Self-organisation of conceptual spacesfrom
guality dimensions

Paul Vogt

Abstract This chapter presents a discussion on how conceptual spaces/olve
from a set of quality dimensions, and how these spaces camgeshared among a
population of cognitive agents. An agent-based simulaiiddteels’ Talking Heads
experiment is presented in which virtual agents constragehconcepts, as well as
a shared, simplified language from scratch. Simulationsothsinate that the struc-
ture of a conceptual space (i.e. from what quality dimerssiofis composed) can
evolve in a population of communicating agents. It is argthed the underlying
mechanisms involve the following factors: the environmafithe agents, their em-
bodiment and cognitive capacities, self-organisatiod, @rtural transmission.

1 Introduction

Conceptual spaces are constructed from quality dimengt@gsienfors, 2000), but
how are quality dimensions selected to constitute a pdati@onceptual space? Is
it the result of biological evolution? Or do the conceptyshses emerge through
ontogenetic development? And, if the latter, are they cally determined and/or
constrained through cognition, embodiment, or the ecoldgiiche? | will argue
that it is probably a combination of all these factors.

To answer these questions, let me start by briefly recamgtwimat quality di-
mensions are and how they constitute conceptual spacesrdiag to Gardenfors
(2000, p. 6) “the primary function of the quality dimensidago represent various
‘qualities’ of objects ... [and] correspond to the differ@rays stimuli are judged to
be similar or different”. In visual perception, for instam¢hese qualities could be
feature detectors such as hue, saturation and brightnespriesent the conceptual
space of colour, edge detectors that may combine to refrassrape, spatial de-
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tectors combine to represent spatial locations, etc. ley®hd doubt that many (if
not all) of these quality feature detectors are innate awe eaolved biologically.
It is also arguable that evolution has selected for padiccbnfigurations of feature
detectors (or quality dimensions) that together form aipagr conceptual space,
such as the colour space. However, this does not neceskalilyfor all possible
conceptual spaces.

Take, for example, the space of spatial concepts. Langueyesdifferent ways
of communicating spatial relations, based on three diffefeames of reference:
relative to the target object (e.g. the box on the left of tee), intrinsic to the target
(e.g. I am in front of the box) or absolute (the box to the npr@ften languages
have a combination of two or three of these frames of referewhile other lan-
guages have only one of these (Majid, Bowerman, Kita, Hauheginson, 2004).
There is abundant evidence that the way people categoristharway they com-
municate about spatial relations are tightly linked, sogheple who speak using
a particular frame of reference, also categorise the wdidd way (Majid et al.,
2004; Haun, Rapold, Janzen, & Levinson, 2011). Such a Whaafitaaunt (Whorf,
1956) not only holds for spatial concepts, but also for mahgotypes of concepts
(Bowerman & Levinson, 2001). Since the speakers of diffel@@rguages categorise
spatial relations so radically different, it is conceivabiat their concepts are repre-
sented in conceptual spaces made up of different qualitgiions.

The spatial concepts that people use in their language caoitynis clearly
learnt, flexible, and depends to some extent on the physis@omment (Haun et
al., 2011). Tzeltal speakers, for instance, live in a hiltlyisonment and communi-
cate spatial relations in terms of being uphill or downhilbw, imagine a Tzeltal
speaker moving to the Netherlands where there are no htlfgs, he will have dif-
ficulty categorising the world in terms of spatial concepisvertheless, he will be
able to distinguish that objects are in different spatiablns. If he learns Dutch,
he will learn that spatial relations are communicated inatire frame of reference
using left, right, front, etc. Its concepts would be reprged in a different concep-
tual space constructed from a different set of quality disiams. If he gets a child
in the Netherlands and, as long as they will not leave the ét&thds, this child will
learn to categorise the world the way Dutch people do in terhteft, right, etc., as
well as the concepts of North, East, etc., but although tlild oy learn to speak
Tzeltal, he will not be able to form the concepts of uphill atwvnhill. (Imagine
Dutch speakers talking about things being uphill or downhihile there are vir-
tually no hills in the Netherlands.) To really being able éori such concepts, the
child will need exposure to a hilly environment.

In this chapter, | will demonstrate how a group of virtuaé (j.simulated) robots
can acquire various conceptual spaces from a given set ditygdamensions by
developing a set of linguistic conventions from scratclotigh cultural evolution (I
will take the biological evolution of conceptual spaces doanted). Before doing
that, | will set the theoretical framework of these simwas in which | argue that
the following factors are the driving force behind such adalegment: the environ-
ment (or ecological niche), embodiment (i.e. the physicapprties of the agent),
cognition (e.g., the way concepts are learnt and repredgrelf-organisation and
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cultural transmission. The robotic agents are necessabgyracted away from hu-
man agents, so that the results are not directly generldisabuman cognition. The
purpose of this chapter is therefore not to present a bicédigiplausible model of
the formation of conceptual spaces from the basic prinstafequality dimensions,
but to illustrate a number of likely mechanisms and propsrthat could explain
how such a development could work.

2 Theevolution of conceptual spaces

The theoretical framework is developed from an evolutigriarguistics point of
view, because of the tight link between linguistic and cqeal structures (Majid
et al., 2004; Bowerman & Levinson, 2001). In particular, freamework will be
based on a hypothesised evolutionary transition from tioligrotolanguages to
more modern compositional languages (Wray, 1998). In omelotthat, it is in-
strumental to define such languages:

Holistic languages are languages in which parts of expressions have no func-
tional relation to any parts of their meanings. For instatioere is no part of the
expression “bought the farm” that relates to any part of iEaning “died”.

