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This paper presents an approach to solve the symbol grounding problem within the framework of embodied
cognitive science. It will be argued that symbolic structures can be used within the paradigm of embodied
cognitive science by adopting an alternative definition of a symbol. In this alternative definition, the symbol may
be viewed as a structural coupling between an agent’s sensorimotor activations and its environment. A robotic
experiment is presented in which mobile robots develop a symbolic structure from scratch by engaging in a series
of language games. In this experiment it is shown that robots can develop a symbolic structure with which they
can communicate the names of a few objects with a remarkable degree of success. It is further shown that,
although the referents may be interpreted differently on different occasions, the objects are usually named with

only one form.

1. Introduction

This paper tries to show how symbols can be re-
defined to describe cognitive functions within the
paradigm of embodied cognition. Traditionally,
cognitive scientists describe cognition in terms of
symbol systems (Newell and Simon, 1976; Newell,
1980). This is very useful because they assume
that cognitive agents manipulate symbols when
they think, reason or use language. However,
when explaining the processes underlying such
(higher) cognitive functions in terms of symbol
manipulation, at least two major fundamental
problems arise: the frame problem (McCarthy
and Hayes, 1969; Pylyshyn, 1987) and the symbol
grounding problem (Harnad, 1990). These prob-
lems arise because symbols are defined as internal
representations, which are supposed to relate to
entities in the real world.

A recent approach in cognitive science tries to
overcome these problems by describing cognition
in terms of the dynamics of an agent’s interaction
with the world. This novel approach has been
called embodied cognitive science, e.g., (Pfeifer
and Scheier, 1999). In embodied cognitive sci-
ence it is assumed that intelligence can be de-
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scribed in terms of an agent’s bodily experiences
that are acquired through its interaction with its
environment. I.e., an agent’s intelligence should
be based on its past interactions with the physical
world. Within this paradigm, the frame problem
and the symbol grounding problem are avoided
to some degree, because it is argued that symbol
representations are no longer necessary to imple-
ment intelligent behaviors (Brooks, 1990).

But is this true? Are symbols no longer nec-
essary? Indeed much can be explained with-
out using symbolic descriptions, but most of
these explanations only dealt with low-level re-
active behaviors such as obstacle avoidance, pho-
totaxis, simple forms of categorization and the
like (Pfeifer and Scheier, 1999). Higher cognitive
functions such as language processing have been
modeled most successfully using symbolic repre-
sentations. This can be inferred from the fact
that most natural language processing applica-
tions use symbolic processing, either hand-coded
or acquired statistically from large corpora, see,
e.g., (ACL, 1997). It might therefore still be de-
sirable to describe higher cognition in terms of
symbol systems. However, to overcome the sym-
bol grounding problem, the symbol system has to
be embodied and situated (Pfeifer and Scheier,
1999). It has to be embodied in order to experi-
ence the world and it has to be situated so that



it can acquire its knowledge through interactions
with the world, see, e.g., (Sun, 2000) for a dis-
cussion. This leads to the central question of this
paper: Is it possible to define and develop an em-
bodied and situated symbol system?

This paper argues that this could be possible
by adopting Peirce’s triadic definition of sym-
bols. To distinguish this triadic definition from
the traditional definition, these symbols will be
called semiotic symbols. As will be shown these
semiotic symbols are both embodied and situated.
The proposed approach combines the paradigm of
physical grounding (Brooks, 1990) with the sym-
bol grounding problem (Harnad, 1990) such that
semiotic symbols are grounded inherently and
meaningfully from the physical interactions of
robots with their environment. It will be argued
that this approach reduces the symbol ground-
ing problem into a technical problem which will
be called the physical symbol grounding problem
(Vogt, 2000b). To illustrate how a system of semi-
otic symbols can be constructed from scratch, a
concrete robotic experiment will be presented.

A similar argumentation has recently been put
forward in AI and cognitive science by Dorffner
and colleagues. They apply the theory of semi-
otics for discussing the symbol grounding prob-
lem (Dorffner et al., 1993; Prem, 1995) and to
illustrate their ideas they have simulated some
aspects in a connectionist model of language ac-
quisition (Dorflner, 1992). The major difference
between their work and the current work is that
Dorffner’s model, besides being a connectionist
model, has been tested only in simulations of lan-
guage acquisition, whereas this work invokes a
concrete robotic experiment that investigates lan-
guage evolution. As the ideas behind their ap-
proach are very similar to the one presented be-
low, this work will not be discussed further.

In the next section, the traditional cognitivist
approach, the embodied cognitive science ap-
proach, and their problems in relation to sym-
bols are shortly reviewed. This review paves
the way for introducing an alternative interpre-
tation of symbols. As will be argued, the newly
defined semiotic symbols are meaningful within
themselves and fit well within the embodied cog-
nition paradigm. From there on, the article will

present a model by which agents can acquire a
set of semiotic symbols of which the meaning is
grounded through the agents’ interactions with
their environment. The model (explained in sec-
tion 3) is based on the language game model that
has been proposed by Luc Steels to study the ori-
gins and evolution of language (Steels, 1996b).
Section 4 will present the results of a concrete ex-
periment in which robotic agents develop a set of
semiotic symbols using the language game model.
The results will be discussed in section 5. Finally,
section 6 concludes.

2. Symbols

2.1. Symbols as internal representations

Traditionally, symbols are defined as internal
representations with which computations can be
carried out. As mentioned, this approach is sub-
ject to some fundamental problems such as the
frame problem and the symbol grounding prob-
lem. In this section, a brief review of the classi-
cal cognitivist approach is given, together with a
discussion of the symbol grounding problem. Al-
though the frame problem is closely related, the
discussion in this paper concentrates on the sym-
bol grounding problem.

The discussion starts with the physical symbol
system hypothesis as put forward by Newell and
Simon (Newell and Simon, 1976; Newell, 1980).
This hypothesis states that physical symbol sys-
tems are sufficient and necessary conditions for
intelligence. Physical symbol systems (or sym-
bol systems for short) are systems that can store,
manipulate and interpret symbolic structures ac-
cording to some specified rules.

In Newell and Simon’s definition, symbols are
considered to be patterns that provide distal ac-
cess to some structure (Newell, 1990). These
are internal representations that can be accessed
from some external structure. (Where external
is relative to the pattern, hence it could be some
other pattern.) Although Newell (1990) admits
that the relation between a symbol’s meaning and
the outside world is important, he leaves it un-
specified. Other related conceptions of a sym-
bol are also used in the cognitive science commu-
nity. De Saussure, for instance, defines a sign as



a relation between a meaning and some arbitrary
form/label, or more concretely as “a link between
.. a concept and a sound pattern” (De Saussure,
1974, p. 66). Harnad defines a symbol as an “ar-
bitrary category name” (Harnad, 1993). All these
definitions assume that symbols are internal rep-
resentations.

These notions of symbols fit well with the mind
as a computer metaphor. However, symbols in
computers only have a meaning when interpreted
by an external observer; computers manipulate
symbols without being aware of their meaning.
Naturally, this is not the way human cognition
works. Humans are very well capable of inter-
preting the symbols, which they manipulate for
instance during thought or while using language;
they need no external observer to do this. There-
fore, one would like to have symbols that agents
can interpret themselves.

This problem led Searle to formulate his famous
Chinese Room argument (Searle, 1980), which
will not be discussed here. It also led Harnad to
formulate his symbol grounding problem (Harnad,
1990). As argued, symbolic manipulation should
be about something and the symbols should ac-
quire their meaning from reality. This is what
Harnad calls the symbol grounding problem. Ac-
cording to Harnad, symbols should be grounded
from the bottom-up by invariantly categorizing
sensorimotor signals.

Harnad proposes that this should be done in
three stages:

1. Iconization Analogue signals need to be
transformed to iconic representation (or
icons).

2. Discrimination “[The ability] to judge
whether two inputs are the same or dif-
ferent, and, if different, how different they
are.”

3. Identification “[The ability] to be able to
assign a unique (usually arbitrary) response
— a ‘name’ — to a class of inputs, treating
them all as equivalent or invarient in some
respect.” (Harnad, 1990, my italics)

Iconization and discrimination, according to

Harnad yield sub-symbolic representations; sym-
bols are the result of identification. Hence, iden-
tification is the goal of symbol grounding. The
process of identification is task dependent (Sun,
2000). As will be argued in this paper, using lan-
guage is a task that is particularly suited to do
the identification. This is mainly because lan-
guage through its conventions offers a basis for
invariant labeling of the real world.

In Harnad’s work symbols are still defined as
names for categories of sensorimotor activity. As
such the symbol grounding problem relates to the
cognitivist paradigm, which concentrates on in-
ternal symbol processing (Ziemke, 1999). As will
be argued, symbols could also be viewed as struc-
tural couplings between reality and sensorimotor
activations of an agent that arises from the agent-
environment interaction. This reality may be a
real world object or some internal state. When
symbols are structures that inherently relate re-
ality with internal structures, they are already
meaningful in some sense and the symbol ground-
ing problem is not a fundamental problem any-
more.

2.2. Symbols or no symbols?

To overcome the problems of the cognitivist ap-
proach, embodied cognitive science came around
in the late 1980s and gained popularity ever since.
The approach has strong roots in artificial in-
telligence, where it also became popular under
the terms nouvelle AI and behavior-based robotics.
Besides in Al it also has many roots in other dis-
ciplines of cognitive science such as psychology
(Gibson, 1979), linguistics (Lakoff, 1987), philos-
ophy (Boden, 1996), and neuroscience (Edelman,
1987; Johnson, 1997).

The essence of this modern approach will be
discussed here briefly in line with the argumenta-
tion brought by Brooks who introduced the phys-
ical grounding hypothesis (Brooks, 1990; Brooks,
1991). This hypothesis states that intelligence
should be grounded in the interaction between a
physical agent and its environment. Furthermore,
according to this hypothesis, symbolic representa-
tions are no longer necessary. Intelligent behavior
can be established by parallel operating sensori-
motor couplings.



