Perceptual grounding in robots

Paul Vogt

Vrije Universiteit Brussel, Artificial Intelligence Laboratory
Pleinlaan 2
1000 Brussels, Belgium
e-mail: paul@arti.vub.ac.be

Abstract. This paper reports on an experiment in which robotic agents
are able to ground objects in their environment using low-level sensors.
The reported experiment is part of a larger experiment, in which au-
tonomous agents ground an adaptive language through self-organization.
Grounding is achieved by the implementation of the hypothesis that
meaning can be created using mechanisms like feature generation and
self-organization. The experiments were carried out to investigate how
agents may construct features in order to learn to discriminate objects
from each other. Meaning is formed to give semantic value to the lan-
guage, which is also created by the agents in the same experiments.
From the experimental results we can conclude that the robots are able
to ground meaning in this self-organizing manner. This paper focuses
on the meaning creation and will only discuss the language formation
very briefly. The paper sketches the tested hypothesis, the experimental
set-up and experimental results.

1 Introduction

In the past few decades a lot of research has been done on the grounding problem.
The grounding problem investigates how symbolic structures may arise from
non-symbolic sensory information extracted from the physical world (Harnad,
1990). This paper discusses how robotic agents may ground symbolic meaning
from sensory observations. Approaches to this problem normally use rule-based
systems, connectionist models or genetic learning mechanisms. Qur approach
is a bottom-up approach, conform the behavior-oriented approach to artificial
intelligence (Steels, 1994). This means that agents use sensory information to
conceptualize meaning from the bottom-up, which has also been suggested by
Harnad. The experiments are embedded in our research on the origins of language
(Steels, 1996a).

The experiments are based on the hypothesis that language is a complex
dynamical system and that a lexicon and meaning emerges through interaction
within a population of agents and their environment (Steels, 1997). Cultural in-
teraction between agents causes the language to spread through the population.
Individual adaptation lets the lexical and semantic symbols be categorized. Be-
cause the system 1is a distributed complex dynamical system, there is no agent
that has a complete view of the language, nor is there an agent that can control



the language. The major goal in studying the origins of complex systems is to
find the boundary conditions and mechanisms, like self-organization, that give
rise to the complexity, see e.g. (Prigogine and Strengers, 1984).

In our research on the origins of language, see e.g. (Steels, 1996¢), agents
can adapt a lexicon, which are words that they associate with semantic symbols,
which in turn discriminate between concepts (be it objects or other relations).
The lexicon is propagated through the population of agents by means of social
interaction. This is done by a distributed set of agents that have the ability to
communicate with each other, and a self-organizing learning method is used to
adapt the lexicon appropriately. No linguistic information is pre-programmed
and the lexicon emerges through a cultural evolution. This is opposed to the
linguistic theory introduced by Chomsky (see e.g. (Chomsky, 1980)), who claims
that linguistic structures are innate.

As there is no linguistic information pre-programmed there is also no pre-
programmed meaning. In the experiments individual agents ground the semantic
symbols. The robots ground the symbols, which compose the linguistic meaning
of a concept, i.e. the meaning of a word. They do so by classifying sub-symbolic
low-level sensory data into distinctions, conform (Harnad, 1990). The grounded
symbols (or feature sets) distinguish one object from some other observed ob-
jects. An adaptive self-organizing learning mechanism is incorporated in the
system 1n order to select those symbols that are useful for the lexicon formation
(Steels, 1996b). Learning is achieved by generating features, which relate to ob-
served sensory information of an object. These features are then classified based
on their usefulness by means of a selectionist approach. This method is based
on natural selection during the interaction with the physical world and within a
lifetime (as suggested by e.g. (Foley, 1997)(Edelman, 1987)). The useful features
will be used more frequently than unuseful ones. The useful features remain
within the system, whereas the unuseful ones will be forgotten. The method dif-
fers from genetic algorithms because the agents do not inherit information from
generation to generation. All learning and selection takes place within a lifetime
of an agent. They also do not reproduce features for selection, but they create
new features.

