the biggest problems in science. Nev-
ertheless, humans seem to deal with this problem of
referential indeterminacy relatively easy. It is com-
monly accepted that humans have developed (either
phylogenetically or ontogenetically) ToM, which re-
lates to the ability to form theories about other indi-
vidual’s intentions (Bloom, 2000).

Although eventually we intend to evolve some as-
pects of ToM in New Ties, we shall begin by imple-
menting them directly. The ToM will become an inte-
gral part of the language games we will develop. The
language game, based on (Steels, 1996a), implements
the interaction between two (or more) individuals as
illustrated in Table 2. In essence, the agents start by
perceiving the context of the game and categorise the
objects they see using the discrimination game (DG)



t speaker hearer
n -perceive context
-categorisation/DG
-focus attention
-produce utterance
-update lexiconl
-send message
n+1 -receive message
-perceive context
-categorisation/DG
-focus attention
-interpret utterance
-update lexiconl

-respond
n + 2 | -evaluate effect
-respond
n+3 -evaluate effect
-respond

n + 4 | -update lexicon2 -update lexicon2

Table 2: An example scheme for playing a language
game between a speaker and hearer. The game may
take up to 5 time steps ¢. See the text for details.

as explained above.

That the contexts of agents typically differ is illus-
trated in Fig. 2. The context of agent A, contains
4 of the 5 food items of type Food1, agent A,, the
contents of A,’s bag (2 more food items of Food1)
and the contents of its own bag (1 Token, 1 Food1l
and 1 Food2).5 The context of agent A, contains
2 Tokens, 2 Foodl and agent A; from the visual
field, the contents of A;’s bag and the contents of
its own bag. Due to the physical nature of the en-
vironment, we can (and will) not make sure that the
contexts of different agents are the same. However,
we can introduce aspects of ToM that give the agents
cues what the other can see and what the other’s in-
tentions are. This will be part of the focus attention
mechanism. In this mechanism we will assume an at-
tention strength str A(o;) for object o;, which is cal-
culated using a formula such as:

strA(o;) = wiPar(0;) + w2Var(0;) + wsN(0;)+
'11)415(0,’) +wslg + ...
(2

where w; are weights and the other arguments are
functions that estimate certain aspects of both agents’
intentions and knowledge of the current situation.
Py (0;) is the normalised frequency with which the
other agent A’ has communicated about object o; in

5Note that obscured objects are not perceived by the agents.
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Figure 2: An example situation of a language game.
An agent’s context is defined by those objects that in
its visual field, the contents of the bag of any agent
that is in their visual field, including their own. Ob-
jects that are obscured by another object are not visi-
ble, nor are objects outside the visual field.

the presence of the evaluating agent — the self S.
V(A")(o0;) is a function that estimates the likelihood
that o, is in the visual field of A’. N(o;) is a novelty
(or salience) detector, indicating how novel o; is in
the context of S. We assume N (o;) = 1 if o; first en-
ters the context or when it is shown by another agent;
after which it decays following N (o0;) = e~#¢, with
B a positive constant and ¢ the time period that o; is
in the context. If an agent explicitly shows an object,
the object will also get a high novelty value. I5(0;) is
a function that calculates the drive of S to communi-
cate about this object, based on its internal states. For
instance, if S is hungry, it has a large drive to commu-
nicate about food items. Finally, I 4/ (o;) is a function
that estimates the drive of A’ to communicate about
object o;.

The speaker of the language game will use
strA(o;) to select the topic it wants to talk about. If
any of the strengths is below a certain threshold, or
— at least — lower than any other action to take, then
the language game will not proceed. If, however, for
some object o; the value strA(o;) exceeds any other
object attention strength or action value, the language
game will proceed with the utterance production of
the speaker.

The agents construct and maintain a lexicon in their



my mn
w1 P11 PlN
wm PM1 PMN
mi mn
w1 J11 1N
Wpr OM1 OMN

Table 3: Two association matrices constructed and
maintained as part of an agent’s lexicon. The up-
per matrix (lexiconl) associates m; with w; using
conditional a posteriori probabilities P;;. The lower
matrix (lexicon2) associates categories (or meanings)
m; with words w; using an association score o ;.

memories, which is represented by two association
matrices as illustrated in Table 3. One of the matri-
ces(referred to as lexiconl in Table 2) keeps an a pos-
teriori probability P;;, which is based on the usage
frequencies of associations. The other matrix (lexi-
con2) keeps an association score o;;, which indicates
the effectiveness of an association based on past ex-
periences. The reason for this twofold maintenance is
that studies have revealed that when strong attentional
cues (such as joint attention or corrective feedback,
discussed shortly) guide learning, the lexical acqui-
sition is much faster than when such cues are absent
(Vogt and Coumans, 2003). The games using strong
attentional cues work fast, because the update mech-
anism reinforces the score o;; more strongly than the
update of usage based probabilities P;;, which —in
turn — work more effectively when the strong atten-
tional cues are absent.
The probabilities are conditional probabilities, i.e.
Pyj = P(mj|w;) = =2 3)
N TN i
where u;; is the co-occurrence frequency of meaning
m; and word w;. This usage frequency is updated
each time a word co-occurs with a meaning that is
either the topic (in case of the speaker) or that is in
the context (in case of the hearer). The update is
referred to in Table 2 as ‘update lexiconl’. If this
principle would be the only mechanism, the learning
is achieved across different situations based on the
covariance in word-meaning pairs (Vogt and Smith,
2005).
The association score o;; is updated following:

oij =no +(1-nX (4)

where 7 is a learning parameter (typically n = 0.9),
X = 1 if the association is used successfully in the
language game, and X = 0 if the association is used
wrongly in the language game, or — in case of a suc-
cessful language game — if the association is compet-
ing with the used association (i.e. same word, differ-
ent meaning; or same meaning, different word). The
latter implements lateral inhibition. The update of as-
sociation scores is referred to in Table 2 as ‘update
lexicon2’.