When, as Brooks argues, symbolic representa-
tions are no longer necessary, it could be argued
that the symbol grounding problem is no longer
relevant since there are no symbols (Clancey,
1997; Pfeifer and Scheier, 1999). Another im-
portant aspect of the physical grounding hypoth-
esis is that intelligent behaviors are often emer-
gent phenomena, e.g., (Pfeifer and Scheier, 1999).
This means that intelligent behaviors may arise
from mechanisms that appear not to be designed
to perform the observed behavior. The physical
grounding hypothesis lies at the heart of embod-
iment and situatedness. Intelligence is embodied
through an agent’s bodily experiences of its be-
havior and it is situated through the agent’s in-
teraction with the world.

Brooks and others showed that much of an
agent’s surprisingly intelligent behavior can be
explained at the level of sensorimotor control,
e.g., (Steels and Brooks, 1995; Arkin, 1998;
Pfeifer and Scheier, 1999). Very simple mecha-
nisms that connect agents’ sensors with their mo-
tors can exhibit rather complex behavior without
requiring symbolic representations (Braitenberg,
1984).

An example is the famous Cog experiment of
Brooks and his colleagues, e.g., (Brooks et al.,
1998). Cog is a humanoid robot that can
mimic some human-like behaviors by connect-
ing its sensory stimulation to some actuator re-
sponse. Its behaviors are controlled according to
the behavior-based paradigm. Several behaviors
are modeled in a layered organization of senso-
rimotor couplings. These behavior modules are
implemented as loosely coupled parallel processes
and can be learned. Cog has learned, for in-
stance, to detect human faces and gaze directions,
to control hand-eye coordination, to saccade its
eyes and to interact socially with humans (Brooks
et al., 1998). All these behaviors are based on the
physical grounding hypothesis.

Although many behaviors can be explained by
the physical grounding hypothesis, the question
still remains whether it is able to explain higher
cognitive functions. The assumption taken in this
paper is that intelligent behaviors such as thought
and language do require some form of symbolic
representation. The reason for this is twofold:

First, as scientists like to describe overt behav-
ior in terms of symbol manipulation, it is very
useful to have a proper definition that fits well
within the embodied cognition paradigm. This
makes it easier to ascribe symbols to embod-
ied cognitive agents from an observer’s perspec-
tive. The second reason is that in order to facili-
tate higher cognitive functions such as language,
agents might actually need symbols that they can
manipulate. The question remains how are sym-
bols represented?

2.3. Symbols as structural couplings

As already discussed, the traditional approach
to cognitive science and Al is confronted with
problems such as the frame problem (McCarthy
and Hayes, 1969; Pylyshyn, 1987), the symbol
grounding problem (Harnad, 1990) and the Chi-
nese Room ‘problem’ (Searle, 1980). At the heart
of these problems lies the fact that the tradi-
tional symbols are neither situated nor embod-
ied, see, e.g., (Clancey, 1997; Pfeifer and Scheier,
1999) for broad discussions on these problems.
As mentioned, the physical grounding hypothe-
sis (Brooks, 1990) doubts the necessity of sym-
bolic representations. But if they would be nec-
essary they should be both situated and embod-
ied (Clancey, 1997). In this section a definition
of symbols will be given that is both situated and
embodied from an agent’s point of view.

2.3.1. Semiotic symbols

Various scientists from the embodied cognitive
science field assume that when symbols should
be necessary to describe cognition, they should be
defined as structural couplings connecting objects
to their categories based on their sensorimotor
projections (Clancey, 1997; Maturana and Varela,
1992). There is, however, already a definition of a
symbol that comes very close to such a structural
coupling. This alternative definition stems from
the work of Peirce (Peirce, 1931-1958).

Peirce’s theory extends the semiotics of De
Saussure. While De Saussure defines a sign as
having a meaning (the signified) and a form (the
signifier) (De Saussure, 1974), Peirce also in-
cludes its relation to a referent. A sign consists of
what he calls a representamen, interpretant and



an object. These are defined as follows (Chandler,
1994):

Representamen: the form which the sign takes
(not necessarily material).

Interpretant: ... the sense made of the sign.
Object: to which the sign refers.

According to Peirce, the sign is called a sym-
bol if the representamen in relation to its inter-
pretant is either arbitrary or conventionalized, so
that the relationship must be learned. In this re-
spect the representamen could be, for instance,
a word-form as used in language. The interpre-
tant could be viewed “as another representation
which is referred to the same object” (Eco, 1976,
p. 68). The object can be viewed as a physical
object in the real world, but may also be an ab-
straction, an internal state or another sign. In
the experiments described below, the objects will
be physical objects and the interpretant will be
represented by a category that is formed from the
visual interaction of a robot with the real world.

Often the term symbol is used to denote the
representamen, e.g., (Odgen and Richards, 1923;
Harnad, 1993). Many scientists, including Peirce,
tend to ‘misuse’ the term sign when referring to
the representamen. However, the sign was orig-
inally defined by Peirce as the triadic relation
(Chandler, 1994). In this paper the triadic inter-
pretation of the sign is adopted as the definition
of the symbol, provided that the representamen
of the sign is either arbitrary or conventionalized.
In order to distinguish this definition from the
traditional interpretation, this alternative inter-
pretation of the symbol shall be called a semiotic
symbol.

Also a more familiar terminology is adopted.
Following Steels, the representamen is called a
form, the interpretant a meaning and the object
a referent (Steels and Kaplan, 1999).

The sign (or semiotic symbol) is often illus-
trated as a semiotic triangle such as the one in-
troduced by (Odgen and Richards, 1923). The
triangle displayed here (figure 1) only differs from
the original one in its terminology®. The dotted

3In Odgen and Richards’ original diagram, the term sym-
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Figure 1. The semiotic triangle illustrates the
relations that constitute a sign. When the form
is either arbitrary or conventionalized, the sign
can be interpreted as a symbol.

line in the figure indicates that the relation be-
tween form and referent is not always explicitly
observable.

2.3.2. The meaning of meaning

The term meaning requires special attention. It
has been (and still is) subject to much debate in
philosophy and the cognitive sciences in general.
This work tries to distill a definition of meaning
that is suitable within the context of the current
investigation.

According to Peirce, a semiotic symbol’s mean-
ing arises in its interpretation (Chandler, 1994).
As such the meaning arises from the process of
semiosis, which is the interaction between form,
meaning and referent. This means that the mean-
ing depends on how the semiotic symbol is con-
structed and with what function. This is compa-
rable to the notion of meaning that is prominent
in embodied cognitive science, where meaning de-
pends on “the way we perceive the overall shape
of things ... and by the way we interact with
things with our bodies” (Lakoff, 1987, p. 292).

So, the meaning of semiotic symbols can be
viewed as a functional relation between a form
and a referent. This relation is based on an
agent’s bodily experience and interaction with a
referent. The experience of an agent is based on
its history of interactions. Each interaction be-

bol was actually used instead of form. In addition, they
call the meaning a thought or reference.



tween an agent and a referent can activate its
past experiences bringing forth a new experience.
The way these bodily experiences are represented
and memorized form the internal representation
of the meaning. The actual interaction between
an agent and a referent ‘defines’ the functional
relation.

In the experiment described below, robots de-
velop a system of semiotic symbols through com-
municative interactions called language games.
The robots have a very simple body and can only
visually interact with objects and, in principle,
point at them by orienting towards the objects.
In the language games, communication is only
used to name a visually detected referent (in case
of the speaker) and to guess what visually de-
tected referent the speaker names (in case of the
hearer). The function (or use in Wittgenstein’s
terminology) of this naming is only to focus the
hearer’s attention towards a referent such that it,
for instance, can go to or point at the referent.
The meaning of the semiotic symbol in such a
guessing game is conveyed by an agent’s percep-
tion, categorization and naming of the referent,
together with, in case of the hearer, an appropri-
ate reaction. Such meanings may change dynam-
ically over time as the robots (visually) interact
more with the referents.

This use of meaning may not seem realistic,
because the communication of semiotic symbols
have no meaning with respect to the robots’ sur-
vival as, for instance, pointed out by (Ziemke
and Sharkey, 2001). But it is very much simi-
lar to the way infants seem to construct mean-
ings upon their first visual encounter with some
object. This is nicely illustrated by a series of
experiments reported in (Tomasello and Barton,
1994). In these experiments, infants are shown
a, for them, novel toy together with an invented
name (i.e., a non-existing word), such as “toma”.
After that, the toy is hidden and the infants are
requested to find the “toma”. Even if they do not
know where the toy is hidden, the infants are very
successful in recognizing the “toma” when they
find it. So, although the children are not yet able
to grasp the entire meaning of the toy (they do
not know, for instance, what they can or should
do with it), they presumably do form some mean-

ing for the object. This meaning is solely based
on the infants’ visual interaction with, and cate-
gorization of the toy. Naturally, when the infants
further interact with the object, e.g., by playing
with it, they expand their meaning of the object
and they come to learn more of its functions.

As Ziemke and Sharkey do, one might still
argue that robots cannot use semiotic symbols
meaningfully, since they are not rooted in the
robot as the robots are designed rather than
shaped through evolution or physical growth
(Ziemke and Sharkey, 2001; Ziemke, 1999). In
that respect, they continue, today’s robots do not
use semiotic symbols meaningfully, since what-
ever task they might have stems from its designer
or is in the head of a human observer. With this
in mind, it will be assumed that robots, once they
can construct semiotic symbols, they do so mean-
ingfully. This assumption is made to illustrate
how robots can construct semiotic symbols mean-
ingfully. Thus, constructing semiotic symbols is
considered as a necessary condition for meaning-
ful symbol use, but no strong claims are being
made on whether this is a sufficient condition for
meaningful symbol use.

2.3.3. Physical symbol grounding

Adopting Peirce’s triadic notion of a symbol
has at least two advantages. One advantage
is that one may argue that the semiotic sym-
bol is per definition grounded, because the tri-
adic relation (i.e., the semiotic symbol) already
bears the symbol’s meaning with respect to re-
ality. As meaning is defined by the functional
relation between the form, meaning and refer-
ent, one might argue that the use of such semi-
otic symbolic structures “are meaningful to begin
with” (Lakoff, 1987, p. 372)*. Hence the sym-
bol grounding problem is no longer relevant. Not
because symbols do not exist anymore as argued
by, e.g., Brooks, but because the semiotic sym-
bols are already meaningful. This does not mean,
however, that there is no problem anymore, the
symbol grounding problem is no longer a funda-
mental problem of interpreting symbols meaning-

4Note that Lakoff does not explicitly apply this quote to
semiotic symbols, but his argument is similar to the one
expressed here.



fully. The problem is reduced to the process of
semiosis, which is defined by Peirce as the inter-
action between the referent, meaning and form.
The semiosis can be viewed as the process of
constructing the semiotic triangle. Implementing
this in autonomous systems, however, remains a
hard problem. This problem shall be addressed
as the physical symbol grounding problem (Vogt,
2000b) and will be treated as a technical problem.

