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Abstract In this article I provide a review of studies that have modeled in-

teractions between language evolution and demographic processes. The mod-

els are classifi ed in terms of three different approaches: analytical modeling, 

agent-based analytical modeling, and agent-based cognitive modeling. I show 

that these approaches differ in the complexity of interactions that they can 

handle and that the agent-based cognitive models allow for the most detailed 

and realistic simulations. Thus readers are provided with a guideline for se-

lecting which approach to use for a given problem. The analytical models are 

useful for studying interactions between demography and language evolution 

in terms of high-level processes; the agent-based analytical models are good 

for studying such interactions in terms of social dynamics without bother-

ing too much about the cognitive mechanisms of language processing; and 

the agent-based cognitive models are best suited for the study of the interac-

tions between the complex sociocognitive mechanisms underlying language 

evolution.

The question of how human languages originated, spread over the globe, and are 

constantly changing remains one of the biggest challenges for 21st-century sci-

entists (e.g., Christiansen and Kirby 2003). In the past few decades these chal-

lenges have attracted increasing attention from the scientifi c community. Among 

the major driving forces behind this increased attention has been improved com-

putational capacity and computerized techniques. In this paper I am concerned 

with applying demographic models and data to computer simulations of language 

evolution.

One of the reasons for the success of computer modeling in the fi eld of lan-

guage evolution is that theoretical models, whose results are often complex and 

consequently hard to predict on the back of an envelope, can be simulated and 

their results can be compared with empirical observations, allowing one to validate 

the theory. Here also lies a weak point of the approach: Many models are highly 

abstract and simplifi ed such that a comparison with empirical data (e.g., linguistic 

or psychological) is often diffi cult to achieve (see, e.g., Vogt and de Boer 2010). 
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Although some comparisons of outcomes of computer models with empirical data 

have been successful (e.g., de Boer 2001; Griffi ths et al. 2008; Nettle 1999c), many 

computational studies still need proper grounding in empirical studies.

Surprisingly, archaeology is a discipline that has received little attention in 

the computational modeling of language evolution, although increasingly more 

empirical data have become available, in particular regarding demographic dynam-

ics (Klein 2000; Mellars 2005). Most theoretical models that take demographic 

data into account are analytical models (e.g., Nowak et al. 2001). Although these 

models have helped to gain many insights into the evolution of language, they 

have their limitations. An alternative to analytical modeling is agent-based mod-

eling, in which a population of individuals interact with each other and develop 

aspects of language by learning from each other [for a review of analytical and 

agent-based models of language competition, see Kandler (2009) (this issue)]. 

However, so far few agent-based models (the type of models focused on in this 

paper) take demographic data into account, but see, for example, Briscoe (2000), 

Nettle (1999a), and Parisi et al. (2008) for counterexamples.

In this paper I discuss some of the limitations of analytical modeling and put 

forward the arguments in favor of an agent-based modeling approach to simulate 

the relations between demography and language evolution. The purpose of this 

paper is not to dismiss analytical modeling as a tool but rather to promote agent-

based modeling as an additional (and potentially more powerful) tool. I introduce 

two classes of agent-based models: agent-based analytical models (e.g., Baxter 

et al. 2009; Nettle 1999a), in which individuals are modeled using mathemati-

cal equations; and agent-based cognitive models (e.g., Briscoe 2000; Parisi et al. 

2008; Vogt, 2007a), in which individuals are implemented with a cognitive model. 

My objective is to provide readers who are interested in studying the interactions 

between demography and language evolution with a guideline for selecting one of 

these modeling approaches on the basis of their characteristics, advantages, and 

disadvantages.

In the next section I review a number of studies that have used demographic 

models and/or data in analytical models, agent-based analytical models (ABAMs), 

or agent-based cognitive models (ABCMs). After that, I present a few case stud-

ies of ABCMs that have used empirical (demographic) data and those that have 

not. The discussion focuses on the advantages and disadvantages of ABCMs over 

analytical models and ABAMs and outlines some ideas for future research. I argue 

that ABCMs are most realistic, but at the expense of increased (computational) 

complexity.

Models of Language Evolution

One of the aims of studying models of language evolution is to understand 

the effect of demographic processes on issues such as language change, language 

death, and language creation. In this section I review three methods for modeling 
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language evolution, going from macroevolutionary analytical or analytical mod-

els to microevolutionary agent-based models, which are further subdivided into 

agent-based analytical models and agent-based cognitive models.

Analytical Models.  In line with standard models of cultural evolution (Boyd 

and Richerson 1985; Cavalli-Sforza and Feldman 1981), various analytical mod-

els have been proposed to investigate how certain linguistic phenomena, such as 

whole languages, can propagate in a population and under what conditions stable 

(or unstable) linguistic systems can emerge. Such models involve, for instance, 

dynamic system models (Abrams and Strogatz 2003; Niyogi and Berwick 1996) 

or Markov chains of Bayesian learners (Kirby et al. 2007).