Compositional languages are languages in which parts of expressions do have
a functional relation to parts of their meanings and the vy tare combined.
For instance, the part “John” in “John loves Mary” refers tguy named John,
likewise “loves” and “Mary” have their own distinctive maags. In addition,
this sentence has a different meaning in English when thelxeaoier changes,
as in “Mary loves John”.

Based on these definitions, it is possible to conceive thapéirticular meaning
is associated with a holistic utterance, then this meanmgddcbe represented in
someN-dimensional conceptual space. However, when the sameingeaould
be associated with a compositional utterance, then pattseaditterance would be
associated with individual concepts each represented within an-dimensional
conceptual space with < N.

Alison Wray (1998) has argued that protolanguages were gakgiholistic in
nature and that from these initial stages language has ghg@wolved into compo-
sitional languages. Although it has been argued that @otplages were not holis-
tic, but synthetic and instead consisted of multi-wordrattees without a particular
syntactic structure (Bickerton, 1984; Jackendoff, 200&)us assume that Wray
is correct. (Without justification, | believe that many okthinderlying principles
presented in this chapter would hold either way.) Then onddcask the question:
what evolutionary mechanism(s) caused this transitiore?ritivist account would
be that the population of language users have adapted hiallygto learn and pro-
duce compositional languages (Pinker & Bloom, 1990). I§ thccurred through
natural selection, this would require that individualshnét particular genetic mu-
tation started using compositional language (at least meesextent), which made
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them evolutionary more advantageous, thus improving tfences of passing on
this mutation, thus increasing the population of individuasing compositional
language, etcetera. Although not impossible, biologivalwgion is a rather slow
process that would take quite a number of generations befanatation is spread
among the entire population.

An alternative explanation takes the view that culturalletion was the driving
force behind the transition from holistic protolanguagedmpositional language.
In this viewpoint, put forward by Wray herself and soon adddig Simon Kirby
and colleagues (Brighton & Kirby, 2001; Kirby, 2001; Kirbgmith, & Brighton,
2004; Kirby & Hurford, 2002; Kirby, Cornish, & Smith, 2008)e population of
language users does not adapt to learn and use compositogaiages, but the
language adapts itself such that it can be learnt and prddogéts users. This is
an appealing explanation, not only because language cltsgmgeads faster across
a population through cultural evolution, but also becaukema genetic mutation
yields a change in the language that other language usenstodeal with, the mu-
tant language user does not conform to the other users, Hmpdring effective
communication.

The potential of this cultural evolutionary explanation fiois transition has been
demonstrated over and over again in computer simulationgh{n & Kirby, 2001;
Kirby, 2001; Kirby et al., 2004; Kirby & Hurford, 2002; Vog£005a) and in psy-
cholinguistic experiments (Garrod, Fay, Rogers, Walkegwoboda, 2010; Kalish,
Griffiths, & Lewandowsky, 2007; Kirby et al., 2008). The tgpl approach in these
simulations and experiments is based on iterated learnimdhich the language of
one individual is passed on to a learner from a next generatibo in turn passes
on the language to the next generation, and so forth. This ¢heates a chain of
generations of language users who each acquire the landiagehe previous
generation.

The learners in this model are endowed with a learning mesimathat enables
them to discover regular patterns in the input (both in spesw semantics) and
when a regularity is discovered, a compositional repregim can be constructed
and used. This is especially useful when a language useisviartommunicate
a previously unseen meaning that is composed of severakptséor which the
user knows words or utterances to express parts of the ngganitinot the whole
meaning holistically. Kirby and colleagues have demomsttréhat a transition from
holistic languages to compositional language occurs whelreinguage is transmit-
ted through a bottleneck where the next generation needenmnanicate about
previously unseen meanings. The primary reason for thisaisa bottleneck makes
the transmission of holistic languages unstable, but natdmpositional languages,
as illustrated in Figure 1.

The abstractions and assumptions made in the iteratediganodel, especially
in the computational implementations, however, make itlhiargeneralise the re-
sults. For instance, it is typically assumed that each ggioer has only one indi-
vidual and that only the individual from the older generatjzasses on language
to the next generation, thus it rests entirely on vertiGahsmission. Consequently,
the researcher has to impose the transmission bottlengxdicidy. In addition, in
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| Type | G(n) | Utterance | G(n+1) |
toma-[redsquare]| toma-[redsquare] | toma-[redsquare]

- tula-[greentriangle] tula-[greentriangle]| tula-[greentriangle

Holistic

bulo-[greensquare] bulo-[greensquare] bulo-[greensquare]
rino-[redtriangle] ??-[redtriangle]
toma-[redsquare]| toma[redsquaré toma-[redsquare]

Compositional bulo-[greentriangle] bulo-[greentriangle]| bulo-[greentrianglg]

buma-[greensquarelouma[greensquarg | buma-[greensquarg]
tolo-[redtriangle] tolo-[redtriangle]

Fig. 1 This figure illustrates why holistic languages (upper pam) @nstable when a population
of generatiorG(n+ 1) only observes three of the four utterances from gener&ion’s language
(i.e. word-meaning mappings). In this case, if genera@gdn+ 1) wishes to communicate about
meaning [redtriangle], then this generation will have tcateea new word. If the language were
compositionally structured as in the bottom part of this figateserving the aligning patterns from
only three out of four utterances would allow the next getienao reconstruct the entire previous
language. Hence transmitting a compositional language thralgittleneck is evolutionary more
stable than transmitting holistic languages.

most computer simulations the semantics are predefinedebyesgearchers, who
thus ensure that there are clear decomposable semantitusts