The physical symbol grounding problem is a
combination of the physical grounding problem
and the symbol grounding problem. It is based
on the idea that symbols should be grounded, cf.
(Harnad, 1990) and the idea that they should be
grounded by physical agents that interact with
the real word, cf. (Brooks, 1990). To solve
the physical symbol grounding problem, the three
phases of symbol grounding identified by Harnad
(1990) are still relevant. The next section will
show how these phases (iconization, discrimina-
tion and identification) can be modeled in a con-
crete experiment.

The second advantage is that the semiotic sym-
bol is situated and embodied. It should be ac-
quired through some interaction between a phys-
ical agent and its environment. This allows to
connect semiotic symbols with embodied cogni-
tion.

So constructing semiotic symbols is required
for communication. Every time a semiotic sym-
bol is used, it is (re-)constructed by its user.
As a result, the semiotic symbols are not static,
but may change dynamically whenever the agent-
environment interaction requires so. In communi-
cation the form needs to be conventionalized (al-
though still arbitrary to some extend). Establish-
ing conventions about a semiotic symbol’s form
in relation to its referent is particularly useful for
the invariant identification of the referent. As
a referent is perceived differently under varying
circumstances, it may be categorized differently.
As will be shown, language use helps to identify
the sensing of the referents invariantly. There-
fore, it is assumed that meaning co-evolves with
the language (Steels, 1997a), such that meaning
can also be viewed as a cultural unit cf. (Eco,
1976). Similar arguments have been put forward
to explain various aspects of language develop-

ment, see, e.g., (Whorf, 1956; Lakoff, 1987).

2.3.4. Summary

In this subsection a definition of a semiotic
symbol has been adopted that provides an alter-
native to the traditional definitions. As Clancey
has argued, a symbol within the embodied cogni-
tion paradigm should be some structural coupling
(Clancey, 1997). The semiotic definition provided
by Peirce yields a structural coupling between the
real world object and some internal representa-
tion (or a sensorimotor activation pattern), espe-
cially in the process of semiosis.

Since the semiotic symbol is defined by a re-
lation between a form, meaning and referent, its
meaning is an intrinsic property bearing the re-
lation to the real world. Hence, it could be
argued that the semiotic symbol is per defini-
tion grounded and the symbol grounding prob-
lem is not relevant anymore. However, there still
remains the problem of constructing a semiotic
symbol. Rather than a fundamental problem,
this will be treated as a hard technical problem
and it is addressed as the physical symbol ground-
ing problem. The semiotic symbols acquire their
meaning through perception and categorization
as a process that conveys the semiotic symbols’
names to the referents they stand for.

As argued, and as the experimental results will
reveal, semiotic symbols are constructed most ef-
ficiently in communication. Language develop-
ment gives rise to the development of meaning
and vice versa.

3. Adaptive language games

3.1. Synthetic modeling of language evolu-
tion

From the second half of the 1990s, research at
the Vrije Universiteit Brussel and at the Sony
Computer Science Laboratory in Paris is fo-
cussed on the study of language origins and evo-
lution. These studies are based on the language
game model as proposed by Steels (1996b). In
this model language use is the central issue in
language development as has been hypothesized
by the ‘father of language games’ Wittgenstein
(1958). Steels hypothesized three mechanisms for



language development: cultural interaction, indi-
vidual adaptation and self-organization.

In this model, agents have a mechanism to ex-
change parts of their vocabulary with each other,
called cultural interaction. When novel situations
occur in a language game, agents can expand
their lexicons. In addition, they evaluate each
‘speech act’ on their effectiveness which they use
to strengthen or weaken used form-meaning asso-
ciations. These mechanisms are called individual
adaptation. Although agents have been imple-
mented with mechanisms that model local behav-
ior, such as communicating to another agent and
individual adaptations, the iterative combination
of these mechanisms yields the emergence of a
global coherence in the agents’ language. This
process is very similar to the self-organizing phe-
nomena, that have been observed in many bio-
logical, physical and cultural systems (Prigogine
and Strengers, 1984; Maynard-Smith and Sza-
thméry, 1995; Maturana and Varela, 1992). Self-
organization is thought to be a basic mechanism
of complex dynamical systems.

The above mechanisms for lexicon development
have been tested extensively under different set-
tings by the researchers in Brussels and Paris
to investigate various aspects of lexicon origins,
evolution and development. These aspects in-
clude lexicon formation (Steels, 1996b), lexicon
dynamics (Steels and Mclntyre, 1999), multiple
word games (Van Looveren, 1999) and stochastic-
ity (Steels and Kaplan, 1998). All these experi-
ments reveal that the language game model (also
called the naming game in relation to lexicon for-
mation) is a strong model to explain lexicon for-
mation in terms of the nurture paradigm. The
model is very similar to those that have been suc-
cessfully studied by, e.g., (Batali, 1998; Oliphant,
1999; Kirby and Hurford, 1997). It contrasts the
nativist approach advocated by, e.g., (Chomsky,
1980; Pinker and Bloom, 1990; Bickerton, 1998).

The above mechanisms to explore lexicon for-
mation have been extended to include mean-
ing creation (hence modeling symbol ground-
ing). The extention resulted in a model of dis-
crimination games (Steels, 1996c). The mech-
anisms on which the discrimination games are
based are very similar to those of the language

games: agent-environment interaction, individ-
wal adaptation and self-organization. Agents are
given a mechanism to perceive their environment.
Another mechanism allows them to adapt their
memories. They can construct new categories
that form the basis of the meaning, and they
can adapt them based on their use in grounded
language games. The evolution of meaning us-
ing these mechanisms is an emergent property
of the simple interaction and adaptations, so the
term self-organization is in place. The discrimi-
nation game model has been studied separately in
simulations (Steels, 1996¢) and on mobile robots
(Vogt, 1998b; De Jong and Vogt, 1998).

Other experiments have been done in which
the discrimination game has been coupled to
the naming game in simulations (De Jong, 2000;
Belpaeme, 2001), on immobile robots called the
‘Talking Heads’ (Belpaeme et al., 1998; Steels and
Kaplan, 1999) and on mobile robots (Steels and
Vogt, 1997; Vogt, 2000b). Again, and as will be
shown in the next section, these experiments re-
vealed that the three mechanisms are very pow-
erful to explain how lexicons can evolve in co-
evolution with the meaning without implement-
ing any prior knowledge of the lexicon and mean-
ing.

Another variant of the language game that is
worthwhile mentioning is the imitation game that
has been used to study the origins of human-like
vowel systems (De Boer, 1997, 2000a). De Boer
showed in his experiments, that agents can de-
velop repertoires of vowels that are very similar
to vowel systems observed in human languages.
These systems emerged based on the three mech-
anisms proposed by Steels as mentioned above. A
crucial factor in the experiments’ success is the re-
alistic simulation of the vocal tract and auditory
system with which the agents are modeled. It is
important to realize that in the experiments none
of the vowels have been preprogrammed, neither
are their features as the Chomsky and Halle the-
ory proposes (Chomsky and Halle, 1968).

For an overview of the experiments that are
done in Brussels and Paris, consult (Steels,
1997D).



3.2. The experiment

The development of the language games has
resulted in a model that has been implemented
on various robotic platforms: on mobile LEGO
robots (Steels and Vogt, 1997), on the Talking
Heads, which are immobile pan-tilt cameras (Bel-
paeme et al., 1998) and most recently on the
AIBO, which is a four legged robot (Kaplan,
2000). The experiment reported here is based on
the one reported in (Steels and Vogt, 1997). The
goal of this experiment is that two mobile robots,
given their bodies and interaction/learning mech-
anisms, develop a shared and grounded lexicon
from scratch about the objects that the robots
can detect in their environment. This means
that the robots construct a vocabulary of form-
meaning associations from scratch with which the
robots can successfully communicate the names of
the objects.

Although not always modeling lexicon evolu-
tion, lexicon grounding on real robots is becoming
increasingly more popular. Other research, how-
ever, does not investigate lexicon development
from scratch, but assumes a part of the lexicon
is given. Examples are the work of (Billard and
Hayes, 1997; Yanco and Stein, 1993) in robot-
robot communication, or (Roy, 2000; Sugita and
Tani, 2000) in human-robot communication. It is
beyond the scope of this paper to discuss these
researches here, but all this work solves, to some
extend, the physical symbol grounding problem.

In the experiments, the robots play a series of
guessing games (Steels and Kaplan, 1999). The
guessing game is a variant of a language game
in which the hearer tries to guess what referent
the speaker names. Much of the processing of the
robots that is not directly involved with lexicon
development, like sensing, turn-taking and eval-
uating the feedback has been preprogrammed in
a behavior-based manner, see (Vogt, 2000b) for
details. The same holds for the learning mecha-
nisms. The reason for this is not to complicate the
system too much, so that a working experiment
could be developed to investigate how robots can
develop a grounded lexicon, given the mecha-
nisms explained below. Other research that in-
vestigates various aspects of the origins of lan-

guage and communication tries to explain how
such mechanisms may have evolved. Examples
of such research investigate the origins of com-
munication channels (Quinn, 2001), feature de-
tectors (Belpaeme, 1999) and communication as
such (Noble, 2000; De Jong, 2000).

The basic scenario of a guessing game is illus-
trated in what Steels calls the semiotic square
(Steels and Kaplan, 1999), see figure 2. The game
is played by two robots. One robot takes the role
of the speaker, while the other takes the role of
the hearer. Both robots start sensing their sur-
roundings, after which the sensory data is pre-
processed. This way the robots acquire a context
setting. The speaker selects the sensing of one
referent as the topic; the hearer considers all de-
tected referents as a potential topic. The robots
categorize the preprocessed data, which results
in a meaning if the categorization is used in the
communication, i.e., when it is coupled to a form.
After categorization, the speaker produces an ut-
terance and the hearer tries to interpret this ut-
terance. When the meaning of this utterance ap-
plies to the categorization of the sensed referents,
the hearer can act to the appropriate referent, for
instance, by pointing at it. The guessing game
is successful if the hearer guessed the right topic
from the speaker’s utterance. The success is eval-
uated in the feedback, which is passed back to
both robots so that they can adapt their ontology
of categories (used as memorized representations
of the meanings) and lexicon.