A typical analytical model of language evolution contains a differential equa-

tion that quantifi es the dynamics of the frequency with which a certain linguistic 

aspect (e.g., syntax, grammar, or phonemic element) occurs in some population of 

speakers (e.g., Komarova et al. 2001; Lightfoot 1999; Niyogi and Berwick 1996; 

Nowak et al. 2001). An equation that is often used is the differential equation of 

Nowak and colleagues (Nowak et al. 2001; Komarova et al. 2001):

 i  1, . . . , n, (1)

where i xi  fi is the average fi tness or grammatical coherence of the popula-

tion, n is the number of different variants (e.g., grammars), xi is the frequency of 

variant i (i.e., the number of users of variant i), fi is the fi tness of a variant, and Qji 

is a transmission matrix that specifi es how likely a certain variant will be transmit-

ted from one generation to the next correctly (Qii) or incorrectly (Qji, i  j).
Another popular model assumes two fi xed languages that compete with 

each other (Abrams and Strogatz 2003; Kandler and Steele 2008; Minett and 

Wang 2008; Patriarca and Leppänen 2004). This model calculates the dynamics 

of the number of speakers of a certain variant. An example of such a model is the 

reaction-diffusion system of Kandler and Steele (2008), who formulated a com-

petition between two languages by extending the earlier models of Abrams and 

Strogatz (2003) and Patriarca and Leppänen (2004):

(2a)

(2b)

This reaction-diffusion system describes the behavior of two variables uA and uB, 

which give the frequencies of users of language A or B at a given time t. The 

behavior is governed by six parameters—dA, dB, rA, rB, K, and c, which relate to a 

spatial dispersal of the languages (di), intrinsic growth of a language population 

(ri, K), and the social status differences of both languages (c  0). The model’s 
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analysis shows that coexistence of both languages is impossible but that the time 

it takes that the lower status language (B) to die out is crucially dependent on the 

six parameter settings (Kandler and Steele 2008). For a more extensive review of 

analytical models of language competition that also considers agent-based ap-

proaches, see Kandler (2009) (this issue).

The advantage of such analytical models is that they tend to be simple; that 

is, only a few variables and parameters infl uence the system (see Table 1). When 

the system behaves similarly to empirically observed systems (e.g., Abrams and 

Strogatz 2003; Niyogi and Berwick 1996), the model provides a possible expla-

nation in terms of the parameters that defi ne the model. Given the complexity of 

the real systems (languages, language populations, and individual speakers), the 

model can describe only macroevolutionary effects. Although this is an asset, it 

also limits the model in its explanatory power. For instance, analytical models are 

deterministic such that they behave in a unique way given the initial conditions. It 

is arguable whether the deterministic nature of these models is suffi ciently capa-

ble to describe and capture the complex dynamics of language evolution [see, e.g., 

Briscoe (2000) for a neat discussion]. In the words of Minett and Wang (2008): 

“[These models do] not trace the states of every single speaker, only the propor-

tions of speakers having each state. Thus, it specifi es a model of the expected 

behaviour of the competition, but not the range of behaviours that can result from 

a given initial state or their relative likelihoods” (p. 34, emphasis in the original).

Table 1 shows the number of variables and parameters used in some of the 

analytical models of language evolution discussed in this paper. Note that the data 

for Minett and Wang (2008) refer to their analytical model; they have three vari-

ables, but they conveniently have set one of them to 0, thus using only two vari-

ables. The Nowak et al. (2001) model has n variables, one for each possible variant. 

Although theoretically they assume n  n parameters, these are defi ned in only two 

parameters. Patriarca and Leppänen (2004) have used four variables in their model, 

but this can be reduced to two because of a direct dependency between them.

Agent-Based Analytical Models.  The alternative that Minett and Wang (2008) 

propose is to model each individual by letting him or her learn a given variant 

based, for instance, on the likelihood that the variant will be learned. The model 

they propose is what can be classifi ed as an agent-based analytical model, in 

Table 1. Number of Variables and Other Parameters Used in Various Analytical Models

Study Number of Variables Number of Other Parameters

Abrams and Strogatz (2003) 2 4

Kandler and Steele (2008) 2 6

Minett and Wang (2008) (analytical model) 2 (3) 9

Nowak et al. (2001) n n  n (2)

Patriarca and Leppänen (2004) 2 (4) 6
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which each individual agent is characterized by a mathematical formula. ABAMs 

have also been adopted by various other researchers (e.g., Baxter et al. 2009; de 

Boer 2005; Nettle 1999c).

Baxter et al. (2009), for instance, modeled the evolution of two linguistic 

variants  and  by defi ning how interactions between two individuals i and j 
(selected according to some network structure Gij bearing geographic and social 

properties) change the likelihood that these agents will use a given variant (see 

also Baxter et al. 2006):

(3)

where xi(t) is the likelihood that agent i uses one variant, say , at time t. The 

parameter  is a weight that “can be thought of as the receptiveness of the speaker 

to changing their grammar on the basis of the language they hear” (Baxter et al. 

2009). The agents interchange in a given round T (10 or 20) tokens: a  T tokens 

of one variant, , and T  a tokens of the other variant, . Of the a tokens, n are 

produced by agent i and m are produced by agent j. The likelihood of agent i 
adopting the token produced by agent j is based on the social network status Hij 

between both individuals. The factor C  1    Hij is used to normalize the 

equation. Agent j also adopts its likelihood of using variant  by the same equa-

tion, but with the indexes i and j as well as the numbers n and m interchanged. See 

also Baxter et al. (2006) for more details of the model.

This system was run for a large number of interactions between different 

individuals, and, after initializing their system using demographic information on 

the immigration and population dynamics of New Zealand, Baxter et al. (2009) 

showed how variants of New Zealand English evolved in their model similarly 

to the way it has evolved in reality according to the theory of Trudgill (2004). In 

particular, the results of their model suggest that the social network information 

stored in Hij does not infl uence the spread of a variant.