Given these two matrices, the speaker, when try-
ing to produce an utterance, calculates an association
strength strL(a;;) for each association «;; of a word
w; With meaning m;, where the meaning is the cate-
gory that the speaker wants to communicate. This is
done using Eq. (5).

StT‘L(Oéi]') = 0ij + (]- - a'ij)Pz“ (5)

This formula neatly couples the two variables.
When o;; is high, the influence of P;; is low, and
when o;; is low, P;; will have more influence. This
implements a bias toward basing a choice on known
effectiveness vs. estimated probabilities. The speaker
will select the association that has the highest strength
and utter its word. If no association can be found,
e.g., because the lexicon is still empty, the speaker
may invent a new word and adds the association to its
lexicon.

When the hearer receives an utterance, after it per-
ceives a context and categorises its objects using the
DG, it will estimate the attention strength of objects
in the context using Eq. (2). Then it calculates for
each association of which the word matches the utter-
ance and the meaning matches one of the categorised
objects using Eq. (5). The hearer then interprets the
utterance using the following equation:

pij = wr, - strL(ay;) +wa - strA(o;)  (6)

where wr, and w 4 are weights. This equation is based
on the model presented in Gong et al. (2004).

Based on its choice, the hearer will respond with
some action, which still needs to be specified. An
example response could be that the hearer will give
the speaker food. The speaker will then (time step n+
2 in Table 2) evaluate the effect of the language game.
If this is what the speaker intended, it can signal the
effect to the hearer as response.® In turn, the hearer
will evaluate this signal and — if necessary — respond
as well. If this finishes the language game, the agents

6Here we assume that agents can notice if an action has a posi-
tive or negative effect.



can update lexicon2 using Eq. (4) with X = 1 for
the used association and X = 0 for competing ones
if the game is successful. If the game had noticeably
failed, then lexicon2 is updated with X = 0O for the
used association.

There are many reasons why the language game
may fail. For instance, the hearer could not inter-
pret the utterance, or its response does not match the
speaker’s intention. In the first case, the hearer can
signal a failure as response. In the latter case, the
speaker can signal a failure. In both cases, the game
will need to be repaired in order to allow significant
learning.

For now, we will assume that the initiative to re-
pair the game lies with the speaker. For example, the
speaker can ignore the failure when the hearer was
not the direct addressee, or when the social bond is
low and the speaker wishes to proceed with another
action. The speaker can also decide to do one of the
following things in order to provide the hearer with
additional cues about which object is the reference of
the game:

o show an object from the bag;

e pointto an object in the context by looking in its
direction;

show an action;

go to the object;

Using these cues, the hearer tries to reinterpret the
utterance with a strong additional bias to the shown
object, and the game is re-evaluated. We will imple-
ment a mechanism to prevent this continuing forever;
for instance by allowing only one or two reinterpreta-
tions.

If the hearer did not have an interpretable associa-
tion of the utterance in the first place, it will adopt the
utterance and add a new word-meaning association to
its lexicon. The initial value of o,e,,,; Will be based
on existing associations with word w; — if any —and
the attention strength of object o,,,, according to

Onew,j = k- (1 —max(0;,;)) - strA(opew) (7)

where we assume that o,..,; relates to meaning
Mye that is a distinctive category of object 0,64 .
(Note that there may be more than one such associ-
ation.) The association(s) will be added to lexiconl
with an initial usage of upeq,; = 1.

To summarise, we intend to extend the familiar
language game model in order to include aspects
of ToM. The language game is largely based on

the guessing game, which uses corrective feedback
to guide meaning inference, and a game that uses
cross-situational statistical learning (Mogt and Smith,
2005). The cues as formalised in Egs. (2) — (7), to-
gether with the repair mechanisms, are the core mech-
anisms of the ToM. Initially we intend to hard-wire
the ToM into the New Ties project, but at some stage
we wish to evolve this — for instance by evolving the
various weights of Egs. (2) and (6).

4 Conclusions

In this paper we identify three major problems re-
garding modelling language evolution in large pop-
ulations of autonomous agents, such as proposed in
the New Ties project. The problems and proposed
solutions can be summarised as follows:

1. How can we control communication in large
populations? We intend to treat this as a minor
problem by limiting communication based on
the spatial location of agents and the social net-
works they develop. In addition, to provide well
structured learning environments for the young
agents, we will treat close kinship relations as
an extra drive to communicate.

2. How can we categorise a large number of objects
such that they are learnable in language? To
solve this problem, we propose a model based
on Steels’ discrimination games (Steels, 1996b)
where perceptual features are categorised fol-
lowing the implementation of Vogt (2005). To
deal with overlapping classes of objects we in-
tend to develop heuristics that group categorical
features that are similar across different objects.

3. How do we deal with issues relating to the The-
ory of Mind? This problem is identified as the
hardest problem. In order to deal with it, we
propose to design mechanisms that allow an in-
dividual to use perceptual and interpretational
information to provide cues concerning the ob-
jects that the other agent is likely to communi-
cate about. These mechanisms will be integrated
in the familiar language game models used ear-
lier in Vogt and Coumans (2003) similar to the
way proposed by Gong et al. (2004). In addition,
social strategies are proposed in order to repair
failures in language games.

We are currently investigating stability conditions
of social networks in relation to the scaling of pop-
ulations. In addition, we are implementing a simple
version of the ToM to prove the principle.



We believe that, although the problems we iden-
tified are hard, we can scale up models of language
evolution successfully much in the way we discussed.
If we succeed, we expect that this experiment will
provide an exciting benchmark for many large scale
experiments regarding the evolution of language.
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