As can be seen in figure 2, when the segment-
node is ignored (although it is a necessary in-
termediate step), the guessing game allows the
robots to construct a semiotic symbol. The game
is thus similar to the process of semiosis. In this
paper it is assumed that meaning arises from the
sensing, segmentation and categorization. Hence
semiotic symbols are illustrated with the trian-
gle (figure 1) rather than the square. When a
guessing game is successful, the relations between
form, meaning and referent are established prop-
erly and one could argue that the constructed
semiotic symbol is used meaningful. Below fol-
lows a detailed description of the experimental
setup and the guessing game model. Each basic
part of the model is exemplified with an illustra-
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This figure is adapted from (Steels and Kaplan,
1999).

Figure 3. The LEGO robots in their environment.

tive example.

3.3. The experimental setup

The experiment makes use of two LEGO
robots, see figure 3. The robots are equipped with
four light sensors, two motors, a radio module and
a sensorimotor board. The light sensors are used
to detect the objects in the robots’ environment.
The two motors control the robots’ movements.
The radio module is used to coordinate the two
robots’ behaviors and to send sensor data to a PC
where most of the processing takes place.

The robots are situated in a small environment

(2.5x2.5m?) in which four light sources are placed
at different heights. The light sources act as the
objects that the robots try to name. The different
light sensors of the robots are mounted at the
same height as the different light sources. Each
sensor outputs its readings on a sensory channel.
A sensory channel is said to correspond with a
particular light source if the sensor has the same
height as this light source.

The goal of the experiments is that the robots
develop a lexicon with which they can successfully
name the different light sources. Although this is
not a realistic task for living organisms (or even
for robots), complicating the task would not con-
tribute much to the investigation of how robots
can develop a lexicon to name things.

The reasons for designing the correspondence
between light sources and sensors are twofold.
First, it helps the observer in analyzing the ex-
periments. It provides the observer with an easy
tool to investigate what light source the robots
saw based on the sensory data. Secondly, if the
robots were to live in this environment and had
to distinguish the light sources from each other
in order to survive, evolution might have come
up with a similar visual apparatus.

3.4. Sensing, segmentation and feature ex-
traction

As a first step towards solving the symbol
grounding problem, the robots have to construct
what Harnad calls an iconic representation. Al-
though Harnad refers to raw sensory data such as
an image on the retina, in this work it is assumed
that an iconic representation is the preprocessed
sensory data that relates to the sensing of a light
source. The resulting representation is called a
feature vector in line with the terminology from
pattern recognition, see, e.g., (Fu, 1976).

A feature vector is acquired in three stages:
sensing, segmentation and feature extraction. Be-
low these three stages are explained in more de-
tail.

3.4.1. Sensing

During the sensing phase, the robots detect
what is in their surroundings one by one. They
do so by rotating 720° around their axis. While
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Figure 4. The sensing of the two robots during a language game. The plot shows the spatial view of the
robots environment. It is acquired during 360° of their rotation. The figures make clear that the two
robots have a different sensing, since they stand at different positions. The y-axis shows the intensity of
the sensors, while the x-axis determines the time (or angle) of the sensing in PDL units. A PDL unit

takes about =

aosecond, hence the total time of this sensing event took 1.5s for robot r0 and slightly less

for robot r1. The robots have different rotation periods due to the noisy control of the robots.

they do this, they record the sensor data of the
middle 360° part of the rotation. This way the
robots obtain a spatial view of their environment
for each of the four light sensors, see figure 4. The
robots rotate 720° instead of 360° in order to can-
cel out nasty side effects induced by the robots’
acceleration and deceleration.

Figure 4 shows, as an example, the sensing of
two robots during a language game. Figure 4
(a) shows that robot r0 clearly detected the four
light sources; there appears a peak for every light
source. In each peak, the sensor that has the
same height as the light source responsible for
the peak (i.e., the corresponding sensor) has the
highest intensity. The two robots do not sense
the same view as can be seen in figure 4 (b). This
is due to the fact that the robots are not located
at the same place.

3.4.2. Segmentation
Segmentation is used by the robots to extract
the sensory data that is induced by the detec-

tion of the light sources. The sensing of the light
sources relates in the raw sensory data with the
peaks of increased intensity. As can be seen in fig-
ure 4, between two peaks the sensory channels are
noisy. The first step in the segmentation prepro-
cesses the raw sensory data to remove this noise.
The preprocessed sensory channel data 7;¢, for
sensory channels ¢ = 0,...,n on time steps ¢, is
acquired by subtracting an upper noise level ©;
from the raw sensory data z; ;. This is expressed
in the following equation:

| 2 — 0y
T’i,t - 0

The upper noise levels ©; for the different
sensory channels have been obtained empirically.
Applying the above equation to the middle part
of the scene from figure 4 (a) results in the scene
displayed in figure 5.

In this figure there are two connected regions
that have positive sensory values for at least one

if Tit — @z Z 0
if Tit — ;<0

(1)



12

60

50 | 82 e
40 -

30 -

Intensity

20 | i s1

10 A7)

0 5 10 15 20 25
time (PDL cycles)

Figure 5. The preprocessed sensory channel data
of a part of the sensed view from figure 4 (a). The
vertical lines mark the boundaries of segments S}
and Ss.

sensory channel. These regions, of which the
boundaries are marked with vertical lines, relate
to the sensing of a light source and form the seg-
ments. Note that there is no noise anymore be-
tween the segments.

The segmentation results in a set of segments
{Sk}, where

Sk = {Sk,05---»Sk,n-1} (2)

in which &k is the number of the segment,
Sk.i = (Tk,i,05---,Tkim) I8 the preprocessed sen-
sory channel data, m is the length of the segment
and n is the number of sensory channels (4 in this
case). The following holds for each segment Sj:
for all j = 0,...,m there exist at least one sen-
sory channel ¢ for which 74, ; ; > 0. This means for
every segment that for every observation j there
is at least one preprocessed sensory channel with
a positive value. Applying this to the data shown
in figure 5 yields the segments given in table 1.
It is assumed that each segment relates to the
detection of one light source. Due to the noisy
control and sensing of the robots, this is not al-
ways the case. The set of segments constitute
what is called the context of the guessing game,

ie., Cxt = {S1,...,Sn}, where N is the number
of segments that are sensed. Each robot partici-
pating in the guessing game has its own context
which may differ from another.

3.4.3. Feature extraction

For all sensory channels, the feature extraction
is a function ¢(sy,;) that normalizes the maxi-
mum intensities of sensory channel i to the overall
maximum intensity from segment Sy:

maXs,, ; (quiaj)

maxg, (maxs, ; (Tk,i,j))

o(sk,i) = 3)

The result of applying a feature extraction to the
data of sensory channel ¢ will be called a feature
Fryi» 80 fri = @(sk,i). Segment S; can now be
related to a feature vector £, = (fr0,---, fen—1),
where n is the total number of sensory channels.
Like a segment, a feature vector is assumed to
relate to the sensing of a referent. The space that
spans all possible feature vectors f is called the n
dimensional feature space F = [0,1]", or feature
space for short.

Applying this feature extraction to the seg-
ments from table 1 goes as follows. First the
maximum values for each sensory channel (the
numerator in eq. 3) have to be identified. In
segment Sp are: 51, 54, 4 and 0 for sensory chan-
nels si,0,...,51,3 resp.. The maximum of these
maxima (the denominator in eq. 3) is in sensory
channel s, ;. The features are extracted by nor-
malizing each maximum value by the maximum
value of s; ;. The resulting feature vector for seg-
ment S is thus f; = (0.94,1.00,0.06,0.00).

Similarly, segment S; has maximum values of
0, 36, 40 and 1 for sensory channels 0 to 3. Nor-
malizing each value to 40 yields feature vector
f, = (0.00,0.90,1.00,0.03). The context of this
robots could be described in terms of the feature
vectors as Cxt = {f, 2 }.

The fact that the sensor that reads the high-
est intensity during the sensing of a light source
is mounted at the same height as the light is an
invariant property of the sensing. The feature ex-
traction from eq. 3 has been designed to extract
this property. In a feature vector there is one
feature with value 1, the others have lower val-
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The segments S; and S, from figure 5. The preprocessed sensory channel data sj; is given in the
columns. Note that for every segment each row has at least one positive value. Further note that here
both segments have equal length. In general this is not the case.

S1 S2

51,0 S1,1 51,2 51,3 52,0 S2,1 52,2 523
Tk,i,0 2 0 0 0 0 1 11 0
Tk,i,l 14 2 0 0 0 1 37 0
Thyi,2 32 17 1 0 0 16 39 1
Thii,3 46 40 3 0 0 36 40 1
Thyi 51 54 3 0 0 28 35 1
Thiis 33 35 4 0 0 28 35 1
Tk,i,6 3 1 4 0 0 0 8 0
Thii 3 1 3 0 0 0 8 0

ues. This feature indicates to which light source
it corresponds. Because in the example feature
fi,1 of feature vector f; has a value 1, one can
infer that this feature vector corresponds to the
light source that is at the same height as sensor
s1°. Similarly, f> corresponds to the light source
at the same height as sensor 2.

The reasons for this feature extraction are man-
ifold. First, it is useful to have a consistent repre-
sentation of the sensed referents in order to cat-
egorize. It is easier to implement categorization
when its input has a fixed format. As the seg-
ments vary in length, they have no fixed format.
Second, the normalization to the maximum in-
tensity within the segment (the ‘invariance de-
tection’) is useful to deal with different distances
between the robot and the light source. Further-
more, it helps to analyze the experiments from
an observer’s point of view and to evaluate feed-
back. Besides its use during feedback (see below),
the robots are not ‘aware’ of this invariance. It
should be noted that such feature extraction func-
tions could well have been learned or evolved as,
for instance, shown by (De Jong and Steels, 1999;
Belpaeme, 1999).