It should be clear that the model of Baxter et al. (2009) is far more detailed 

in defi ning aspects of learning than the analytical models discussed earlier. This 

is not because the number of parameters is much larger but because the variants 

are calculated for each individual interaction, increasing the number of variables 

in the systems proportionally to the population size N. This is a general aspect of 

ABAMs (see Table 2), but also of ABCMs, which are discussed next.

Table 2 shows the number of variables and parameters used in some of the 

ABAMs discussed in this paper. In these models the number of variables tends to 

be proportional to the population size N. Theoretically, the number of parameters 

can also be proportional to N (Nettle 1999c) or even N  N (Baxter et al. 2009) to 

defi ne aspects such as the likelihood that different agents will interact with each 

other (often these parameters tend to have the same values for practical reasons).

Agent-Based Cognitive Models.  Even more detailed simulations on language 

evolution can be obtained through agent-based cognitive models, in which the 
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agents are not specifi ed by a mathematical formula but by a computational cog-

nitive model. These cognitive models typically contain mechanisms for process-

ing language production, language interpretation, language learning, and memory. 

Some of these models are implemented in robots that have an adaptive categori-

zation module with which they categorize the real world or a virtual one [for an 

overview see, e.g., Vogt (2006)], but most models are implemented in computer 

simulations with predefi ned semantics (Cangelosi and Parisi 2002; Kirby 2002). 

The linguistic properties that these agents learn vary from phonetic systems, such 

as vowels (de Boer 2001; Livingstone and Fyfe 2000) or syllables (Oudeyer 2005), 

to lexicons and vocabularies (Baronchelli et al. 2006; Kaplan 2005; Oliphant 1996; 

Steels 1996; Vogt and Coumans, 2003), syntax (Batali 1998; Briscoe, 2000; Kirby 

et al. 2004), or grammar (Steels 2005; Vogt 2005a).

Computational studies of the evolution of language often use the language 

game model introduced by Steels (1996) or a variant of it. In such a model there 

is a population of N individuals (or agents), whose aim is to develop a shared 

communication system by engaging in language games. Typically, the popula-

tion starts from scratch, meaning that none of the agents start with any language. 

A language game is played by two randomly (or otherwise) selected agents: a 

speaker and a hearer. Note that it is possible to control the likelihood that two 

agents will interact by keeping track of the social networks of the agents (see, e.g., 

Dall’Asta et al. 2006; Gong et al. 2008; Ke et al. 2008). The agents are usually 

set in a context that contains some objects and/or events represented by meanings 

that agents develop ontogenetically or that the designer predefi ned. The speaker 

selects one object or event as the topic and produces an expression (a set of signals 

or words) to convey that topic. In turn, the hearer tries to interpret the expression, 

ideally identifying the intended topic. At the end (or sometimes during) a lan-

guage game, the agents adapt their private linguistic competences (lexicon and/or 

grammar) and are thus learning from the interaction.

Early during development, an agent is likely to lack a way of expressing a 

meaning, because the agent starts without knowing any words. When a speaker 

consequently fails to produce an expression, it invents a new expression (typically 

an arbitrary string of letters from a fi nite alphabet). Likewise, when the hearer 

does not know a word or fails to identify the intended meaning (which may be 

conveyed through extralinguistic communication, e.g., using pointing gestures), 

the hearer can add the received expression to its memory and associate it with the 

Table 2. Number of Variables and Parameters Used in Various Agent-Based 
Analytical Models

Study Number of Variables Number of Parameters

Nettle (1999c) N 2N  4

Baxter et al. (2009) 3N N  N  3

Minett and Wang (2008) (ABAM) 2N 9
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intended meaning. Agents can acquire multiple (i.e., many-to-many) mappings 

between signals and meanings that then compete with each other for being used. 

This competition is usually facilitated by a weight, which is increased when an 

association is used successfully in a language game or decreased when the as-

sociation is used wrongly or when it is competing with an association that was 

used successfully. Lowering the weights of competing associations is called lat-

eral inhibition, which is common to self-organizing maps and Hebbian learning. 

When agents have to choose between different associations to express a meaning 

or interpret a word, they will use the association that has the highest weight.

The population of agents play a relatively large number of such language 

games, yielding three phases in the evolution (see Figure 1): (I) a rise of syn-

onymy, (II) a damping of synonymy, and (III) a stable communication system. 

During phase I of the simulation, speakers invent a new word for a meaning when-

ever they wish to produce an expression to convey this meaning even though they 

had not yet acquired a word for it. Because in these models agents play language 

games in pairs of randomly selected agents about arbitrarily selected meanings, 

Figure 1.  The three phases of language development for the language game model with a population 

of 50 agents and 100 meanings. In phase I the population invents many words (W), lead-

ing to many synonyms in the language. During this phase, communicative success (CS) 

remains low. In phase II the synonyms are dampened by the positive feedback loop with 

which the weights are adapted during the language games, leading to a sharp transition 

toward communicative successful lexicons. In phase III a stable lexicon has been estab-

lished, in which the number of words equals the number of meanings, that is, W  M, and 

CS has converged to 1.
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it takes a while before one word is spread across the entire population; in fact, it 

has been shown analytically that spreading takes about N log N games (Kaplan 

2005). Early during the evolution, there is a large chance that an agent wants to 

convey a meaning it has no word for, so it invents a new word. After some time, 

each individual has acquired a word for each meaning, either through invention 

or adoption. At this time, a maximum number of words are used in the global 

language and phase I ends.