This paper reports on an experiment where robotic agents can develop a
lexicon about objects in their environment using these mechanisms. In (Steels
and Vogt, 1997) a similar experiment is reported, in that paper the focus was
however on the co-evolution of language and meaning, conform (Steels, 1997).
Here the focus is on the evolution of meaning in robotic agents. Especially the
physical implementation of the hypothesis is discussed in detail.

In the next section the mechanisms for meaning creation and learning are
explained. In section 3 the whole experimental set-up is described. Section 4
reports on the experimental results. And finally, in section 5, conclusions and
future research are discussed.
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Fig. 1. The robots can construct a binary tree of features that divides the sensor space.

2 The evolution of meaning

At the Al-Lab in Brussels we investigate how meaning may evolve using se-
lectionistic mechanisms (Steels, 1996b). These mechanisms are mainly based on
adaptive self-organization. The mechanisms for the meaning creation are (1) fea-
ture generation and (2) self-organization . The generation principle is based on
the generation of features that may represent sensory information of an object.
Self-organization by means of a natural selection-like learning method causes the
meaning to be coherent and useful.

The meaning creation is introduced by Luc Steels (Steels, 1996b). The princi-
ples for meaning creation are valid for all kinds of concepts like physical objects,
spatial relations, internal states and movements. It emerges in an individual
agent under the notion of discrimination games: Agents construct binary fea-
ture trees of the sensory space representing objects (figure 1). Observed objects
are related with feature nodes that are sensitive for observed sensor values. These
features are used to discriminate one object from other objects. Those features
that are capable to distinguish one object from another constitute the feature
sets and represent the symbolic meaning. The following description is adapted
from (Steels, 1996b).

Suppose we have a system that consists of a set of objects O = {o1,...,0,}
and a set of agents R = {ry,...,r,} C O. Each agent r has a set of sensory
channels S, = {s¢1,...,s¢,} and a set of features F, = {f1,..., f;}. A sensory
channel sc; is a real-valued function from O — R, which is (in-)directly derived
from the agent’s sensor. A feature f is a pair (p V), where p is the attribute
name (usually s¢;) and V = [vpmin, Umasz] € SC;. Here SCj is the range in which
sc; 1s sensitive.

In a discrimination game, the procedure is as follows: Suppose an agent has
observed a context that consists of a set of objects: C' = {o; | 0; € O}. Observing
an object in the robot’s world using (low-level) sensors results in a set of sensor
values for every sensory channel. These values can be related to features that



are sensitive to these values. So every object 0; € C' can be related to a set of
features F;,, € Fr. An object o; can be described by a set of descriptions:

A% = {AZ’

A CFo}

where A7' is any possible description of an object o0; constrained as follows:

A C{fi=iVi) | [ € Fro, N(U#£ G =i # p5)}

Note that: (1) The set on the right hand side of this relation may result in several
sets since the o; may be related to several features on one sensory channel, since
the features are build up in a tree. The relation holds for every possible set
governed by the right hand side. And (2) |, Ay = Fro,.

The agent now identifies a topic t € C' of the discrimination game. Then
the agent tries to distinguish the topic from the other objects in the context by
constructing a set of distinctive feature sets. A set of distinctive feature set can

be defined as:
DE = {AL | Vo; € C\{t} : (-3 : (A = A%))}

So, the agent constructs a set of features that relates to ¢ and which distinguishes
t from the other objects in the context. A distinctive feature set 1s associated
with a use-score and a success-score. A discrimination game results in a set of
distinctive feature sets (D;), which can be empty, but which can also consist
of several distinctive feature sets. All distinctive feature sets resulting from the
discrimination game are stored in the memory of the robot to be associated
words in the language games.

If the agent thus determined a set of distinctive feature sets, the following is
possible:

— The agent was not able to discriminatet € C,i.e. D; = (. The discrimination
game was a failure.