3.5. Meaning formation

In order to form a semiotic symbol, the robots
have to categorize the sensing of a referent so that
it is distinctive from the categories relating to

5Note that the sensors are numbered from 0 to 3 and that
sensor s0 is the lowest in height.

the other referents. This way the category can
be used as the memorized representation of the
meaning of this referent. Although a category
should not be equaled with a meaning, it is la-
beled as such when used in communication, be-
cause it forms the memorized representation of a
semiotic symbol’s meaning.

The ‘meaning’ formation is modeled with the
so-called discrimination game (Steels, 1996c).
The discrimination game models the discrimina-
tion phase in symbol grounding as proposed by
(Harnad, 1990) and it searches for distinctive cat-
egories in three steps: 1) The feature vectors from
the context are categorized. 2) Categories that
distinguish a topic from the other segments in
the context are identified. And 3) the ontology of
categories are adapted.

Each robot plays a discrimination game for the
(potential) topic(s) individually. A topic is a seg-
ment from the constructed context (described by
its feature vector). The topic of the speaker is
arbitrarily selected from the context and is the
subject of communication. As the hearer tries to
guess what the speaker intends to communicate,
it considers all segments in its context as a poten-
tial topic.

3.5.1. Categorization

Let a category ¢ = {c,v, p, k) be defined as a
region in the feature space F. It is represented
by a prototype ¢ = (zg,...,Tp—1), i.. & point in
the n dimensional feature space F, and v, p and
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k are scores. The category is the region in F in
which all points have the nearest distance to c.

A feature vector f is categorized using the 1-
nearest neighbor algorithm, see, e.g., (Fu, 1976).
This algorithm returns the category of which the
prototype has the smallest Eucledian distance to
f. Each robot categorizes all segments this way.

Consider the context of feature vectors from
the example derived in the previous section. Fur-
ther suppose that the robot has two categories
in its ontology c¢; and ca, which are represented
by the prototypes ¢; = (0.50,0.95,0.30,0.00) and
c2 = (0.50,0.95,1.00,0.00). Then the Eucledian
distance between f; and c; is 0.50, and between
f; and ¢, this is 1.04. Since the distance between
f; and c; is smallest, f; is categorized with c;.
Likewise, f5 is categorized with cs.

In order to allow generalization and specializa-
tion in the categories, different versions of the
feature space are available to a robot. These
different feature spaces, indicated by Fy, allow
different levels of generality specified by A =
0,...,A\max, where Amax is the level in which
maximum specialization can be reached. This
maximum is introduced because the sensors have
a limited resolution and to prevent unnecessary
specialization, which makes the discrimination
game computationally very inefficient. In each
space a different resolution is obtained by allow-
ing each dimension of Fy to be exploited up to 3*
times. How this is done will be explained soon.
The higher A is, the more dense the distribution
of categories in feature space F) can be and the
less general the categories in that feature space
are. The categories of all feature spaces together
constitute an agent’s ontology.

The different feature spaces allow the robots to
categorize a segment in different ways. The cat-
egorization of segment S results in a set of cat-
egories C, = {cog,--.,¢m}, where m < Amax. So,
assuming only one feature space, the two feature
vectors from the example are categorized with
the following sets of categories: C1; = {¢1} and
CQ = {CQ}.

In the discrimination games, a prototypical
representation has been used rather than the bi-
nary representation used in (Steels, 1996¢; Steels

and Vogt, 1997) or the subspace representation
used by De Jong (De Jong and Vogt, 1998), which
all yield more or less similar results (De Jong
and Vogt, 1998; Vogt, 2000b). The reason for
adopting a prototype representation is its biolog-
ical plausibility as inferred by for instance psy-
chologists (Rosch et al., 1976) and physiologists
(Churchland, 1989).

3.5.2. Discrimination

Suppose that a robot wants to find distinctive
categories for (potential) topic S, then a distinc-
tive category set can be defined as follows:

DC = {c; € C; | V(Sk, € Cxt\{S¢}) : ¢c; & C}

Or in words: the distinctive category set consists
of all categories of the topic that are not a cat-
egory of any other segment in the context. I.e.,
those categories that distinguish the topic from
all other segments in the context.

3.5.3. Adaptation

If DC = (), the discrimination game is a failure
and some new categories are constructed. Sup-
pose that the robot tried to categorize feature
vector £ = (fo,..., fn—1), then new categories are
created as follows (see also the example in section
3.5.4):

1. Select an arbitrary feature f; > 0.

2. Select a feature space F that has not been
exploited 3* times in dimension i for A as
low as possible.

3. Create new prototypes ¢; = (g, .., %n-1),
where z; = f; and the other z, are made of
already existing prototypes in Fj.

4. Add the new prototypical categories ¢; =
(cj,v5, pj, k) to the feature space Fy, with

V=p=0.01and/s=1—)\n’l\ax.

The score v indicates the effectiveness of a cat-
egory in discrimination game, p indicates the ef-
fectiveness in categorization and « indicates how
general the category is (i.e., in which feature



space Fy the category houses). Score & is a con-
stant, based on the feature space Fy and the fea-
ture space that has the highest resolution possi-
ble (i.e., A = Amax). This score implements a
bias towards selecting the most general category.
The other scores are updated as in reinforcement
learning. It is beyond the scope of this paper
to give exact details of the update functions, see
(Vogt, 2000b) for these details.

The three scores together constitute the mean-
ing score p = %(V + p + k), which is used in the
naming phase of the experiment. The influence
of this score is small, but it helps to select a form-
meaning association in case of an impasse.

The reason to exploit only one feature of the
topic during the construction of new prototypes,
rather than the complete feature vector is to
speed up the construction.

If the distinctive category set DC # 0, the dis-
crimination game is a success. The DC is for-
warded to the naming game that models the nam-
ing phase of the guessing game. If a category c is
used successfully in the guessing game, the pro-
totype c of this category is moved towards the
feature vector f it categorizes:

c:=c+e-(f—c) (4)

where € is the step size with which the proto-
type moves towards f. This way the prototype
becomes a more representative sample of the fea-
ture vectors it categorizes. This update is similar
to on-line k£ means clustering (MacQueen, 1967).

3.5.4. An example

To continue the example from above, recall
that the two feature vectors in the context are
categorized with the following sets of categories:
Ci = {c1} and C> = {c2}. Suppose that S; is
the topic of the discrimination, the distinctive
category set is DC = {c1}, because ¢; ¢ Cs.
Because DC' # 0, the discrimination game is
a success. If ¢; is further successfully used in
naming the referent, its prototype shifts towards
f; by applying equation (4). If ¢ = 0.1, which
is the case in the experiment, then c; becomes
¢ = (0.54,0.96,0.28,0.00).
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Now suppose that the context did not con-
sists of two feature vectors, but three: Cxt =
{f1,f5,f3}, where f; and f> are as before and
f; = (1.00,0.90,0.05,0.00). Further suppose that
the robot has the same ontology as before, then
fs is categorized with the category set C5 = {1},
since c¢; is the closest to f3. When S; is the
topic, the distinctive category set is empty, since
C; = {a1} and ¢; € C5. The discrimination
game fails and two new categories are formed of
which the prototypes are as follows when feature
f1,0 is selected as an exemplar of topic Si (note
that only one feature space F is considered in
this example): ¢3 = (1.00,0.95,0.30,0.00) and
cs = (1.00,0.95,1.00,0.00). Feature f; ¢ is copied
to the new prototypes, together with the other
features of already existing prototypes, compare
c3 and ¢4 with ¢; and c,.

3.6. Naming

After both robots have obtained distinctive cat-
egories of the (potential) topic(s) from the dis-
crimination game as explained above, the naming
game (Steels, 1996b) starts. In the naming game,
the robots try to communicate the topic.

The speaker tries to produce an utterance as
the name of one of the distinctive categories of the
topic. The hearer tries to interpret this utterance
in relation to distinctive categories of its poten-
tial topics. This way the hearer tries to guess
the speaker’s topic. If the hearer finds a possible
interpretation, the guessing game is successful if
both robots communicated about the same refer-
ent. This is evaluated by the feedback process as
will be explained below. According to the out-
come of the game, the lexicon is adapted.

3.6.1. The lexicon

The lexicon L is defined as a set of form-
meaning associations: L = {FM;}, where FM; =
(F;, M;,0;) is a lexical entry. Here F; is a form
that is made of a combination of consonant-vowel
strings, M; is a (memorized part of a) meaning
represented by a category, and o is the associa-
tion score that indicates the effectiveness of the
lexical entry in the language use.
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3.6.2. Production

The speaker of the guessing game will try to
name the topic. To do this it selects a distinc-
tive category from the DC' for which the meaning
score y is highest. Then it searches its lexicon for
form-meaning association of which the meaning
matches the distinctive category.

If it fails to do so, the speaker will first consider
the next distinctive category from the DC'. If all
distinctive categories have been explored and still
no entry has been found, the speaker may create
a new form as will be explained in the adaptation
section.

If there are one or more lexical entries that ful-
fill the above condition, the speaker selects that
entry that has the highest association score o.
The form that is thus produced is uttered to the
hearer.

3.6.3. Interpretation

On receipt of the utterance, the hearer searches
its lexicon for entries for which the form matches
the utterance, and for which the meaning matches
one of the distinctive categories of the potential
topics.

If it fails to find one, the lexicon has to be ex-
panded, as explained later.

If the hearer finds more than one, it will select
the entry that has the highest score ¥ = o+ a-pu,
where a = 0.1 is a constant weight. The potential
topic that relates to this lexical entry is selected
by the hearer as the topic of the guessing game.
I.e., this segment is what the hearer guessed to
be the subject of communication. A topic relates
to an entry when its distinctive category matches
the entry’s meaning.

3.6.4. Feedback

In the feedback, the outcome of the guessing
game is evaluated. It is important to note that
in this paper, the term feedback is only used to
indicate the process of evaluating a game’s suc-
cess by verifying whether both robots communi-
cated about the same referent. As mentioned,
the guessing game is successful when both robots
communicated about the same referent. The feed-
back is established by comparing the feature vec-
tors of the two robots relating to the topics. If

these feature vectors correspond to each other,
i.e., they both have a value of 1 in the same
dimension, the robots have identified the same
topic, cf. the invariance criterion mentioned in
section 3.4.3. The outcome of the feedback is
known to both robots.