When the maximum number of words in the population is reached, phase II 

starts, in which the competition dynamics of association weights dampens the 

synonymy that arose in the global language. Agents hear and adopt new words, 

which then compete through the update of association weights. The continuing 

strengthening of successfully used associations and the lateral inhibition of com-

peting ones mean that, at the global level, more agents tend to use the same words 

for expressing the same meanings, thus causing a positive feedback loop and im-

proving communicative success.

The process during phase II is much related to Darwinian selection at the 

cultural level, because those elements that are used successfully tend to be reused 

more often and thus have an increasing chance of becoming successful, which in 

turn strengthens those elements, causing a positive feedback loop that leads to 

the emergence of a stable attractor. As in many evolutionary systems, variation is 

crucial to facilitate, for instance, the emergence of compositionality in language 

(Vogt 2007b), as I discuss in the next section.

Once all agents use the same words to express the same meanings, com-

municative success is 100% and phase III starts. In this fi nal phase the system is 

stable, because the same word-meaning mappings are used by all agents success-

fully, so they are always strengthened. Only when new agents or meanings enter 

the system can the global lexicon change. This can also happen for some other 

reason, for instance, when noise appears in the transmission. The reason for such 

changes is that the introduction of new agents or meanings tends to induce new 

variation in the language, which selection can act on.

Baronchelli et al. (2006) discovered that the time it takes for the maximum 

number of words to have emerged (tmax) is proportional to the time of convergence 

Tc (i.e., the time it takes for phase III to commence). Moreover, they found that the 

maximum number of words (Wmax) acquired by the population at time tmax is also 

proportional to the time of convergence. So

(4)

Kaplan (2005) and Baronchelli et al. (2006) have found that the time of conver-

gence Tc depends on the group size N:

(5)

where  is a constant. Given a value of   1.3 and Kaplan’s analytical derivation 

of the time it takes for words to spread in the population, Eq. (5) suggests that 

T t Wc max max .T t Wc max max .

T Nc ,T Nc ,
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there is, indeed, an N log N dependency for Tc. Note that Baronchelli et al. (2006), 

using a slightly different model, found a different exponent, namely,   1.5. 

The difference was that Baronchelli et al.’s model assumed only one meaning 

and allowed only one-to-one mappings between the meaning and signal, whereas 

Kaplan’s model allowed a competition between words. Apparently, competition 

between words is benefi cial for the convergence of the system.

Time of convergence in the language game is dependent not only on group 

size but also on the number of meanings M to be named. Kaplan (2000) discov-

ered a linear dependency, such that

(6)

What is clear from this example is that the complexity of the model in terms of 

the number of variables substantially exceeds the complexity of the (agent-based) 

analytical models (Table 3). In this example each agent constructed a matrix spec-

ifying the number of meanings M and the (variable) number of words W an agent 

acquired individually. Each cell in this matrix contains a variable indicating the 

weight of the association. So, each agent i stores M  Wi variables, yielding a total 

of i MWi variables. Because the end result yields a vocabulary in which each 

agent uses the same distinct word for each distinct meaning, the total number of 

variables V in this system is V  N  M  M.

The complexity of an ABCM becomes even more apparent when one real-

izes the added complexity in the number of mechanisms that need to be imple-

mented in order to process the production, interpretation, and learning of language. 

These processes might involve relatively complicated and nonlinear decision pro-

cesses, thus increasing the complexity with respect to the analytical models and 

the ABAMs. Because it is hard to quantify this complexity, it is not included in the 

analysis presented in Table 3.

Table 3 shows the number of variables and parameters used in some 

ABCMs. In these models the number of variables relates to the population size N, 

the number of meanings M, the number of words W, and/or the grammar size g. 

The language game model introduced by Steels (1996), the example from Figure 

1, and the study of Steels and McIntyre (1999), to be discussed in the next section, 

T MNc .T MNc .

Table 3. Number of Variables and Parameters Used in Various Agent-Based 
Cognitive Models

Study Number of Variables Number of Parameters

Kaplan (2005) N  N  W C
Baronchelli et al. (2006) N  W C
Vogt (2007a) N  g  M   W  C
Briscoe (2000) N  (g  4) C
Parisi et al. (2008) 2N 6N
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all have about the same complexity as Kaplan’s (2005) model. The M  and W  re-

garding Vogt’s (2007a) model refer to the number of meanings and words used for 

each grammar rule. Note that in the Parisi et al. (2008) study, N does not refer to 

group size but is proportional to the size of Europe, as discussed later. The number 

of parameters in these examples is usually a small constant C but may also depend 

on N, as in Parisi et al.’s (2008) study.

Some Case Studies of ABCMs

It is possible to distinguish between studies that do not use empirical data 

on demography and those that do use empirical data. In their ABCMs, Baronchelli 

et al. (2006) and Kaplan (2005) looked at demographic effects but did not use 

any empirical data. Rather, they investigated, hypothetically, what would happen 

if populations had different sizes. Baxter et al.’s (2009) ABAM did use empiri-

cal demographic data to initialize the model, and the investigators compared the 

outcome to empirical linguistic data. In this section I examine a few case studies 

of ABCMs in which demography has an effect on language evolution. Attentive 

readers might miss a detailed discussion of the renowned work by Kirby and 

colleagues (e.g., Kirby 2001; Smith et al. 2003). The reason for this is that, al-

though Kirby and co-workers have made extensive use of ABCMs, their studies 

have typically involved a population of only two agents. Hence they have hardly 

studied  any demographic effects on language evolution.