— The agent was able to discriminate ¢ € C, i.e. Dy # @. The discrimination
game was a success. If there is more than one distinctive feature set, the
agent will choose the most general distinctive feature set as follows:

e Choose the set with the smallest amount of features.

e If there is still more than one distinctive feature set, then choose the set
that is least segmented in the feature space. I.e. that set that has the
least average depth in the feature tree.

o If there are still several sets left, then choose the most successful one. I.e.
the set for which the measure m = success/use is the highest. (Steels,

1996b).

If the discrimination game was a failure, then the agent constructs a new
feature. This can be done in two ways: (1) If there is still a sensory channel
unused, then use this sensory channel to construct a feature in the range of this
channel. (2) Choose an arbitrary feature that is ’activated’ by the topic, and



Fig. 2. The LEGO robots used at the Al-Lab in Brussels.

divide the range of this feature in two equal halves, thus constructing two new
features. This way a binary tree of features is created (figure 1).

If the discrimination game was a success, the use- and success-scores are up-
dated as follows: The use parameter is incremented for all distinctive feature
sets. The success-score is incremented for the distinctive feature set, which rep-
resents the object the best. Self-organization is achieved by the way the agent
selects a distinctive feature set in using these scores. So, learning to ground the
meaning of objects is achieved by generating perceptual features, then trying to
distinguish an object from others and increasing the strength of the feature sets
that were successful in the discrimination task.

3 The experiments

3.1 The robots and their environment

At the AT-Lab in Brussels we have several mobile LEGO robots (figure 2) which
can explore an ecosystem of approximately 4 by 6 meters (see figure 3). On the
robots several sensor modules are mounted for sensing and two motors to drive
them. The process unit of the robots is a Motorola MC68332 micro controller
with 128 kB ROM and 256 KB RAM located on a Vesta board. The Vesta board
is integrated with the SMB2 sensory-motor board, which is dedicated to low-level
sensory-motor processing (Vereertbrugghen, 1996). The robots have two white
light and two modulated light sensors, each on the left and the right front side
of the robot. Three infrared (TR) sensors are mounted on the left-, middle- and
right front side. Four TR emitters are mounted on the robot in such a way that
they emit TR in four perpendicular directions (to the front, the back, the right



Fig. 3. The ecosystem of the Al-Lab in Brussels. In the foreground we see a competitor
that emits modulated light, and in the background the charging station emitting white
light is visible.

and the left sides). Four bumpers are used for obstacle avoidance. Secondary
NiMH batteries supply the power (Birk, 1997).

Communication between the robots is done by a radio-link that can transmit
and receive messages up to 40 Kbit/s. This radio-link is part of the sensory-motor
board, and is therefore controlled by the processor of this board. The radio-link
is unreliable in the sense that it is not guaranteed that a message arrives, but
when it arrives the message contains no errors (Vereertbrugghen, 1996). The
radio-link is used for both linguistic and extra-linguistic communication.

The robots are programmed in PDL, a language that is designed for behavior-
oriented control as described in (Steels, 1994). The system directly couples sen-
sory data streams to the actuators, thus controlling behavior dynamically. Be-



havior is implemented as a motivational coupling between sensory input and
motor output.

In the robot’s environment (see figure 3) there are several objects for which
the robots need to ground a semantic representation. These objects can be de-
scribed by the light source they emit. There is one light source that emits white
light, there are two light sources that emit light modulated at a particular fre-
quency, and the robots emit infrared to make themselves visible for the other
robot. The whole system, i.e. robots and environment, is used for the mean-
ing and language experiments described in this paper. In the next section this
experiment is described in more detail.

3.2 The language experiments

In order to investigate the origins of language on physical robots we constructed
an experiment in which robots engage in a series of language games. At first the
robots have no knowledge of language at all; they only have knowledge about
how to communicate (Steels and Vogt, 1997). In the experiment described here,
there are only two robots that play a series of naming games. In naming games
(a variant of the language games) the agents indicate objects by their name
(Steels, 1996a). The objects about which the robots can communicate are, apart
from the robots themselves, an object that emits white light and two objects
that emit light modulated at a particular frequency.