A more realistic model would assume a population containagy individuals
from different generations, who can each pass on parts dattgeiage to other in-
dividuals more akin to oblique and cultural transmissidnisTs important, because
the dynamics of cultural evolution in vertical transmissioas in the iterated learn-
ing model — is quite different from the dynamics that can bseobed in systems
pertaining to oblique and horizontal transmission, which @ore reminiscent of
human cultural evolution (Cavalli-Sforza & Feldman, 198Ihese systems allow
for cultural traits, such as linguistic entities or memesevolve based on neo-
Darwinian evolution in which variation, competition andfsarganisation of traits
play a crucial role (Boyd & Richerson, 2005; Croft, 2002; Mehe, 2001). One
advantage of a transmission system where the offspringtoatof transmit knowl-
edge to peers or to older generations while they are stilhieg, is that they will
encounter new situations in which they may need to commteedaout previously
unseen items (cf. Fig. 1). In the iterated learning modehsitations only occur
after learning has stopped. The system of horizontal anidubdtransmission thus
provides learners with a natural implicit transmissiontleoeck that triggers the
emergence of compositionality (Vogt, 2005c).

A downside of predefining the agents’ semantics — as is the icasnost it-
erated learning models — is that this removes 1) the role dhtigenetic devel-
opment of concepts can play in bootstrapping the emergehcenepositionality
(Vogt, 2006b), and 2) the individual variation in concepigetion which is a cru-
cial component of neo-Darwinian evolution. Moreover, dimgbagents to develop
categories/concepts from interacting (i.e. perceiving acting in) the world, it be-
comes important to consider by what means the world is perdeind acted in.
For example, a researcher should consider what sensorstannaly have. Are these
cameras, touch sensors, a compass or a combination of thAese®hat type of
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information is filtered from these sensors? All these factssentially define the
agents’ embodiment, which in turn defines what qualitiesafent can perceive
in the world, thus constricting the possible conceptuatspdhat can be formed.
Although agents with different physiological capacitiesdearn to communicate
effectively — think of blind people, but also robots can dstfue Greeff & Bel-
paeme, 2011) — the question is to what extent they converget@mal conceptual
representations. This question is even relevant for agevmsg the same bodies,
but different experiences in the world.

It should be clear that agents form concepts that reflect trkelthey engage in —
it is impossible for agents who only encounter a flat worlddquare concepts such
as uphill or downhill. People who only live in a remote aresh& Amazon and who
have never visited or seen skyscrapers, will not be ablellpdtasp the concept of
a skyscraper. This does not only apply to basic conceptsalbatto compositions
of concepts and the structures thereof. For instance, deniie concept of a cup.
A cup can hold many substances (coffee, tea, water, sugahnave various colours
(white, blue, orange, ...), shapes, textures, sizes, etenWhere is only one cup
present in a particular context, such features are not soriaqt, but when there
are multiple cups around these features may become imporae way humans
conceptualise the cup in these different situations is tatdll, but looking at the
ways humans refer to a particular cup in different situatienggest we structure
our conceptual representation (Brennan & Clark, 1996; &ooGatt, Goudbeek, &
Krahmer, 2011). The way concepts are structured depermsgsiron the objects’
properties and the way we perceive them, which in turn teodetreflected in the
language. | would argue that this goes so far that much ofttnetare of our en-
gagement in the world (and more particularly in our ecolapitche) is reflected
in the grammars of our language. Humans tend to manipulate $arget in one
way or another. This is how we universally behave in the wafdl that is what is
reflected in most languages spoken across the globe: Mash@ball) languages
have linguistic structures in which sentences contain gestika verb and an object
(Baker, 2003; Evans & Levinson, 2009). Hence, the way weaatevith our envi-
ronment (i.e. our situatedness) and consequently thetgteuof our environment,
as well as our embodiment, influence the way we conceptudlése/orld. Culture
and language are part of our environment and are thus notroahjfestations of
our conceptualisations, but also shape them.

In the remainder of this chapter, | discuss a model that taeacorporate the
fore-mentioned principles in a simulation in which a popiola of agents evolve a
simple compositional language from scratch in two stepst diholistic language is
formed, second a transition towards a compositional lagguacurs (Vogt, 2005a,
2005c¢, 2007). This model combines some components of Krigrated learn-
ing model (Kirby, 2001) — language learning and transmissiger generations —
with Luc Steels’ language game model (Steels, 1997, 20Q2)20 his way, gram-
matical structures and — as part of this — conceptual spacesatve through self-
organisation driven by social interactions between agamisthe cognitive learning
mechanisms of these agents. As the agents are situated ftual @nvironment
where they are forced to communicate about the objects iretrionment, the
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structure of the environment, as well as the agents’ pene¢pipparatus, constrain
the conceptual structures of the emerging languages. Tieraleprinciples of this
system — especially with regards to the complex adaptivaihjcs — are the same as
in most of Steels’ studies. However, where the formatiorrafignar in Steels’ mod-
els relies on a complicated formalisation of cognitive gneamns (Steels & Beule,
2006; Steels, 2012), the model presented here relies omigltdforward realisa-
tion of alignment-based learning (Zaanen, 2000) in conttmnawvith data-oriented
parsing (Bod, Sima’an, & Scha, 2003).

3 Language games

The model simulates the Talking Heads experiment (Steelplaf, Mcintyre, &
Van Looveren, 2002) in which a population of agents play gdarumber of guess-
ing games —a variant of the language game— to develop a lgaghat allows the
population to communicate about their world. This world teéms 120 coloured
geometrical shapes (12 colours x 10 shapes) and the agents\gaperceive the
RGB values of the colour and one feature representing thgestaguessing game
is played by two agents: a speaker and a hearer. The aim ohthe i3 for the hearer
to guess what the speaker verbally refers to, and — wheréjmsseach individual
agent adapts its conceptual and linguistic representasaoh that the communi-
cation becomes more effective. The game consists roughtyeofollowing steps:
perception, conceptualisation, production, interpreteand adaptation.