Demographic Effects Without Empirical Data.  In line with the Baronchelli 

et al. (2006) and Kaplan (2005) studies, Vogt (2007a) studied the effect of differ-

ent population sizes on the emergence of compositionality in language. Compo-

sitionality refers to expressions in which parts of an expression relate to parts of 

its meaning and the way these are combined. The agents were initialized with a 

combinatorial meaning space (e.g., specifying objects by their colors and shapes) 

and played language games in the same manner as before. In this study, how-

ever, agents were given a mechanism to discover and use regular patterns in both 

signals and meanings that allowed them to construct compositional structures 

such as red circle, red square, blue circle, and so on. In this model the agents 

initially developed a holistic communication system, in which each combinato-

rial meaning was associated with a distinct random signal (i.e., no part of the 

expression relates a part of its meaning). Gradually, when new generations were 

introduced and older ones were removed, the language became more and more 

compositional.

Vogt (2007a) found that for larger population sizes the amount of compo-

sitional structures that emerged in the languages increased, up to a certain limit 

(see Figure 2a). Like Baronchelli et al. (2006) and Kaplan (2005), Vogt (2007a) 

discovered a relation between group size and time of convergence, which essen-

tially had three phases (see Figure 2b). In the fi rst and third phases relations were 
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similar to those found for the emergence of vocabularies (i.e., Tc  MN ), but in 

between there was a transition. This transition can be explained by the observa-

tion that, when the language becomes more compositional, fewer meanings can 

be spread among the population, thus reducing Tc.

The reason that compositionality emerged more substantially among larger 

group sizes can be explained by observing that in larger populations more words 

entered the linguistic community [cf. Eqs. (4) and (6)]. Because the number 

of possible letters with which words were created was limited, the probability 

that an individual would fi nd regular patterns in both words and meanings in-

creased as well. The discovery of such regular patterns drove the emergence of 

 compositionality, which was further reinforced by the positive feedback loop in-

herent to the language game. In this way, larger groups caused an increased varia-

tion in the linguistic elements forming the language, which increased the chance 

of fi nding good compositional traits that would lead to the emergence of a smaller 

and easier to learn communication system. A holistic system able to convey a 

combinatorial meaning space with dimension n requires mn words, whereas a 

compositional system requires only n  m words to be distributed (m is the num-

ber of meanings per dimension of the meaning space). Following Eq. (6), time of 

convergence for a compositional system is faster than for a holistic system. This 

explanation has been supported by mathematical analysis (Vogt 2007a).

However, in a recent yet unpublished study by Vogt, in which the model 

was reimplemented to improve computational effi ciency, the transition between 

phases I and II of the time of convergence did not occur. Instead, as in Baron-

chelli et al. (2006) and Kaplan (2005), only one power law governing time of 

convergence was observed, because compositionality had already fully emerged 

in smaller populations. Although the reasons are not yet fully understood, pre-

liminary analyses of both models indicate that there was a crucial implementation 

difference between them. In the old model agents were able to generalize over 

synonyms of holistic elements. For example, when an agent had learned a holistic 

word for red square and later also associated the same word with blue circle, this 

holistic word could, because of the implementation, also erroneously signify red 
circle and blue square. This overgeneralization led to an increase in the amount of 

ambiguity in the language, which in turn reduced the accuracy of the communica-

tion system. The reimplementation did not allow for such ambiguities to occur, 

leading to an improved communicative accuracy and the emergence of composi-

tionality already in small populations.

These differences suggest that, in models in which it is hard to achieve a 

high level of communicative success, small populations prefer holistic systems to 

compositional ones, whereas for larger populations compositionality is preferred. 

In idealized models in which ambiguities are easily dampened (such as in the new 

implementation), communicative success rates of 100% are obtained (e.g., Kaplan 

2005), and compositionality emerges and is preferred over holistic models, even 

in small populations. However, systems that are cognitively more realistic (e.g., 

because they are implemented on robots or use a more plausible statistical learn-
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ing mechanism) tend not to achieve a 100% communicative success rate, typically 

because of ambiguities arising in the agent’s linguistic competence (e.g., Smith 

2003; Steels et al. 2002; Vogt 2006; Vogt and Coumans 2003). In the model of Vogt 

(2007a) ambiguities emerged through an unrealistic generalization mechanism, but 

it could well be that a more realistic model (e.g., one based on a statistical learning 

mechanism) might yield qualitatively similar results. Further research is under way 

to investigate whether this turns out to be the case. Because empirical data sug-

gest that languages spoken in larger communities tend to be more compositional 

(Levinson 2006; Wray and Grace 2007), this is not unlikely.

Another interesting example of an ABCM that investigates demographic ef-

fects on language formation is the study by Steels and McIntyre (1999), in which 

20 agents were spatially distributed in three clusters on a two-dimensional grid. 

The probability that two agents engaged in a language game was inversely pro-

portional to the distance between the two agents. The language game model (aka 

the naming game model) was similar to the one described in the previous section. 

So, initially, the agents had no communication system, but they developed their 

individual lexicons by playing language games.