In a language game, one robot decides to be the speaker, while the other
becomes the hearer. In order to construct a coherent context, both robots must
know what objects are present in their near surroundings and where these objects
are. This can be done while the robots are standing close to each other and facing
one another. So, when the robots are facing each other at close distance they
have to build a map of their surroundings, thus constructing a context of objects.
The speaker chooses one object randomly from the context as the topic. Then
the speaker uses extra-linguistic communication (as described later) in order to
let the hearer identify this topic as well. For this object each agent constructs
a set of distinctive feature sets in a discrimination game as described in section
2. Now that both agents have a set of distinctive feature sets they can start the
communication as described in more detail in (Steels and Vogt, 1997)

The experiment is implemented so that the robots can be in three different
modes: (1) default exploration mode, (2) the speaker mode, and (3) the hearer
mode. In the default exploration mode, the robots drive around in the ecosys-
tem in forward direction with touch-based obstacle avoidance. Each robot emits
pulses of IR, so that they can detect the presence of another robot. When no IR
is emitted, but the robot senses IR, it can infer that there must be another robot
nearby. The robot that detects the other then broadcasts a radio message that 1t
wants to communicate. The other agent then replies a confirmation to the first
one, and enters the hearer mode. When the first robot receives the confirmation,
it enters the speaker mode. This type of communication is extra-linguistic, so 1t
does not add to the language being formed.



The hearer starts to emit a continuous signal of TR, and the speaker uses TR-
taxis (or phototaxis towards infrared) to drive towards the hearer as described by
(Braitenberg, 1984). The motor values are adjusted so the robot drives towards
the TR source. When the speaker is close to the hearer, it stops and uses IR-
orientation to orient towards the hearer. With IR-orientation, as with TR-taxis,
the robot orients towards the highest gradient of difference between the outer
IR sensors, but without forward drive. After the speaker has completed this, the
hearer orients towards the speaker, so they now stand in front of each other.

One by one the speaker and the hearer start to scan their surroundings. They
do so by rotating around their axis while recording their sensory input, thus con-
structing a map like in figure 4. As we can see in figure 4(a), the complementary
sensor pairs show intersections at, for instance, time/position 100, 140 and 160.
The first one is an intersection of modulated light; the second one is from white
light. IR intersects at the beginning and the end of the graph. The intersections
occur when the robot passes an object, so this information could be used to de-
cide that an object is at that particular place. If such an intersection is detected,
the robot makes a record of all sensory channels. These values may be direct
sensor values or real valued functions of direct sensor values. The construction
of such sensory channels is very important for the success of the discrimination
games. This construction will be discussed in the next section.

If the speaker has chosen a topic, it has to use extra-linguistic means in order
to let the hearer identify the topic as well. We have decided to use pointing as
method for this process. Pointing is implemented as follows: The speaker orients
towards the topic, while it emits IR in four perpendicular directions. The hearer
observes the pointing and perceives a graph as shown in figure 5. In this figure,
one can observe three relative high peaks of IR. Each peak is at the boundary
of a particular quadrant. Counting these peaks, the hearer can determine the
quadrant in which the topic must be. Because there are not so many objects in
the environment, the hearer can determine the topic with reasonable reliability.
When the speaker does not rotate, but it does emit IR, the hearer is the topic.
When the speaker does not emit IR nor does it rotate, then the speaker is the
topic.

The figure, however, represents a graph where the speaker was exactly facing
the hearer before it started to rotate. The experiments showed that this method
was very unreliable (Steels and Vogt, 1997). The hearer often observed a very
different graph than shown and was therefore not able to identify the same
topic the speaker pointed at. In the experiments discussed here, this pointing
was simulated by means of radio communication. The speaker transferred the
quadrant in which the topic was observed to the hearer by radio link. The hearer
then maps this quadrant to its own topic. For this mapping, the hearer must
first mirror the received quadrant to a quadrant from its own point of view.