These steps are explained in some detail in the remaindbaiso$ection, with a
special focus on the emergence of conceptual spaces. fanbehe scope of this
chapter to present all details of the model, and the intedestader is referred to
Vogt (2005a, 2005c).

3.1 Perception and conceptualisation

In each guessing game, a number of objects are randomly drawnthe world
with a uniform distribution and are ‘shown’ to the agentstesdontext of the game.
Suppose an agent sees the three objects on the top left aEFRgred square, yel-
low hexagon and purple circle. Using its perceptual apparaach object is trans-
formed into a 4-dimensional vector representing the r, glarndlues of the RGB
colour space and a feature value representing the objéejsess. The red square
is thus represented by vectdr, 0,0, 1), the yellow hexagon byl,1,0,0.5) and the
purple circle by(1,0,1,0.57). These feature vectors represent the raw percepts of
the objects.

Each feature of each percept is then categorised with aagtégmm the rele-
vantr, g, b and s quality dimensions. The categories divatd €limension in one
or more segments and are represented by a prototypical, \aduiedicated by a
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Fig. 2 This figure illustrates the conceptualisation and adaptatitnng the discrimination game
(see the text for details).

dot in Figure 2. The square would be thus categorised by théAs&, F,G}, the
hexagon by{A D,F,G} and the circle by{A E,F,G}. Such sets represent the ob-
jects’ concepts as cubes in the 4-dimensional conceptaales his is, probably,
not a realistic representation of conceptual spaces, i3 itonsequence of treating
each quality dimension independently to facilitate thelestion to be part of dif-
ferent conceptual spaces. More realistic implementatidre®nceptual spaces that
would be applicable have been put forward in, e.g., SteadsBaipaeme (2005);
Wellens, Loetzsch, and Steels (2008) and Vogt (2004).

In order to communicate effectively, the agents indivitjuptocess discrimina-
tion games (Steels, 1996). The object of a discriminationayes to obtain a concept
that represents an object such that it distinguishes thebfsom the other objects
in the context. If the agent is to conceptualise the hexagarontrast to the two
other objects of Figure 2, the agent is successful as theepdfi8, D, F, G} is dis-
tinctive. If, however, the agent is to discriminate the gquar the circle from the
other two objects in this context, the agent fails as botleabjhave the same con-
cept. If this occurs, the agent adapts its categories byngdtie feature values of
distinguishable dimensions as a prototypical exemplaneappropriate quality di-
mensions. For instance, if the agent was trying to distisigtine circle from the
other two objects, it would add the categorieandJ to the original representation,
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1 S— greensquare/(0,1,0,1) 0.2
2 S— Alrgb Bls 0.8

3 A—red/(1,0,0,?) 0.6
4 B — triangle/(?,?,?,0) 0.7

Fig. 3 This example grammar contains rules that rewrite a non-terniimal an expression-
meaning pair (1, 3 and 4) or into a compositional rule that consbditferent non-terminals (2).
Rule (2) is thus a rule that combines linguistic categoriesfeptual spaces Alrgb and B/s (i.e.,
A relates to the RGB colour space and B to the shape space). Fdicptaeasons concepts are
presented as 4-dimensional vectors, where the first 3 dimensias telthe RGB colour space
(rgb) and the 4th relate to the shape feature (s); the questioksrase wild-cards and indicate
which quality dimension(s) is (are) not part of this concepgpace. Each rule has a rule score
that indicates its effectiveness in past guessing games. Onlynsestef one or two constituents
are allowed in this grammar.

yielding the set of quality dimensions with categories gided in the dashed box
of Figure 2.

Conceptual spaces in this model can be formed by taking of@utoof these
quality dimensions together, so there can be four 1l-dino@asispaces, six 2-
dimensional spaces, three 3-dimensional spaces and oineeftglonal space. The
concepts within each space can be used to represent therbaaiings in the
agents’ language. This way, conceptual spaces are cotestriiat could be inter-
preted as linguistic categories. Initially, the agentd willy conceptualise percepts
in the 4-dimensional space and associate such concepts/miithforms in a holis-
tic manner. The purpose of this study is to demonstrate hantagcan develop
conceptual spaces of lower dimensions and use these ctlid@retanguage. To
understand how this may be achieved it is important to unaedshow the agents
represent, use and learn their language.

3.2 Production and interpretation

Once the agents have categorised the objects in the cotitexdpeaker selects one
object at random with a uniform distribution as the topichef tommunication. This
agent then searches its grammar for ways to produce an siqrekat conveys the
topic’s concept. The grammar (Figure 3) is an individuaiisnpetence and consists
of simple rewrite rules that associate forms with concefitee holistically (e.g.,
rule 1) or compositionally (e.g., rule 2 combined with ru8and 4). The grammar
may be redundant in that there may be rules that compete tlupecr interpret an
expression (cf. Batali, 2002; De Beule & Bergen, 2006; Ste)12). The speaker
searches for those (compositions of) rules that match fhie'scconcept and if more
than one are found, he selects the rule that has the highestoare. If the speaker
fails to produce an expression this way, a new form is inwgtatean arbitrary string
and is associated with the topic’s concept or — if a part ottirecept matches some
non-terminal rule — with the complement of this concept.iRstance, if the speaker
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would want to produce an utterance expressing a red squar®, 1) and it knows
a word for the colour red1,0,0,?) but not for square, then it invents a new word
(e.g., ‘wateva’) to express squafg ?,?,1) and adds this to its grammar.