If the hearer selected a topic after the under-
standing phase, but if this topic is not consistent
with the speaker’s topic, there is a mismatch in
referent. This is the case when the invariance cri-
terion is not met.

If the speaker has no lexical entry that matches
a distinctive category, or if the hearer could not
interpret the speaker’s utterance because it does
not have a proper lexical entry in the current con-
text, then the guessing game is a failure.

The feedback is evaluated rather artificial and
not very realistic since robots normally have no
access to each other’s internal states. However,
previous attempts to implement feedback phys-
ically have failed (Vogt, 1998a). In these at-
tempts the hearer pointed at the topic so that the
speaker could verify whether the hearer identified
the same topic. This attempt, however, failed be-
cause the speaker was not able to verify reliably
at what object the hearer pointed. This point-
ing strategy has been successfully implemented
in the Talking Heads experiment (Steels and Ka-
plan, 1999). To overcome this technical problem,
it is assumed that the robots can do this. Natu-
rally, this problem needs to be solved in the fu-
ture.

3.6.5. Adaptation

Depending on the outcome of the game, the
lexicon of the two robots is adapted. There are
four possible outcomes/adaptations:

1. The speaker has no lexical entry: In this
case the speaker creates a new form and as-
sociates this with the distinctive category it
tried to name. This is done with a proba-
bility of P; = 0.1.

2. The hearer has no lexical entry: The hearer
adopts the form uttered by the speaker and
associates this with the distinctive cate-
gories of a randomly selected segment from
its context.



Table 2
The lexicon of the speaker and hearer used in
the example. Each agent has associated three
meanings (in the rows) with two forms (in the
columns). Real-valued numbers indicate the as-
sociation scores and a dash indicates there is no
association.

Speaker Hearer

M, tyfo labo | My tyfo labo

1 020 0.25 | 0.10 -

Ca - 0.65 | c - 0.75

¢z 095 - ch 0.70 0.05

3. There was a mismatch in referent: Both
robots lower the association score o of the
used lexical entry: o :=n -0, where n = 0.9
is a constant learning rate. In addition, the
hearer adopts the utterance and associates
it with the distinctive categories of a differ-
ent randomly selected segment.

4. The game was a success: Both robots rein-
force the association score of the used entry:
o:=1n-0+ (1—-n). In addition, they lower
competing entries (entries for which either
the form or the meaning is the same as in
the used entry): o := 5 - 0. The latter up-
date is called lateral inhibition®.

3.6.6. An example

The following example illustrates the naming
phase of the guessing game. Suppose the speaker
and the hearer have a lexicon as given in table 2.
Each agent has three private meanings ¢;(c}) as-
sociated with two different forms tyfo and labo.
In the cells of the table the association scores are
given, a dash indicates that there is no association
between that meaning and form. Further suppose
that both robots each have detected three light
sources L1, L2 and L3.

Suppose that the speaker selected the segment
relating to L3 as the topic, which it categorized
distinctively with ¢3. This category is only asso-
ciated with the form tyfo, which it utters. Upon

6Independent of each other, Oliphant (1999), De Jong
(2000) and Kaplan (2001) have shown that lateral inhi-
bition is crucial for convergence in lexicon development.
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receiving the form tyfo, the hearer tries to inter-
pret it. The hearer has two meanings associated
with tyfo: ¢} and c¢§. As the association score
relating tyfo with ¢ is highest, the hearer se-
lects the segment belonging to ¢ as the topic”.
If this segment relates to L3, the guessing game
is successful and the scores are updated as fol-
lows: The speaker and the hearer both increase
the association score between c3 (or ¢§) with tyfo,
which become 0.955 and 0.73 respectively (recall
that n = 0.9). Competing associations are later-
ally inhibited: the association score of {c, tyfo)
becomes 0.18, of (¢}, tyfo) becomes 0.09 and of
(c§,labo) becomes 0.045.

Reconsider the lexicon in table 2, but now the
speaker selected L1 that it categorized with ¢;
as the topic. In this case, the speaker will select
labo to name L1, because this has the highest as-
sociation score. The hearer interprets labo with
ch, which unfortunately has been categorized for
L2. There is a mismatch in referent. The asso-
ciation scores of the used association scores are
lowered. So, the association score of (c1,labo)
becomes 0.225 and of (c},labo) becomes 0.675.

If the speaker has categorized the topic, e.g.,
the segment relating to L1, with a category that
is not yet in its lexicon, say c4, then it may in-
vent a new form. This new form, for instance,
gufi is then uttered to the hearer. The hearer,
however, does not know the form yet and asso-
ciates it with the categorization(s) of a randomly
selected segment and the game is considered as a
failure.

3.7. Summary

This section presented the guessing game
model by which the experiments are done. Two
mobile robots try to construct a lexicon with
which they can solve the physical symbol ground-
ing problem. In each guessing game, the robots
try to name one of the light sensors that are in
their surroundings. They do so by taking the fol-
lowing steps:

1. Sensing, segmentation and feature extrac-
tion.

"Note that the meaning score u is discarded to simplify
the example.
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2. Topic selection.

3. Discrimination games: (a) categorization,
(b) discrimination and (c) ontology adap-
tation.

4. Naming: (a) production, (b) interpreta-
tion, (c) evaluating feedback and (d) lexicon
adaptation.

The guessing game described above implements
the three mechanisms hypothesized by Luc Steels
(Steels, 1996b) that can model lexicon develop-
ment. (Cultural) interactions are modeled by the
sensing, communication and feedback. Individ-
ual adaptation is modeled at the level of the dis-
crimination and naming game. The selection of
elements and the individual adaptations are the
main sources for the self-organization of a global
lexicon.

The coupling of the naming game with the dis-
crimination games and the sensing part makes
that the emerging lexicon is grounded in the real
world. The robots successfully solve the physi-
cal symbol grounding problem in some situation
when the guessing game is successful. This is
s0, because identification (Harnad, 1990) is estab-
lished when the semiotic triangle (figure 1) is con-
structed completely. Identification is done at the
naming level and it is successful when the guess-
ing game is successful. It is important to realize
that internal representations stored in the robots’
memories as such are not semiotic symbols; they
only constitute part of a semiotic symbol when
used in a language game. Only then the relation
with a referent is assured.

4. The experiments

Using the defined model (and some variations
of it), a series of experiments have been done to
investigate various aspects of the model. These
experiments are all reported in (Vogt, 2000b).
One of them is reported in this section.

This section is organized as follows: Before re-
porting the experiment some expectations of the
experiment’s success are stated according to some
statistics calculated from the recorded sensory
data. The measures with which the experiment is

analyzed are specified in section 4.2. Section 4.3
presents the results.

4.1. The sensory data

As mentioned, the guessing games are for a
large part processed off-line on a PC. Only the
sensing is done on-board. The recorded sensory
data of the sensing is re-used to do multiple ex-
periments using the same data, but also to pro-
cess more games than have been recorded. The
most important reason for the off-line processing
has to do with time efficiency. Conducting a com-
plete experiment on-board would take at least one
week of full-time experimenting. Another advan-
tage of processing off-board is that one can do
multiple experiments in which various methods
and parameter settings can be compared reliably.

The data that has been recorded for the ex-
periments reported here, consists (after prepro-
cessing the raw sensory data) of approximately
1,000 context settings. These context settings
are used to experiment 10 runs of 10,000 guessing
games. Hence in each run the context settings are
used approximately 10 times. Statistics on the
data set revealed that the average context size
is about 3.5 segments per robot. In each game
one robot is selected randomly to be the speaker,
who arbitrarily selects one feature vector as the
topic. Therefore it takes, in principle, approxi-
mately 7,000 games until a particular situation
re-occurs.

Other statistics on the preprocessed data set
revealed that the a priori chance for success is
around 23.5 %. This means that when both the
speaker and the hearer select a topic at random,
in about 23.5 % they will select the same topic.
This a priori chance is calculated from the av-
erage context size (3.5 segments) and the poten-
tial understandability. Since both robots not al-
ways detect the same surroundings (figure 4), the
possibility exists that the speaker selects a topic
that the hearer did not detect. Although in nat-
ural communication the hearer might try to find
the missing information, this is not done here for
practical reasons. Besides, humans communica-
tion is not always perfect, because they fail to
construct a shared context. So, there is a max-
imum in the success to be expected, which has



been coined the potential understandability. The
potential understandability has been calculated
to lie around 80 %. For details on the calculation
and other information about the sensory data see
(Vogt, 2000D).

4.2. Measures

The experiments are investigated using six
different measures. Two of these (the
discriminative- and communicative success) mea-
sure the success rate of the discrimination games
and the guessing games. The others measures
indicate the quality of the system that emerges.
These measures, which are based on the entropy
measure taken from information theory (Shan-
non, 1948), are developed by Edwin De Jong
(De Jong, 2000). They are called distinctive-
ness, parsimony, specificity and consistency, and
are calculated every 200 guessing games. Below
follows a description of these measures.

Discriminative success (Steels, 1996c) mea-
sures the number of successful discrimi-
nation games averaged over the past 100
guessing games.

Distinctiveness “Intuitively, distinctiveness ex-
presses to what degree a meaning identifies
the referent” (De Jong, 2000, p. 76). For
this one can measure how the entropy of
a meaning in relation to a certain referent
H(p|p;) decreases the uncertainty about the
referent H(p). To do this, one can calculate
the difference between H(p) and H(p|p;).
Here p are the referents pq,...,p, and u;
relates to one of the meanings pq, ..., ttm
for robot R. The distinctiveness Dy can
now be defined as follows:

H(plwi) = Y —P(p;|ui) - log P(p;|u:)
j=1
_ 4 Holwi)
H(p)
Dy = Zz’:l Po(l‘“) i dISt(lJ‘i) (5)

m
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where H(p) = logn and P,(u;) is the occur-
rence probability of meaning u;. The use of
P,(p;) as a weighting factor is to scale the
importance of such a meaning to its occur-
rence.

Parsimony The parsimony Pgr is calculated
similar to the distinctiveness:

H(ulpi) > —Pllps) - 1og Pl o)
pars(p;) = 1-— %
Pr = Y Po(P;) - pars(p;) ©)

with H () = logm. Parsimony thus calcu-
lates to what degree a referent gives rise to
a unique meaning.