As in the earlier example, 100% convergence was readily achieved when 

the agents were equally likely to communicate with each other (i.e., when they 

were not spatially distributed). When the agents were spatially distributed in three 

clusters, 100% convergence was obtained only within clusters, although a near 

100% convergence was achieved for intercluster communication. Analysis of the 

emerging lexicons revealed that each cluster had developed its own communica-

tion system, which its agents preferred to use. Although some words were used 

preferentially by all clusters, most words were specifi c to one cluster. Yet the 

agents did acquire the words preferred in the other clusters, so that they could 

understand the agents from other clusters, which explains the high convergence 

for intercluster communication.

In this fi rst simulation Steels and McIntyre (1999) allowed intercluster 

communication from the start, but in a second simulation from the same study 

they allowed only intercluster communication after each cluster had settled on a 

common communication system, thus simulating language contact. In this second 

study, Steels and McIntyre showed that, after intercluster communication was al-

lowed, initially a rapid increase in bilingualism emerged, followed by a gradual 

mixing of the languages. When intercluster communication continued, Steels and 

McIntyre observed an evolution toward complete coherence. During all this time 

(except for the period just after the intercluster communication was allowed), the 

communicative success of the whole system (intracluster and intercluster com-

munication) remained high.

The simulations discussed in this section did not incorporate any empirical 

data (or empirically derived model) but instead were used to investigate what hap-

pens to the language that evolves under various demographic conditions. This has 

allowed the researchers to discover the conditions under which certain linguistic 

phenomena can or cannot evolve. The advantage of this approach is that the space 
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of possible structures can be searched structurally without the need to incorporate 

empirical demographic data that may be hard to fi nd in the literature, may be dif-

fi cult to translate into the model, or may make the simulation computationally 

too complex. The vast majority of ABCMs used to investigate the interaction be-

tween language evolution and demography have not incorporated empirical data, 

even though this is desirable. It is not uncommon, however, to compare results 

of ABCMs qualitatively with empirical data. For instance, Vogt’s (2007a) fi nd-

ing that compositionality can emerge more substantially in larger communities 

than in smaller ones is consistent with fi ndings from languages across the world 

(Levinson 2006; Wray and Grace 2007). However, the model would be stronger if 

it could, for instance, predict rather precise quantitative distributions of languages 

that have various levels of compositionality based on population size such that it 

is consistent with empirical fi ndings.

Demographic Effects with Empirical Data.  Studies that do not incorporate 

empirical data of demography can investigate only the boundary conditions under 

which certain linguistic phenomena occur in the computer model. However, to 

verify a model reliably, the model has to be able to explain the occurrence (evo-

lutionary or otherwise) of real linguistic phenomena based on real demographic 

data. This, in turn, would improve our insights into the mechanisms underlying 

such phenomena.

An example of an ABCM that has used empirical demographic data is the 

model of Briscoe (2000, 2002). He used an ABCM in which the agents were de-

fi ned with a language acquisition device (LAD) based on a set of possible gram-

mars (i.e., a universal grammar, UG). The LAD was defi ned as a Bayesian learner 

who learned by calculating the probabilities that a grammar would be learned 

given (1) the data triggered by the interaction with other agents (who would use a 

particular grammar) and (2) a prior bias to learn that grammar as specifi ed by the 

innate UG. In addition, agents had an age that specifi ed whether they would be 

learners or nonlearners (adults) and an individual measure of their communica-

tive success rate. Adult agents could reproduce (selection of parents was based on 

their communicative success rate), and the distribution of prior biases (i.e., UG) in 

their offspring was initialized by recombining and mutating the genetic material 

inherited from the parents.

The agents were defi ned such that the population would grow from an ini-

tial state following an S-shaped logistic function. One of Briscoe’s experiments 

aimed to simulate the creolization process of Hawaiian creoles in which different 

language groups came together and initially developed a pidgin language, fol-

lowed by the emergence of a more grammatical creole language, as described, 

for example, by Bickerton (1984). It is beyond the scope of this paper to explain 

Briscoe’s rather complicated model in detail. Suffi ce it to say that agents were ini-

tialized with their prior biases based on genetic evolution and then were triggered 

to learn one of the possible grammars during the interactions with other agents 

and using the Bayesian learning mechanism.
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The initial distribution of languages in the population was loosely based 

on demographic information concerning the initial situation of language contact 

in Hawaii. Briscoe was interested in the period it took for a creole language to 

emerge and found that his model could explain the catastrophic emergence of 

creoles from initially pidgin languages in just two generations, as proposed by 

Roberts (1998). Moreover, Briscoe found that the demographic composition of 

the initial population of pidgin speakers was important and that the (external) lan-

guage was adapting to improve learnability within the population (cf. Kirby et al. 

2007; Vogt 2007b). Although the use of empirical demographic information was 

“rather sketchy” and the results were “by no means conclusive” (Briscoe 2000), 

this example illustrates how an ABCM can be used successfully to simulate em-

pirically studied phenomena such as creolization in Hawaii. The interactions 

between the genetic evolution of the prior biases, the Bayesian learning mecha-

nisms, the aging of agents, and the reproduction dynamics are so highly complex 

that it would be extremely hard to capture them in an analytical model or even 

an ABAM. This type of modeling not only informs us about how demographic 

processes affect language change but also allows us to investigate the cognitive 

factors that underlie human language evolution.

Another example of an agent-based-like model is that of Parisi et al. (2008). 