In turn, the hearer tries to interpret the expression bychdag its own grammar
for (compositions of) rules that match both the expressimhaconcept relating to
an object in the current context. If there is more than oné sule, the hearer selects
the one with the highest score, thus guessing the objecidateby the speaker. The
hearer then ‘points’ to this object, and if this is the objat¢énded by the speaker, the
speaker acknowledges success; otherwise, the speakés mthe topic allowing
the hearer to acquire the correct concept referring to tpeession.

3.3 Adaptation

If the guessing game was successful, both the speaker arat reaease the scores
of the rules they used and lower the scores of those rulesctimapete with the

used rules. If the game has failed, the scores of used ruéetoaered and the

hearer acquires the proper association between the hgamgssion and the topic’s
concept. To this end, the hearer tries the following threpstuntil one step has
succeeded:

1. If a part of the expression can be interpreted with a path@ftopic’'s concept,
the rest of the expression is associated with the compleafeéhe concept. For
instance, if the hearer of the grammar shown in Figure 6 hib@&xpression
“redcircle” referring to the concept (1,0,0,.5), the par#d’-(1,0,0,?) can be in-
terpreted, so the hearer adds rule:Bircle/(?,?,?,.5) to its grammar.

2. If the above failed, the hearer searches its memory, whseteres all heard or
produced expression-concept pairs, to see if there aranioss that are partly
similar to the expression-concept pair just heard. If soméarity can be found,
the hearer will break-up the expression-concept pairsatoing these similar-
ities following certain heuristics, thus forming new corsfimnal rules. Sup-
pose, for instance, the hearer had previously heard theegsipn-concept pair
“greensquare”-(0,1,0,1) and now hears “yellowsquarel;{,1). The hearer can
then break up these pairs based on the similarity “squad’q,1), thus form-
ing rules S-»C/r D/gbs, C»green/(0,?,?,?), Gyellow/(1,?,?,?) and B-square-
(?,1,0,1). Note that this is not the ideal break up, sincegtks apart the red
component of the RGB colour space from the blue and green coemts and
the shape feature (3). The next section shows that over ticke mistakes di-
minish as a result of competition and selection.

3. If the above adaptations both fail, the heard expressimtept pair is incorpo-
rated holistically, leading to a new rule such as¥&ellowcircle/(1,1,0,.5).

At the end of these steps, the hearer performs a few posegses to remove any
multiple occurrences of rules and to update the grammarthatiother parts of the
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internal language relates more consistently to the new ledgye. Full details of the
model are found in (Mogt, 2005a; 2005b).

The three learning steps are the core cognitive mechanisspomnsible for the
co-evolution of linguistic structures and conceptual ggaBasically, if there is no
compositional structure yet in the rules of an agent, butetlage regular patterns
(i.e. similarities) in both forms and concepts, they aréhtsplit up. Yet, this does
not necessarily mean these new rules will survive in thedagg. The way an agent
breaks apart holistic expression-concept pairs dependghan the agent has ac-
quired before, so it may make errors. However, later on @nthie agent can recover
from these errors when it hears new and different usagesrtsf pban expression.
When that occurs, the agent adds new variants to its ‘pookasfsimissible infor-
mation units, which then compete for being used. Elemewis fihese pools are
selected based on their effectiveness in communicatioan élement is used in-
effectively, it is dampened and when it is used effectivelisireinforced, while
competing ones are laterally inhibited. This competititelds a self-organising ef-
fect on the languages of the individual agents, but alsagbrabout effectiveness at
a global level, such that a globally shared language carvevol

In the model, agents have four quality dimensions at thepatal and initially
recruit them to form the conceptual space holistically. ibgidevelopment when
the holistic expression-concept pairs are broken aparagents form new linguis-
tic categories, each semantically relating to a concesete of lower dimension-
ality. The cognitive mechanism for breaking apart expm@ssioncept pairs does
not only require an alignment in expressions, but also irteptual representations.
This way a co-evolution of language and concept emergesothdhe linguistic
side is driven by cultural transmissions and on the coneggide is facilitated and
constrained by the environment (i.e. the objects in thed)y@hd embodiment (i.e.
the categorisation into quality dimensions). These preeesare all mediated (i.e.,
facilitated and constrained) by the cognitive capacitiehe agents.

4 Simulating the evolution of conceptual spaces

In order to illustrate the framework described in the firstt jpd this chapter and to
illustrate the conditions in which a compositional struetaf conceptual spaces can
emerge, two simulations were carried out. The first simoatpreviously reported
in Vogt (2006a), illustrates how the model evolves to a sptiraal solution when
there is no generational turnover, so where there is onligbiotal transmission. The
second simulation demonstrates that more optimal solsigomerge when there is a
population flow such that the population contains multideerations.

Before presenting the results, two measures need to be define

Communicative success measures the number of successful guessing games
over a time window of 50 games.

Similarity measures the number of games in which both agents used tlee sam
syntactic structure over a time window of 50 games. A syitagtructure is
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considered similar if the words and the linguistic categ®nised are the same
and in the same order. (A linguistic category is charaaertsy the dimensions
that make up the conceptual space of a non-terminal node.)

Both measures are normalised to a value between 0 and 1. Quigative suc-
cess informs us how successful the population becomes imemigating the refer-
ents. This measure, however, does not inform us how sinfi&ainternal languages
are — the agents may well use different representations evettheless be success-
ful in communication. Similarity informs us about the extarwhich agents use the
same grammatical constructions, thus to what extent theyhessame conceptual
spaces.