When both agents identified the topic and related features to sensory chan-
nels for all objects in their surroundings, they can play a discrimination game.
The yielded set of distinctive feature sets 1s then used for the language formation

(as described in (Steels and Vogt, 1997)).
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Fig.4. The graph that two opposing robots may sense during the perception. The
robots infer that there is an object when two complementary sensors intersect the
graph.
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Fig. 5. The graph that the hearer observes when the speaker is rotating 360 degrees,
while it is emitting IR in four perpendicular directions.

The speaker and hearer modes can be specified using Finite State Automata
where the agents use the radio-link to synchronize the states in which the au-
tomata should be, if necessary. Hereto they send messages for asking to com-
municate, to say that they have aligned etc. The next section reports on the
results of the meaning creation and the main features that were important for
the successful implementation of the mechanisms.

4 Experimental results

We have done several experiments on the meaning and language formation.
This section reports on only one of these experiments. The experiment resulted
in 145 naming games, which were the result of two days experimenting. This
low amount is due to the following reasons: (1) The robots can only work for
approximately 30 minutes when the batteries are charged, and they can complete
the process of one naming game roughly every 2 minutes. (2) The internal states
(or memory) of the robots and the discourse of the naming games in both robots
were monitored by a serial cable. This was extremely difficult since we have two
robots, each connected to a cable, that move in an environment full of obstacles.
And (3) producing much more games appeared not to be possible because after
more games the internal memory started to exceed the 256 kB RAM. This, of
course, is the reason why there are not more than 145 games.

As we shall see, the grounding of distinctive features was successful in that
the robots revealed distinctive feature sets, which represented the objects rather



coherently. This already happened after a short while of learning. The language
formation was less clear, because the formation of a language takes much more
time. Reports on the language formation can be found in (Steels and Vogt, 1997).
This section focuses on the meaning creation.

As was mentioned before, the construction of sensory channels was very im-
portant in the development of this experiment. The right choice of these channels
must enable the agents to select the right features in order to discriminate the
objects coherently. I.e. the selected features, which compose the distinctive fea-
ture set(s), must be general enough to be selected in other situations as well.
The task for the robots was to ground three objects', which are made visible
by means of white light, light modulated at a certain frequency and IR. There-
fore three sensory channels were constructed for discriminating the objects: sc0
- white light, scl - modulated light, and sc2 - IR. All these channels produce
values as if the object is seen in the front.

Consider the first discrimination game, where the robot has no features yet.
The discrimination game was executed by robot r2, which scanned the object
00 at time/position 67 and object ol at position 102. The sensory channels for
00 revealed values 69 for sc0, 54 for scl and 37 for sc2, for ol this was 13, 2 and
189 respectively. Obviously, the discrimination ended in failure because there
were no features. A new feature is created for sc0, which expects a positive value
between 0 and 255.

Discrimination game by r2
Objects r2:

o0 [67] [69, 54, 37]

ol [102] [13,2,189]
Topic r2: o0
Failure r2. No feature sets.

New features r2: r2-sc0 [0,255]

Let us now look at another early discrimination game that fails, but where a
feature is divided in two equal halves creating two new features.

Discrimination game by r2
Objects r2:
00 [64] [47, 1, 9]
ol [103] [76, 46, 182]
02 [105] [90, 73, 185]
Topic r2: o0. Feature sets:
00 {r2-sc0,r2-sc0-0,r2-sc1,r2-sc2}
ol {r2-sc0,r2-sc0-0,r2-sc1,r2-sc2}
02 {r2-sc0,r2-sc0-0,r2-sc1,r2-sc2}
Failure r2. No distinctive feature sets.

New features r2: r2-sc1-0 [0,127.5] r2-sc1-1 [127.5,255]

! The agents need not ground the feature self, because this is not an observable feature.
It is assumed that this feature is true in every context at time/position 0.