They used cellular automata to simulate the spread of farming and languages in 

the European region of the Indo-European language area. Although technically 

the simulation that Parisi and co-workers used is not an ABCM, I classify it as 

such because it has a similar level of complexity (see Table 3). What Parisi’s 

group did was to divide Europe into grid cells of 70 square kilometers and de-

fi ne characteristics of each individual cell based on empirical data as much as 

possible (mostly geographic data). Starting with a small population in one cell 

in southwest Anatolia and by specifying a population growth within a cell, the 

carrying capacity of the cell beyond which part of the population would migrate, 

the likelihood of individuals migrating to a particular neighboring cell, and a few 

other features, Parisi et al. (2008) were able to simulate the spread of farming 

such that their results appeared to be in agreement with archaeological data from 

Neolithic sediments and related models (Ammerman and Cavalli-Sforza 1984; 

Renfrew 1987; Semino et al. 1996).

From the time it took for certain areas to become populated and the as-

sumption that languages have a certain amount of change over time, Parisi et al. 

(2008) reconstructed a language tree that to a limited extent resembles the Euro-

pean branch of the Indo-European language tree. Thus their model shows how 

language families could have spread over Europe based on a demic account in a 

way that is similar to what is believed to be the way that farming spread. They 

continued, less convincingly, to expand their model to accommodate a cultural 

aspect of language transmission (language changes could propagate backward). 

Although the model can be critiqued on several points (it is beyond the scope of 

this paper to do so), the method used is a promising one and could be used as a 

starting point for further studies.
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Discussion

In this paper I have reviewed the formal models used to investigate the 

interaction between demographic processes and language evolution in its broad-

est sense (i.e., including language origins, early language evolution, language 

change, and language contact on various linguistic phenomena). The formal 

models have been classifi ed in three ways: analytical models, agent-based ana-

lytical models, and agent-based cognitive models. I have shown that these three 

classes of models differ in the granularity of detail with which the systems are 

modeled in terms of demography, linguistics, and sociocognitive mechanisms. 

Analytical models allow for only a coarse description by having a small number 

of variables and parameters. ABAMs typically increase the number of variables 

and parameters by a factor equal to the number of agents in the model. Finally, 

ABCMs can be even more complex by a potentially large factor of the order of 

the complexity of the language times the complexity of the cognitive processes 

underlying language processing.

The choice for selecting which method one should use in studying demo-

graphic effects on language evolution depends on the purpose of one’s study. 

Analytical models are particularly suited to investigations of the dynamics of the 

evolution of and competition between languages based on high-level hypothe-

ses regarding demographic processes and social dynamics. ABAMs are useful 

for studying the complex interactions between agents defi ned mathematically in 

terms of high-level cognitive processes, such as the probability of learning a spe-

cifi c language or grammar. ABCMs are favored when one wishes to investigate 

the dynamics sprouting from the complex interactions between lower level cogni-

tive processes and social interactions among agents.

The choice could also be weighted by the various advantages and disadvan-

tages of the approaches. The advantage of analytical models is that, because of 

their low complexity, it is often relatively straightforward to incorporate demo-

graphic models based on empirical data. Moreover, analytical models are rela-

tively easy to understand because of their transparency. The disadvantage is that, 

also because of their low complexity, such models have little explanatory power 

regarding specifi c language structures that have evolved.

The advantage of agent-based models is that they provide a signifi cant step 

forward to more realism, but at the cost of increasing obscurity resulting from in-

creased complexity of the models and at the cost of increasing computational com-

plexity. Nevertheless, such models allow one to investigate social and, in the case 

of ABCMs, cognitive factors that infl uence language evolution. Moreover, ABCMs 

are most suited to investigating the effect that demographic dynamics have on the 

evolution of languages (i.e., on the emergence and change of linguistic systems).

To assess the realism of sociocognitive models on language evolution, we 

need validations using demographically realistic simulations. One could argue 

that a demographically realistic sociocognitive model would be more realistic 
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if its resulting evolution correlated closely with empirically observed linguistic 

phenomena (Vogt and de Boer 2010). The Baxter et al. (2009) study is a good 

example. Even though their model does not capture the intricacies of the various 

sociocognitive mechanisms involved in language processing, Baxter and co-work-

ers suggest that Trudgill’s (2004) theory on language change, on which Baxter’s 

model is based, is at least in part correct.

Agent-based modeling of language evolution is a relatively new method 

and has until recently hardly been used to validate theories based on empirical 

data [but see, e.g., de Boer (2001) and Nettle (1999b) for early counterexamples]. 

It took the scientifi c community quite long to develop models that work suffi -

ciently well for such endeavors to take place. Although an increasing number of 

studies incorporate empirical data of one kind or another into their models, there 

is still a long way to go before computer models can convincingly demonstrate 

the mechanisms underlying language evolution (Vogt and de Boer 2010). The 

empirical data that need to be incorporated into the models include data from 

biology, linguistics, psychology, archaeology, and other fi elds. The studies by 

Briscoe (2000) and Parisi et al. (2008) are good examples of investigations that 

have used empirical demographic data to study the evolution of linguistic phe-

nomena in ABCMs.

ABCMs offer an excellent tool for combining all these types of data. How-

ever, this is hard to achieve. Typically, the models have been used to investigate 

conditions under which certain phenomena are observed by searching a large 

space of possibilities in a certain dimension (e.g., population size). When empiri-

cal data are incorporated, they are typically from only one domain, such as lin-

guistics or demography. There are various reasons why empirical data have been 

incorporated so infrequently. Three of these reasons, which have already been 

touched on, are the following:

1. Empirical data may be hard to fi nd or are absent. For instance, a precise 

reconstruction of how Homo sapiens populated the world is not available.