To show the evolution of conceptual spaces in more detdid jpresent the rel-
ative frequencies of rule types used during successiveqzif 10,000 guessing
games. As the agents can break up the 4-dimensional comategpaice into two
conceptual spaces of lower dimensions without having gaawledge which di-
mensions should be separated, 15 different rule typesu@imd the holistic type)
can emerge. Only 5 rule types are inspected in this chaptesti@r had very low
frequencies):

I: S—rgbs holistic rule

Il: S—A/rBlgbs red v. green, blue & shape
Ill: S—B/gbs Alr green, blue & shape v. red
IV: S—C/rgb D/s colour v. shape

V. S—Dl/s Clrgb shape v. colour

Rule type | concerns holistic rules in which word forms areoasated with the
4-dimensional conceptual space. Rule types Il and Il akesrthat combines the
1-dimensional conceptual space of the quality dimensia tbpresents the red
component of the RGB space with the 3-dimensional conceppasce containing
the quality dimensions representing the green and blue Rsaiponents, and the
shape dimension. The difference between the two rule type@sid-order. Rule
types IV and V combines the 3-dimensional conceptual sgetee¢presents colour
in the RGB space with the 1-dimensional shape space.

X Y P

r ghs 0.297
g rbs  0.200
b rgs  0.256

rg bs 0.117
rb gs 0.144
gb rs 0.117
rgb s 0.075

Table1 The probabilityP of finding in two different games a co-occurring structure inceptual
spaceX and not inY in which case the 4-dimensional space may be segmented into these two
spaces. These probabilities are based on the distribution aféealues that represent the different
objects in the world. (This table is reproduced from Vogi02i0.)
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One of the reasons for inspecting rule types Il and lll is thahis world, the
probability of finding a regularity in the red component o€ tRGB space is sub-
stantially higher than finding any other regularity, suclhase required to establish
rules IV and V (Table 1). The probability of finding a regulatiern in the RGB
space versus the shape space (cf. rule types IV and V) betweerandomly se-
lected objects is the chance that the two objects have the salour (1/12) times
the chance that the two objects have different shapes (9At0¢h thus becomes
1/12-9/10= 0.075. The probability of finding a regular pattern in the rechpo-
nent is much higher, because the 12 colours used in the gioruéae highly regular
in this dimension: 4 colours have value 0, 5 have value 1 amdtters have unique
values. Without showing the exact calculation, the avepgbability of finding a
regularity in the red component of two randomly selecte@ctsj, while the values
of the other dimensions differ, is 0.297. The probabilityfiofding regularities in
combinations of other dimensions (e.g. g-rbs, b-rgs, rgetes) is somewhere in be-
tween (cf. Table 1). Although the rules for these combimetievould occur more
frequently by chance than rules of types IV and V, these ddosdy used by the
agents, so their occurrences are not presented.

Despite the probability of finding a regularity in the red qmnent is highest,
rule types Il and Ill which exploit this component are not@éit in terms of gram-
mar size. This is because the complements of the red componigre RGB space
are not very regular. In fact, the 12 colours have 9 diffecemiplements composed
by the green and blue RGB components (three of which occueetvnoth with red
component values of 0 and 1). When combined with the 10 diftesbapes, the
grammar to describe all 120 coloured shapes, would contd@ast 96 rules: 5 to
cover the red component, 90 to cover the gbs-space and oesddluk word-order.
In contrast, rules of type IV and V (i.e. those that combinapwith shape) only
require a grammar of 23 rules: 12 to cover the rgb-space, ¢&Mer the s-space and
one to describe word-order. Thus, the two rule-types coimginolour with shape
are most optimal in terms of compressibility.

4.1 Horizontal transmission

The first simulation is the same as the one reported earliogh (2006a), but now
discussed in the light of the framework set out earlier. Hisulation involves a
population of 50 agents from the same generation and is muh figillion guessing
games. In each game two agents are selected at random, ameisagebitrarily
assigned the role of speaker, and the other the role of héidrercontext size in
each game was set to eight objects, randomly drawn from thiel\wb120 objects
without replacement. Previous research has shown tha ihéttle variation in the
results when the simulations are replicated 10 times witferd@int random seeds
(Vogt, 2005a, 2005c). For the purpose of this chapter itssructive to look at the
results from one simulation run.
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Fig. 4 The results of the first simulation. The graphs show communicativeessdtop), similarity
(middle) and the competition diagram showing the evolutiorut# types (bottom). These figures
are reprinted with permission from Vogt (2006a).

Figure 4 shows the results of a typical simulation. The togpgrshows that
communicative success rapidly increases to a value neaafdeb which it slowly
increases to a value slightly above 0.8 and after aroundB0®uessing games, the
system stabilised and more than 80% of the games are sudc&ssfilarity (middle
graph), however, increases to a value around 0.5, aftehwitstops increasing. So,
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Fig. 5 The total number of agents that have entered the system over time.

in nearly half of the games, the agents use different intgranmar rules, even if
they use the same utterances to refer to an object sucdgseal example, some
agents may use a holistic rule (type I), while others use rmabgytype I, llI, IV or
V.

The competition diagram (Fig. 4, bottom) shows the relafiieguencies of the
five rule types during this simulation. In the first 200,000mg=s, all rules types
compete to be used. At the very early stages, the holist&c(type 1) occurs most
frequently, but soon drops to a value near 0.2 after whictaliiises. So, in about
10% of the interactions, the agents use the 4-dimensiomalepiual space to com-
municate objects. The other 90% are divided among all otilertypes (including
those not shown). After a bit more than 200,000 games, tlyriénecy of rule type
11l drops to a value near 0, while rule types Il and IV appeacampete for some
more time until the system more or less stabilised after@Dgames. From this
time onward, the most frequently used rule type is numbeoligwed by rule types
V, Il and | respectively.