Now we see a discrimination game that was successful. Note that the context
is the same as in the previous discrimination game. The robots play several
language- and discrimination with the same context (with a maximum of 10).

Discrimination game by r2
Objects r2:
00 [64] [47, 1, 9]
ol [103] [76, 46, 182]
02 [105] [90, 73, 185]
Topic r2: 02. Feature sets:
00 {r2-sc0,r2-sc0-0,1r2-sc0-0-0,r2-sc1,r2-sc1-0,
r2-sc1-0-0,r2-sc2,r2-sc2-0}
ol {r2-sc0,r2-sc0-0,r2-sc0-0-1,r2-sc1,r2-sc1-0,
r2-sc1-0-0,r2-sc2,r2-sc2-1}
02 {r2-sc0,r2-sc0-0,1r2-sc0-0-1,r2-sc1,r2-sc1-0,
r2-sc1-0-1,r2-sc2,r2-sc2-1}
Distinctive feature sets r2:
{{r2-sc0,r2-sc1-0-1,12-s5c2},
{r2-sc-0,r2-sc1-0-1,12-sc2-1},
{r2-sc0,r2-sc1-0-1},
{r2-sc1-0-1,r2-sc2},
{r2-sc0-0,r2-sc1-0-1},
{sc1-0-1,r2-sc2-1},
{r2-sc0-0-1,r2-sc1-0-1},
{r2-sc1-0-1}}
Success r2. {r2-sc1-0-1} [63.75,127.5]

The 10th discrimination game already showed the above result. Robot r2 finds
all combinations of features that include sc7-0-1. This feature is the only one
that distinguishes 02 from 00 and ol. The game yields {r2-sc1-0-1} on the range
[63.75,127.5], because this set is the smallest one, which is the preferred con-
dition when there are several distinctive feature sets. The use of all features is
increased, whereas the success of only {r2-sc1-0-1} is incremented.

This last game illustrates an almost typical view of what the robot observes
when it is scanning its surroundings. All sensory channels always yield a noise
value, and it is very difficult to say what object in the environment is meant.
In order to detect what object is meant, a monitoring program keeps track
of what sensory channel is used to decide when the robot observes an object
during the perception. In this case the object was recorded because sc2 showed
an intersection, therefore 02 is the other robot.

As can be seen in figure 6, discriminative success of the successful distinctive
feature sets increase quite rapidly. This is because in the first few discrimination
games these sets were used, they were immediately successful. In later games
some of these distinctive feature sets were used in a discrimination game, but
these were not preferred, thus decreasing the success rate. Some feature sets
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Fig. 6. The discriminative success, i.e. success/use of some successful feature sets for
the first 145 discrimination games. In the beginning all feature sets are built up with
increasing success scores. Some of the score decrease in later games, which is due to
competition between distinctive feature sets.

reach a score of 1 immediately. Most of these sets are used only one time after
145 discrimination games.

If we look for which objects the distinctive feature sets are used, we can see
that every object has a rather coherent set of distinctive feature sets (table 1).
The white light object is recognized with only 16.7% singular distinctive feature
sets, but the modulated light objects with 75.0% and the infrared with 72.0%.
These figures are, however, taken from only 145 discrimination games, and may
therefore not be very significant. Although there is some overlap, most of these
distinctive feature sets reveal clear preference for a particular object. To have
some overlap and no full coherence in the meaning is likely. It is thought that
meaning in the mind is represented by fuzzy sets that reveal a family resem-
blance (Aitchison, 1994), so that underlying features may reveal some overlap in
representing particular objects. Although the experiments have not yet revealed
this, it 1s also thought that the co-evolution of language with meaning will cause
all feature sets that now represent one real world object to be associated with
one global linguistic meaning. So there is normally only one word representing
one object, conform (Steels, 1997).