Communicative success (Steels, 1996b) mea-
sures the number of successful guessing
games averaged over the past 100 guessing
games.

Specificity “The specificity of a word|[-form)] is
defined as the relative decrease of un-
certainty in determining the referent given

a word that was produced” (De Jong, 2000,

p. 115). It thus is a measure to indicate how

well a word-form can identify a referent. It

is calculated analogous to the distinctive-

ness and parsimony. For a set of word-forms
o1,-...,04, the specificity is defined as fol-

lows:
H(plo;) = —P(pjloi) - log P(pj|o:)
i=1
H(plo)
spec(o;) = 1—
pector) H(p)
Py - .
SR — =1 O(U;) SpeC(O'z) (7)
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where H (p) = logn is defined as before and
P, is the occurrence probability of encoun-
tering word-form o;.

Consistency Consistency measures how consis-
tent a referent is named by a certain word-
form. It is calculated as follows:

H(olp:) = —P(oj|pi) - log P(oj|pi)
j=1
cons(p;) = 1-— %
CR Z?:l PO (p;L) . COHS(pi) (8)

where H (o) = log g and P,(p;) is defined as
before.

The four entropy-based measures specify
whether or not there is order in the system. When
either measure has the value of 1, there is or-
der in the system. When a measure has value 0,
there is disorder. All these entropy measures are
calculated per robot every 200 games within one
run; the other measures are calculated after ev-
ery single game. When presented, all measures
are averaged over the 10 runs that are done each
experiment,.

4.3. The results

The experiment is done with 10 runs of 10,000
guessing games. Figure 6 shows the evolution of
the different measures. The discriminative suc-
cess approaches 100 % early in the experiment,
figure 6 (a). This indicates that the discrimina-
tion game is a very efficient model for categorizing
different sensings. Similar results are confirmed in
other experiments using different representations
of categories and varying numbers of objects, e.g.,
(Steels, 1996¢; De Jong and Vogt, 1998). As the
distinctiveness shows in figure 6 (b), when a cate-
gorization (or meaning) is used, it usually stands
for one referent only. L.e., there is a one-to-one re-
lation between meaning and referent. This, how-
ever, does not imply that there is a one-to-one re-
lation between referent and meaning. The lower
parsimony shows this, see figure 6 (c).

The communicative success (figure 6 (d)) ap-
proaches the potential understandability of 80 %.
After 10,000 games, the communicative success is
approximately 75 %. Hence the robots are fairly
well capable of constructing a shared lexicon. The
specificity, shown in figure 6 (e), increases to a
value slightly above 0.9. It shows that when a
form is used, it is mainly used to name one refer-
ent. Hence there is little polysemy. The consis-
tency (figure 6 (f)) is lower than the specificity.
This means that a referent is not always named
with the same form. As will be shown later, this
does not mean that the lexicon is inefficient, it
rather means that the system bears some syn-
onymy.

It should be noted that although the parsimony
is almost as high as the consistency, this does not
mean that the number of meanings used is close to
the number of forms. It merely indicates that the
inconsistent use of forms happen about as often
as the inconsistent use of meanings.

As can be seen in figures 6 (e) and (f) the speci-
ficity and consistency rise very rapidly. To under-
stand this, it should be realized that these mea-
sures are calculated relative to the successful use
of forms (in case of specificity) or to the success-
ful naming of referents (in case of consistency).
Specificity and consistency are not relative to the
number of successful guessing games. So, this
means that, whenever the robots communicate
successfully, the used semiotic symbols reveal or-
der in the lexicon. Similar arguments hold for the
distinctiveness and parsimony, figures 6 (b) and
().

Although still rather fast, the communicative
success rises slower, see figure 6 (d). Because the
agents tend to categorize the referents very dif-
ferently on different occasions, there arises much
synonymy and polysemy in the system. Too
much synonymy and polysemy cause many con-
fusions, so many guessing games fail. Hence the
robots must disambiguate the synonymy and pol-
ysemy, which takes some time. Nevertheless, the
agents perform better than chance already after a
few hundred games. Kaplan has shown that the
speed of convergence in communicative success
depends, amongst others, on the number of mean-
ings/referents, the number of agents and noise in
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transmission (Kaplan, 2001).

The run that will be discussed in more detail
below resulted in the lexicon that is displayed in
the semiotic landscape shown in figure 7. This
figure shows the associations between referent,
meaning and form for both robots with a strength
that represents the relative occurrence frequency
of connections that are successfully used over
10,000 guessing games. Ideally, the connections
between referent-form-referent would be orthogo-
nal. Le., the couplings between a referent and its
form should not cross-connect with other form-
referent relations.

This orthogonality criterion is achieved for
mety, luvu and possibly zigi. The word-forms
kate and demi have cross-connections, but these
are relatively unimportant because they occur
with very low frequencies. More polysemy is
found for sema and tyfo. As will be shown be-
low, tyfo gets well established to name L1 al-
most unambiguously. The form sema however,
provides some instability in the system.

Figure 8 shows various competition diagrams
of robot r0, relating to referent L1 in one of the
runs of the experiment. A competition diagram
displays the relative co-occurrence frequency in
time of, for instance, forms in relation to a refer-
ent (Steels and Kaplan, 1999). Figure 8 (a) shows
the referent-form competition. This figure shows
the successful co-occurrence of referent and form,
where the occurrence of the form is calculated rel-
ative to the occurrence of the referent. Very infre-
quent occurring elements are left out for clarity.
Figure 8 (a) shows that form tyfo clearly wins
the competition and is nearly used uniquely to
name light source L1. Hence L1 has very little
synonymy. Vice-versa, the form-referent diagram
shows that when the form tyfo is used, it is used
mostly to name light source L1, see figure 8 (b).
This, however, happens after game 3,000. Before
this, the form tyfo shows quite some polysemy.

Figure 8 (c) shows that, throughout the run,
L1 is categorized with more than one meaning
of which two are used most frequently. A similar
competition can be seen in figure 8 (d) where var-
ious meanings compete to be the meaning of tyfo.
Apparently, these competitions compensate each

other such that competitions as in figures 8 (a)
and (b) emerge.

That the competition is not always running so
smooth is shown in figure 9. Here there are two
forms strongly competing for naming light source
L2. In most cases, the forms are used to name
only one referent in the end as figure 9 (b) shows.
But sometimes this could fail. Nevertheless, the
overall picture is that all referents are mostly
named by only one form and all forms are mostly
used to name only one referent. Such relations
are much less frequently observed when investi-
gating co-occurrences of referent and meaning or
form and meaning.

5. Discussion

5.1. Meeting the limits

The results make clear that the robots con-
struct a communication system that meets its
limits. The communicative success is in the end
nearly as high as the potential understandability.

Both the discriminative success and distinctive-
ness are very close to 1, and the specificity is
also close to 1. So, when a robot uses a semi-
otic symbol successfully, it almost always refers
to the same referent. This means that there is
hardly any polysemy. The parsimony and con-
sistency are somewhat lower than the distinctive-
ness and specificity. Hence, there are some one-
to-many relations between referent and meaning
and between referent and form in the system. The
semiotic landscape (figure 7) already showed that
most of the synonymy does not necessarily mean
that the communication is difficult. Usually, the
hearer can rather easily interpret any speaker’s
utterance.

The landscape also shows that a one-to-many
relationship between form and meaning does not
necessarily mean polysemy. In fact, it is benefi-
cial, since it cancels out the one-to-many map-
ping of referent to meaning for a great deal.
Hence semiotic symbols may have different mean-
ings. Referents are interpreted differently when
observed under different circumstances. Yet the
referents can be named invariantly to a high de-
gree. One may argue that the robots use dif-
ferent semiotic symbols when they use different
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Figure 7. The semiotic landscape of the experiment. A semiotic landscape provides a way to illustrate how
the semiotic symbols of the two robots are related. It illustrates the connections between referent/light
source L, meaning M and forms such as sema, zigi etc.. The upper half of the graph shows the lexicon
of robot r0, the lower half the lexicon of r1. The connections drawn indicate the relative occurrence
frequencies (P) of referents, meanings and forms. The relations between referent and meaning are relative
to the occurrence of the referent. The relations between meaning and form are relative to the occurrence

of the form. Associations with an occurrence frequency of P < 0.005 are left out for clarity.
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meanings and sometimes this is even appropri-
ate. However, when the semiotic symbols have
the same form and relate to the same referent,
attributing them to a single semiotic symbol can
be useful. Especially when the semiotic symbols
are only used to name a referent. Therefore, one
could also argue that the meaning of a semiotic
symbol changes dynamically over time, depend-
ing on the situation the robots are in. Note, by
the way, that the meanings also change dynam-
ically over time by the prototype shift towards
detected referents, cf. eq. 4.

In what respect did the robots acquire mean-
ingful symbols? In section 2.3.2, meaning has
been defined as a functional relation between
form and referent. The robots do not acquire
meaning in the sense that they use the commu-
nicated symbols to fulfill a “life-task”, neither
is it rooted in the sense that the robots’ bod-
ies, their interaction and learning mechanisms
are designed, see (Ziemke, 1999). But given the
robots’ bodies, interaction mechanisms and learn-
ing mechanisms, the semiotic symbols are mean-
ingful in that they are used by the robots to name
referents. They could also be used to perform
simple actions, such as pointing at the referent, as

shown in (Vogt, 1998a) and in the Talking Heads
experiment (Steels and Kaplan, 1999). However,
because this pointing could in the current exper-
iments not be used to evaluate feedback, it has
not been implemented in the current experiment.
In more realistic experiments, the robots should
use the communication to fulfill some task. Ful-
filling tasks could then be used to evaluate the
language game’s success as is the case in, e.g.,
(De Jong, 2000; Vogt, 2000a; Kaplan, 2000). Fur-
ther research is currently in progress where the
robots use the lexicon to improve their learned
capability to sustain their energy-level in order to
‘survive’. This experiment combines the language
game model with the ‘viability’ experiments pre-
viously done at the AI Lab in Brussels, see, e.g.,
(Steels, 1996a; Birk, 1998). The meaning of the
semiotic symbols that are constructed in such an
experiment is than based on the robots’ activity
to remain ‘viable’ over extended period of time.
But even then, as argued in, e.g., (Ziemke, 1999;
Ziemke and Sharkey, 2001), the semiotic symbols
will only be really meaningful to an agent when
the agent is completely rooted by, for instance,
evolution (Ziemke, 1999). Current studies in AL-
ife focus on how robotic agents may evolve, for
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instance, their bodies (Lund et al., 1997), their
control architecture (Nolfi and Floreano, 2000),
their sensors (Jung et al., 2001) and communica-
tion channels (Quinn, 2001). These researches
might help to explain how robots can become
‘rooted’ in their environment. For a broad dis-
cussion on these issues, see, e.g., (Ziemke and
Sharkey, 2001).