So, although communicative success is high, similarityhi representation of
the individual grammars (and consequently conceptuales)aas used by the dif-
ferent agents has evolved into a sub-optimal system. Abdut @f the rules used
by the agents depend on conceptual spaces rgb and s (rugeltypad V), about
15% by conceptual spaces r and gbs (rule type Il), and 10%doy-timensional
conceptual space (rule type I). This is sub-optimal, beedlus most efficient way
of representing the grammars is by using rule types IV and/since these require
the least number of rules to capture the entire world.

4.2 |sotropic transmission

In the second simulation, the same model was used with the parameter settings,
but, instead of having one generation to simulate horizdraasmission, this sim-
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Fig. 6 The results of the second simulation. The graphs show communicatbeess (top left),
similarity (bottom left) and the competition diagram showing #volution of rule types.

ulation implements a more naturalistic population flow (d& Boer & Vogt, 1999;
Steels & Kaplan, 1998). By allowing all agents speak to ddeotigents, this system
implementgsotropic transmissiorfVogt, 2005c¢) that combines oblique, horizontal
and upward forms of transmission. To implement a populdtom each agent was
given an age measured in terms of the number of guessing gameplayed indi-
vidually with a maximum set to 12,500 games. As before, thrukition starts with
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50 agents, each initialised with an arbitrary age betweamd(l2,500 games. Each
time an agent has played a game, this agent could die with asizauprobability
distribution with the mean set to the maximum age and a stdrdkviation of 250.
When one agent thus dies, a new agent is added to the populakerp the popu-
lation size fixed at 50. New agents start with neither corecapt grammar. Figure
5 shows the total number of agents that have entered theatiomubver time.

Figure 6 shows the results of this simulation. The first thihmg should be noted
is that, in addition to the spikes, there are more fluctuatiarthe trends of the dif-
ferent graphs. These fluctuations coincide with increasga of agents as shown
in Figure 5. Apart from these fluctuations, it is apparent dmenmunicative success
rises to a similar level as in the previous simulation, buorilsirity rises to a substan-
tially higher level and settles to fluctuate around 0.75.&8@nts increasingly agree
on using the same rule types. In particular, from about 3MWgxames onward rule
type V is most frequent (about 70%), followed by rule type Bb¢ut 20%). The
holistic rule type | continues to decrease from around 10308000 games to less
than 5% at the end. The other rule types are only sparsely used

These results demonstrate that when there is a generationabver, the lan-
guage and conceptual spaces continue to evolve towardstiamabpystem where
the grammar represents rules that combine colour with simegleghtly more than
90% of all cases, rather than stabilising in a sub-optimatesy as in the previous
simulation. So, the new agents rapidly learn the estaldisfreguage by acquiring
and using the optimal rule types more effectively than tieotules.

5 Discussion

The simulations presented in the preceding section dematedthow different con-
ceptual spaces can emerge through cultural evolution. éedrin Section 2, the
following factors are involved in this evolution: the eraiment, embodiment, cog-
nition, self-organisation and cultural transmission. Tamainder of this chapter
will discuss how these factors contribute to the observedugen in the simula-
tions, starting with the first three factors, because theyhaghly interrelated.

The environment of the agents consists of objects that aosdba given set of
primary colours with a given set of basic shapes. As suchnib&t obvious way of
expressing (and hence conceptualising) these objects éslbyr and shape. The
agents were embodied with feature detectors that représeitiree dimensions of
the RGB colour space and one detector that gives a value ¢bragect, however,
the agents had no way of telling which of these feature detedtelong to colour
or shape and were treated independently. The quality dilmesthese agents were
endowed with constrained the way they could categorise ¢heepred objects and
how these could be combined to form different conceptuategalhe cognitive
mechanisms were designed such that the agents could onlyr@aeod use gram-
matical rules that either treated the semantics to be repted holistically or as a
combination of two conceptual spaces with the restrictiwat &ll quality dimen-
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sions are used exactly once. As a result, the agents couktraona total of 15
different conceptual spaces to be used in 8 different coatioins irrespective of
word-order.

The way the colours and shapes were constructed to form theement and
the way agents could perceive these determined the ditnibof focal values
in each quality dimension. Since the way agents induce csitipoal rules from
the observed input is based on discovering regular aliga¢t@nms in two or more
utterance-concept pairs (as outlined in Section 3.3), tbegbilities of finding a
regular pattern would drive the formation of grammaticésuas shown in Table 1.
To some extent, this is observed in the simulations wheeetyles 1l and 11l occur
frequently (at least in the beginning), but all other conit@sal rule types, except
types IV and V, were hardly used. The explanation for thiates to an interaction
between the environment, the cognitive learning mechaaistnself-organisation.

The environment was constructed such that despite the Ipitities of finding
regular patterns in all combinations, except colour anghehaere higher, the com-
bination of colour and shape would yield the most compacingnar to express
the world. The utilisation of this property would not haveppaned without the
feedback loop — the reinforcement of rule scores and thétiggself-organisation.
When agents receive positive feedback, they increase thessobrules that were
used. In cases where agents have different ways of expgeasiobject by using
different combinations of rules, they will select thoseesithat have the highest
combined scores. Since the rules combining colour and stayld apply for all
objects, these rule types are more likely to be reinforcetithns more likely to
be re-applied. When these rules are more frequently reexppl the speaker, this
increases the chance that the hearer would discover a rggattarn in colour and
shape. This positive feedback loop is a driving factor of-egjanisation, similar
to the way ant paths are formed (Prigogine & Strengers, 138%) is considered
one of the strongest factors for convergence in the langgage paradigm (Steels,
1997). Although in the first simulation language evolvea isystem that incorpo-
rated rules combining colour and shape most frequentlybatantial amount of
rules of types | and Il remained. The constructions formeth wiese rules were
so entrenched in the language that they were viable, alsubedhe language had
evolved into a stable system with no variation.