2. The empirical data may be hard to translate such that they can be incor-

porated into a model. The models, even ABCMs, are necessarily crude simplifi ca-

tions and abstractions from reality. Although empirical data can be explained or 

characterized in abstractions, many theories of language evolution are descriptive 

rather than formal. These theories often form the basis from which the formal 

models are abstracted. In other words, the models are abstractions of theories, 

which are themselves (abstract) descriptions based on empirical data. Hence the 

distance between model and data is often larger than that between theory and 

data. Moreover, empirical data are obtained by observing the result of interactions 

between the real sociocognitive mechanisms, whereas the abstract models capture 

only an extremely small aspect of these mechanisms. A proper comparison is 

therefore often infeasible. Some of these problems can be overcome by designing 

empirical studies that capture those data that we can compare with the models [see 

also Vogt and de Boer (2010)].
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3. Incorporation of empirical data can make the computer simulation in-

tractable. Even though computers are becoming increasingly fast, running an 

agent-based model with a few thousand agents that develop highly simplifi ed lin-

guistic phenomena may take months of processing. For instance, the study by 

Vogt (2007a) took over a month of processing on a cluster of 10 standard PCs 

and included only 140 simulations of 5 generations with populations varying in 

size up to 300 agents who could learn only two-word sentences describing col-

ored shapes. (The slow performance was partly due to the ineffective computer 

program, but the more effective program developed for the followup study used 

almost a month to process 200 simulations of 10 generations with groups of up 

to 1,000 agents on the same machines.) It is to be expected that with the ongoing 

increase in computational power, this problem will resolve itself to some extent, 

so computers become ever more suitable for dealing with the complex processes 

of language evolution in agent-based models.

Because studying the complex sociocognitive and demographic processes 

using ABCMs is becoming more feasible, the question emerges, What are the 

logical next steps? One possibility is to simulate the emergence of Nicaraguan 

Sign Language (Kegl and Iwata 1989), which is a well-documented case in both 

demography and the evolution of a full-grown sign language. Such data form an 

ideal basis to study the cultural evolution of language and have similarities to 

the creolization processes of language, so Briscoe’s studies could be a starting 

point, as are those by Baxter et al. (2009), Minett and Wang (2008), and Vogt 

(2005b). There is also a possibility of studying the relation between group sizes 

and language evolution in order to further investigate the fi ndings of Vogt (2007a). 

For instance, one could try to incorporate archaeological data about population 

growth to study how this would effect language change. In addition, one could 

incorporate empirical quantitative data on social network structures to further im-

prove the realism of the computer simulations.

Another avenue would be to incorporate demographic data on age structures 

in populations in the computer simulations. It has been suggested that young chil-

dren may have had a large infl uence on the formation of grammatical structures 

in language (e.g., Bickerton 1984; Senghas et al. 2004; Vogt 2005b). Moreover, 

language use tends to change over different age groups (Boberg 2004). So, it is 

interesting to investigate how different age distributions of a population affect 

language change over a longer period of time. A quick survey on the Internet did 

not reveal that such studies exist, although Briscoe’s studies do incorporate an age 

structure, but he did not back this with empirical data.

Finally, the grand challenge would be to further develop ABCMs along 

the lines of Parisi et al. (2008) in order to study how languages have evolved 

and occupied, together with humans, the world. With an increasing amount of 

archaeological data concerning the demographic patterns of the spread of Homo 
sapiens in the world (Klein 2000; Mellars 2005), theories could be tested about 

whether such dynamics would, indeed, lead to language trees that are similar 

to those found in reality. Although it is highly unlikely that investigators would 
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obtain an exact copy of the world’s languages, the statistical distribution of lan-

guages, their diversity, and rate of change should closely match those found in 

the world.

Conclusions

Three formal methods for studying the effects that demographic processes 

can have on language evolution have been reviewed and characterized. These 

three methods (analytical modeling, agent-based analytical modeling, and agent-

based cognitive modeling) differ primarily in the complexity of the processes that 

the model can capture; the analytical models are the least complex, and the agent-

based cognitive models are the most complex. The purpose of this paper was 

to provide readers interested in studying the interactions between demography 

and language evolution with a guideline for selecting one of these modeling ap-

proaches on the basis of their characteristics, advantages, and disadvantages.

Whatever the language evolution phenomenon is that one wants to test, 

models that take empirical demographic data as a way to set up computer simula-

tions would be ideal benchmark models to validate theories of language evolu-

tion, provided that their outcome could be compared with empirical data on that 

linguistic phenomenon. These benchmark studies could be centered around the 

grand challenge of simulating the spread of languages across the world, but given 

the complexity of such models, setting up benchmarks on smaller challenges (e.g., 

cf. Baxter et al. 2009; Briscoe 2000) would, at least for the near future, be more 

appropriate and easier to achieve.

Although analytical models can help us to gain insights into the high-level 

conditions under which certain linguistic phenomena may occur, they fail to capture 

the vast complexity of human language processing that affects language evolution 

in complex societies. Agent-based analytical models are an important step forward, 

because they can capture the complexity that analytical models put in populations 

in a single agent so that one can study the effects of social inter actions on language 

evolution. However, the human cognitive apparatus is far more complex than can 

be captured in a mathematical formula. Therefore agent-based cognitive modeling, 

although still limited, is an essential method for researching the sociocognitive 

interactions supposed to underlie the evolution of human language and languages.
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