In the current experiment the forms are trans-
mitted as strings in the off-line processing on the
PC. Previously, this has been done using radio
communication (Steels and Vogt, 1997). How-
ever, in a more realistic setting, the transmis-
sion should occur in phonetic strings. In such
a case, the phonetic strings are also physical
objects and must be processed and categorized.
Both processing and categorization could, for in-
stance, be done in a similar way as modeled by
De Boer (1997), see section 3.1. Using De Boer’s
model, vowels, or even more complex utterances
(De Boer, 2000b; Oudeyer, 2001), could be devel-
oped in a similar way as the lexicon is developed.
One non-trivial problem remains to be solved.
This problem has to do with distinguishing ut-
terances as forms from physical objects. How
this problem can be solved is unclear, but it may
depend on the context setting, and for that the
agents need to develop more sophisticated means
of recognizing a context. But perhaps it could
also be solved by the evolution of communication
channels as, for instance, is being investigated in
(Quinn, 2001).

5.2. The dynamics of the system

What can be said about the dynamics of the
system? Figure 6 (d) showed that the com-
municative success shows a rapid increase dur-
ing the first 1,000 games, after which the suc-
cess grows less rapidly. Furthermore, the figure
shows a slower increase than, e.g., the discrim-
inative success shown in figure 6 (a). So, what
happens in the beginning? In the first few hun-
dred games, when the robots try to name the var-
ious referents, there is a lot of confusion what
the speaker intends to communicate. The hearer
of a game adopts forms that may already exists
for the robot, but that are not applicable in the
current context (i.e. the meaning does not ap-

ply to any distinctive category). Consequently,
a lot of variety is introduced in the lexicon. As
a result of adapting the association scores, the
robots will tend to select effective elements ap-
propriately more often. This induces a repeti-
tive cycle that strengthens the effective elements
more and meanwhile weakens the ineffective ones.
In the beginning this adaptation is more flexible
than later on when the association scores become
stronger. When the association scores are strong,
it is more difficult for other associations to in-
fluence the communicative success. This, how-
ever, becomes less important as the communica-
tive success rises to a satisfactory degree.

The dynamics of the system allows an impor-
tant conclusion to be drawn, namely that the se-
lection criteria and the dynamics of association
scores cause a self-organizing convergence of the
lexicon. The conclusion that this is an emergent
property can, amongst others, be drawn from the
fact that lexicon dynamics is controlled at the
form-meaning level and not at the form-referent
level. I.e., adaptations in the lexicon occur only
at the form-meaning level. A referent is catego-
rized differently in different situations, see, e.g.,
figure 8 (c). At the same time, these different
categories may be named by only one name (or
more concretely, one name may have different
meanings in different situations) as figure 8 (d)
depicts. Figures 8 (a) and (b) show that the one-
to-many relations at the referent-meaning and
form-meaning levels cancel each other out at the
referent-form level in both directions. This hap-
pens despite the fact that when a form-meaning
association is used successfully, the strength of
competing form-meaning associations are later-
ally inhibited. Although this lateral inhibition
helps to decrease polysemy and synonymy at
the referent-form level, it is also an antagonizing
force at the form-meaning level when the mean-
ing is used to stand for the same referent. This
antagonizing force, however, is not problematic
due to the context dependence of the guessing
games. Selected lexical elements must be applica-
ble within the context of a particular game. This
is a nice consequence of the pragmatic approach.
Furthermore, the feedback signals that operate at
the form-referent level contribute largely to the



convergence of the lexicon. It has been shown
in (Vogt, 2000b) that leaving out the feedback
without alternative ways of knowing the topic,
does not lead to convergence in this experimental
setup. This does not mean, however, that leaving
out the feedback does not work in general. It may
well be that not using such feedback, or any other
non-verbal means of exchanging topic knowledge,
might lead to convergence in a more rich envi-
ronment, cf. the results of simulations reported
in (Smith, 2001). This is currently being investi-
gated. Another strategy that could be beneficial
in such cases is to use a cooperative rather than
a competitive selection and adaptation scheme as
demonstrated in (Kaplan, 2001).

5.3. The relation to other work

The experiment presented here is unique in its
modeling the development of a lexicon grounded
in reality from scratch using mobile robots. Al-
though the Talking Heads experiment (Belpaeme
et al., 1998; Steels and Kaplan, 1999) also mod-
els lexicon development from scratch and is also a
grounded experiment, the Talking Heads are im-
mobile (they can only move pan-tilt from a fixed
position). This immobility helped to evaluate the
feedback on guessing games, because the Talking
Heads used calibrated knowledge about their en-
vironment to evaluate feedback. In addition, the
different sensings of a referent are more similar on
different occasions than in the mobile robots as
the Talking Heads sense their environment from
a fixed position. In controlled experiments, this
allowed to the Talking Heads to speed up the lexi-
con development (Steels and Kaplan, 1999). Nev-
ertheless, the overall success on both platforms is
more or less comparable.

Similar findings are found when comparing
the work of this paper with the work of Bil-
lard and her colleagues on mobile robots (Bil-
lard and Hayes, 1997; Billard and Dautenhahn,
1998). In Billard’s experiments, a student robot
learns a grounded lexicon about its environment
by imitating a teacher robot who has been prepro-
grammed with the lexicon. The overall results are
similar to the results presented here, although the
lexicon acquisition is much faster in (Billard and
Dautenhahn, 1998). The latter result is presum-
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ably due to the fact that one of Billard’s robots al-
ready knows the lexicon, while in the experiments
here none of the robots has been preprogrammed
with the lexicon.

Although not situated and embodied, the simu-
lations of Oliphant, too, are relevant. He showed
that populations of agents could rather eas-
ily develop highly efficient lexicons from scratch
by associating given meanings with given forms
(Oliphant, 1999). Also relevant is the work of De
Jong who experimented with language games, of
which the meanings were grounded in simulations
(De Jong, 2000). In addition, De Jong’s agents
tried to improve their (task-oriented) behavior us-
ing the lexicon developed. Both Oliphant and
De Jong showed that agents could develop a co-
herent lexicon without using feedback on the ef-
fect of the game, provided the agents have ac-
cess to both the form and meaning during a lan-
guage game. Although in this paper the robots
did use such feedback, robotic experiments have
confirmed Oliphant and De Jong’s results (Vogt,
2000b, Vogt, 2001). In these experiments both
robots had access to both the form and the topic
by means of ‘pointing’, so that the hearer knows
the topic in advance.

6. Conclusions

In order to overcome fundamental problems
that exist in the cognitivist approach towards cog-
nition, and to allow describing cognition in terms
of symbols within the paradigm of embodied cog-
nition, this paper proposes an alternative defini-
tion of symbols. This definition is not novel, but
is adopted from Peirce’s definition of symbols as
the relation between a form, a meaning and a ref-
erent. The relation as such is not meaningful, but
arises from its active construction and use. This
process is called semiosis and has been modeled in
robotic agents through adaptive language games.

As aresult of the semiotic definition of symbols,
it could be argued that the symbols are per def-
inition grounded, because semiotic symbols have
intrinsic meaning in relation to the real world,
cf. (Lakoff, 1987). Hence the symbol ground-
ing problem is no longer a fundamental problem,
since a semiotic symbol is a relation between a
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form, meaning and referent, and the way this
relation is formed and used specifies its mean-
ing. There, however, remains the problem of con-
structing the semiotic symbols, but this problem
can be viewed as a technical problem. This prob-
lem is called the physical symbol grounding prob-
lem.

The experiment reported shows how robotic
agents can develop a structured set of semi-
otic symbols which they can use to name var-
ious real world objects invariantly. The semi-
otic symbols are constructed through the robots’
interactions with their environment (including
themselves), individual adaptations and self-
organization. These three mechanisms, hypothe-
sized by Luc Steels (1996a), are based on the core
principles of embodied cognitive science: embod-
iment, situatedness and emergence. The semiotic
symbols are structural couplings that are formed
through some interaction of an agent with the
real world as proposed for instance by (Clancey,
1997).

An important result that the experiment re-
veals is that semiotic symbols need not be catego-
rized the same under different circumstances. As
the semiotic landscape shows, there is no one-to-
one-to-one relation between a referent, meaning
and form; this relation is rather one-to-many-to-
one. In different situations, the robots detect the
referents differently. Yet they are able to identify
them invariantly at the form level. In the process
of arriving at such invariant identification, which
is the most important aspect of symbol ground-
ing (Harnad, 1990), the co-evolution of form and
meaning reveals to be extremely important.

The experiment shows that the physical sym-
bol grounding problem can be solved in the sim-
ple experimental setup, given the language game
model, the designed robots and under the as-
sumption that feedback can be established by, for
instance, using pointing. These given assump-
tions make that the physical symbol grounding
problem is not entirely solved, because for this
the language game model, the robots and other
assumptions should be rooted by, e.g., evolution
(Ziemke, 1999; Ziemke and Sharkey, 2001). The
experiment nevertheless illustrates how semiotic
symbols can be constructed and used and is thus

an important step towards solving the physical
symbol grounding problem, or at least, in our un-
derstanding of cognition.

Although the guessing game works well in the
current experimental setup, it should be realized
that this setup is rather simplistic. Future work
should confirm the scalability of the model in
more realistic and more complex environments
using more complex robots. Another improve-
ment that is currently under investigation, is that
the communication system is used to perform
concrete “life-tasks” rather than just using and
developing a lexicon. This would make the ap-
proach more realistic since in natural systems
communication is usually used to guide (task-
oriented) behavior, such as coordinating each
other’s actions.
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