Variation, which is one of the crucial ingredients of (ne@ri@inian evolution
(Boyd & Richerson, 2005; Darwin, 1968; Dawkins, 1976) andachtis thought to
be a driving factor of language change (Croft, 2000; Mufw&@®91), occurs in the
system through the speakers’ invention of new words andugirdhe acquisition
of new constructs by hearers. In the first simulation, aliargrconstructions are
created and spread among the population in the first, sapQ@@ames or so, and
after that the competition between the variants take ovieicafter approximately
500,000 games yield a stable system. The initial variagabsequent competition
and evolution to a stable system is characteristic of thguage game model as
is most clearly demonstrated in the naming game studied bygrigaelli, Felici,
Caglioti, Loreto, and Steels (2006). When, as in the secamdlation, newborn
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agents continue to enter the population and learn the lajggtram scratch, the
system no longer gets stuck in such a sub-optimal stablersyst

The reason for a continued evolution is that these youngtageeate new vari-
ations in the pool of utterances. Often these new variatemeserrors or over-
extentions (Vogt, 2006b) that tend to be unlearnt duringetigament, but sometimes
these are new variations introduced by applying a compositirule to previously
unseen objects (a result of the implicit bottleneck, sedi@e® and Vogt, 2005c).
Since the rules combining colour and shape tend to occurfireagtently in the lan-
guage (see competition diagrams of Figs. 4 and 6), it is nikedylthat these new
variants reflect that structure. As a result, even morearitas that comply to these
rules enter the language, increasing the chance for otleeitstp discover and use
those regularities. This cultural transmission over gati@ns thus strengthens the
positive feedback loop that drives the self-organisatimth language and concepts
thus co-evolve to be learnt easier, as there are less rulesgtgre (cf. Kirby &
Hurford, 2002).

Itis important to note that due to the —necessary— abstractnade in this model,
it is hard to generalise the results from study to the way msrarm conceptual
spaces. The simulations are situated in a toy world, withdgeneous agents who
can perceive the objects identically and without noise dditéon, the way concepts
are constructed from independent quality dimensions ibgisty unrealistic. More-
over, the model assumes that during the course of humandgegevolution, pro-
tolanguages were essentially holistic and gradually elato compositional lan-
guages. This assumption is still very much under debateiljiBickerton, 2010).
In spite of these abstractions, the model also contains deuwf more realistic
assumptions, such as a gradual generational turnover poghdation, mechanisms
that facilitate self-organisation, and general mechasifon detecting regularities
in the input. As a result, the present study illustrates gitela theoretical principles
that may explain how conceptual spaces are shaped. Futwelling work should
investigate the scalability of this model using a more sdigliworld (perhaps even
the real world) and agents with more human-like like embeaditand cognition.

6 Conclusions

This chapter has investigated how conceptual spaces camgeiiiem quality di-
mensions based on the cultural evolution of compositioaagliages. The same
principles have been demonstrated before in a series aéstuthere the population
flow was implemented based on the iterated learning modehiotwthe population
always contained two generations (adults and children)adiedt a predetermined
number of games, all adults die, children become adults endchildren enter the
population (see Vogt, 2007, for an overview). The diffeenbetween the present
study and those previous studies concern the more gradpalgimn flow and the
focus on conceptual spaces.
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The simulations have demonstrated that the evolution oteptual spaces is
driven by five crucial factors: environment, embodimengrition, self-organisation
and cultural transmission. The emerging conceptual spafiest the structure of
the environment. Its development within the agents isitatéld by the embodiment
through its perceptual apparatus and the cognitive mestmniHowever, embod-
iment and cognition (and arguably the environment as wedl)ad the same time
limiting factors. Would the agents have been able to peecether qualities or to
manipulate objects, then more complex languages couldéaleed, provided the
cognitive learning mechanisms would allow them to breaktaih@ holistic utter-
ances in more than two constituents.

The self-organisation results from the variation and cditipe in conceptual
and linguistic structures, as well as the positive feedback driven by the learn-
ing mechanism. Cultural transmission across generatitowsafor additional vari-
ations to prevent the system entering a sub-optimal stgbters and keep the evo-
lution going. Gradually, the emerging language becomegetslearn, which can
catalyse cumulative cultural evolution (Boyd & Richersa@05; Vogt, 2006a). Due
to the limitations that the model imposed on environmenth@iiment and cogni-
tion, the linguistic structures and consequently the cptuz spaces evolved into
a relatively stable state. However, if there was room fottferr development, more
complex structures could have emerged.

Crucial to the design of this is the assumption that languagk concepts co-
evolve. This is in line with the renewed appreciation of Wi®lihkage between
language and thought (Bowerman & Levinson, 2001), and whiely account for
the cross-cultural differences in the ways languages ssmed conceptualise var-
ious aspects of the world, such as spatial relations (Haah,&2011; Majid et al.,
2004). Although the present study did not focus on cultuifitnces in concep-
tualisation, the framework has the potential to explairs¢hdo achieve this, future
studies should incorporate more realistic scenarios barsedta from different cul-
tures, as for instance collected by Vogt and Mastin (2013).
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