Concluding, we saw that robotic agents were able to learn to discriminate
objects using sensory features. The agents build up their own tree of features,
and are able to use distinctions in order to recognize the objects. A mechanism
of selection for the best used features causes the robot to learn the feature-tree



White light Modulated light |Infrared
use: 12 use: 20 use: 50
{sc0-0-0}:2 {sc1-0-1}:1 {sc0-0-2}:1
{sc1-0-0}:1 {sc1-0-2}:1 {sc0-1-0}:2
{sc2-1,sc1-0-1}:1|{sc2-0-1}:2 {sc0-0-3,sc1-0-4}:1
{sc2-0-0}:1 {sc2-0-0}:3 {sc1-0-2}:5
{sc2-1-0}:4 {sc1-0-3}:1 {sc1-1-0}:2
{sc2-0-3}:2 {sc0-0-4}:1
{sc2-0-4}:2 {sc0-0-5}:9
{sc2-1,sc1-0-2}:1  |{sc2-1,sc1-0-0}:2
{sc1-0-4}:1 {sc2}:16
{sc0-0-1,s¢2-1-1}:1|{sc2-1,sc0-0-6}:1
{sc1-0-5}:1 {sc2-1-0}:3
{sc2-1-1}:3 {sc0-0-0}:5
{sc0-0-7,sc2-1-1}:1

Table 1. The coherence of distinctive feature sets vs. the objects. The number behind
the distinctive feature sets indicates the successfulness of the set for the particular
object. Note that the notation of the sensory channels is different than before in order
to save some space. Feature sc1-0-0 means now the lower half of sensory channel 1, with
identifier 0, sc2-1-1 is sensitive on the upper half of sensory channel 2, with identifier
1, etc.

in a self-organizing way. Although it has not been shown here, it should be clear
that each agent constructs its own set of features, and therefore the agents may
have different representations of these features in their 'mind’.

5 Conclusions and future research

This paper discussed the implementation and the results of experiments that
has been done on learning to ground semantic features in robotic agents. The
experiments were held in combination with language formation experiments,
which are reported in (Steels and Vogt, 1997).

We saw that robots were able to construct a feature tree in order to discrimi-
nate and categorize sensory information from objects into symbolic feature sets.
This categorization was made possible by implementing a self-organizing learn-
ing mechanism to create and select features adaptively according to the rules
given in section 2. The robots could learn which features were useful to discrim-
inate between objects, thus building coherent classes of feature sets in order to
represent these (aspects of) objects, so a lexicon could be formed using these
items as semantic features. The feature sets have been grounded completely in
distinctions. Real identification of objects (or concepts) though would be another
step, which according to Harnad is a necessary, but extremely difficult step in
the grounding problem (Harnad, 1990).



Although the results are promising, a lot of research still has to be done. The
sets of discriminative features that are given in table 1 must be classified higher
up in the hierarchy of meaning. This can be done by the language formation,
where agents construct word-meaning pairs that represent discriminative feature
sets. Tt is shown (Steels and Vogt, 1997), that the agents construct ambiguous
words (i.e. words with more than one meaning) in the sense that they represent
different feature sets. This ambiguity though, is not necessarily visible in the
physical world outside an agent, because the different features may represent
the same object (see table 1). Therefore we could call this kind of ambiguity a
representational ambiguity, as opposed to lexical ambiguity and could overcome
the identification problem. This principle representational ambiguity, however,
has not revealed in the experiments sufficiently, because the formation of a co-
herent lexicon may take more than a thousand language games. Due to technical
problems experiments at such a scale were not yet executed.

Currently we are working on the improvement of these robotic experiments,
so we will be able to execute these large-scale experiments. We are also preparing
experiments to ground and lexicalize spatial relations, internal states and actions.
Work is being carried out in order to implement grounded language formation
using active vision.

Concluding, we could say that this experiment might be an important step
towards a new theory of meaning and language, where the formation is based on
a natural selection-like principle. The basic building blocks of these languages
are not innate structures (conform (Chomsky, 1980)), but rather the result of (1)
life-long evolution inside an agent based on its interactions with its environment
(Foley, 1997) and (2) the social interaction between different agents in a group.
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