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Abstract

This paper presents arguments for approaching the anchoring problem using semi-
otic symbols. Semiotic symbols are defined by a triadic relation between forms,
meanings and referents, thus having an implicit relation to the real world. An-
chors are formed between these three elements rather than between ‘traditional’
symbols and sensory images. This allows an optimization between the form (i.e.
the ‘traditional’ symbol) and the referent. A robotic experiment based on adaptive
language games illustrates how the anchoring of semiotic symbols can be achieved
in a bottom-up fashion. The paper concludes that applying semiotic symbols is a
potentially valuable approach toward anchoring.
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1 Introduction

The symbol grounding problem that deals with the question how symbols can
be used meaningfully [8] is one of the hardest problems in AT and robotics. As
many robotic applications use symbols for reasoning, problem solving and com-
munication, solutions for this problem are extremely important for robotics
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research and development. But symbol grounding is also an important prob-
lem in studying foundations of cognition such as the evolution of language, as
human language is primarily symbolic [7].

Recently a formalized solution for the technical aspect of the symbol ground-
ing problem has been proposed under the name of anchoring [5]. Anchoring
concentrates on constructing and maintaining a relation between a symbol
and a sensory image that is acquired from observing a physical object. Sym-
bol grounding is, in addition to anchoring, also concerned with ‘anchoring’
abstractions and, more fundamentally, with philosophical issues relating to
the meaning of symbols.

Many attempts to tackle the anchoring problem start with the design of pre-
defined symbol systems that have predefined anchors to relate symbols with
visual percepts [5,13]. Recently, an increasing number of attempts have been
made to approach the anchoring problem from the bottom-up in which robots
develop their symbolic representations during their evolution - be it phyloge-
netic and/or ontogenetic. These attempts often relate to the development of
symbolic communication [2,12,16,22,24].

The common approach to tackle the anchoring problem focuses on the devel-
opment — hand-coded or learned — of anchors between symbols and sensory
images [5]. This is a difficult problem since the robots have to deal with the
object constancy problem: When viewing an object from different locations,
the sensory images relating to this object differ enormously because the size
of the projection may differ or because the object may be obscured. Humans
are well capable of dealing with object constancy, but it is unclear how this
works. One approach to tackle the problem of object constancy would be to
develop anchors between symbols and the real world object, rather than be-
tween symbols and sensory images.

This paper proposes that the anchoring problem can be solved in terms of
semiotic symbols, which have implicit anchors in the real world [22]. An ex-
periment based on Steels’ language game model [14] illustrates how anchors in
these semiotic symbols may be constructed from the bottom-up through the
use of language. In addition, it is discussed how the presented language game
model may explain the cognitive phenomenon of family resemblance [23].

The paper is organized as follows: The next section presents the notion of
semiotic symbols and discusses some of the requirements for anchoring these.
The experimental setup is presented in section 3. Section 4 presents the ex-
perimental results. Discussions of the issues raised in the paper are presented
in section 5. Conclusions are given in section 6.
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Fig. 1. The semiotic triangle illustrates the relations between referent, form and
meaning that constitute a sign. Each line is an anchor, but the dotted line indicates
that the relation between a form and a referent need not be a physical anchor, which
must be established between referent and meaning and between meaning and form.

2 The anchors of semiotic symbols

In this section, I will define the notion of semiotic symbols as opposed to the
definition of symbols that is commonly used in AIl. As I will argue below,
semiotic symbols have implicit anchors between some internal structures and
reality. Finally, I will discuss under what conditions semiotic symbols may
emerge.

The definition of semiotic symbols is adopted from Peirce [11], who defined a
semiotic symbol in terms of a sign, which in semiotics is a relation between
a referent, meaning and form.? These three elements can be described as
follows:

Form A form (or word) is the shape of the sign, which is not necessarily
material.

Meaning The meaning is the sense that is made of the sign.

Referent A referent is the object that stands for the sign, which may include
abstractions, actions or other signs.

The relation between the referent, form and meaning is often illustrated with
the semiotic triangle [10] as shown in Fig. 1. According to Peirce, a sign be-
comes a (semiotic) symbol when its form, in relation to its meaning is arbitrary
or conventionalized so that the relationship has to be learned; otherwise the
sign is either an ¢con or an indez.

A semiotic symbol becomes meaningful when it is constructed and used func-
tionally by an agent, which is conform Wittgenstein [23]. As such the meaning

2 Peirce called this a symbol rather than a semiotic symbol. I call it a semiotic
symbol to distinguish it from the — in AI and some other disciplines of cognitive
science — commonly used definition of a symbol, which is similar to the form of the
semiotic symbol. In addition, Peirce used the terms representamen, interpretant and
object where I use the terms form, meaning and referent.



arises from the interaction of an agent that uses a form with the referent. Else-
where I have argued that the symbol grounding problem as presented by Har-
nad is no longer relevant when we adopt semiotic symbols, because these are
per definition grounded as their meanings have intrinsic relations with their
referents [22]. This, however, does not solve the symbol grounding problem,
but translates it into another — more technical — problem, which I have coined
the physical symbol grounding problem.?

The physical symbol grounding problem is related to the anchoring problem
in that it aims at constructing and maintaining anchors between symbols —
i.e. the forms in semiotic symbols — and reality. Coradeschi and Saffiotti’s
description of anchoring, however, focuses on anchors between forms and sen-
sory data [5]. As the sensory data is acquired from a robot’s interaction with
its its environment, the forms relate to the real world. The anchors, however,
are not necessarily constructed to maintain a relation with the real world en-
tity, but rather with the sensory image of this entity. The physical symbol
grounding problem, on the other hand, does focus on constructing and main-
taining a relation with the real world by constructing anchors between forms
and real world entities, mediated by anchors between forms and meanings and
between meanings and referents. In addition, where anchoring relates forms
to sensory images (and thus to the sensing of physical objects), the physical
symbol grounding problem is not restricted to constructing semiotic symbols
about physical objects, but also include abstractions, movements and even
other semiotic symbols.

The development of semiotic symbols depends on how an agent interacts with
its environment. When the semiotic symbols are used in language, the way the
meaning is constructed depends on how it is used [23]. However, the meaning
of semiotic symbols also must have a part that can be memorized, which can
be represented in terms of prototypical categories. When mediating on the
meaning of a semiotic symbol, agents must confer to a similar meaning, hence
they must try to find a common way to name the meaning. It is not unlikely
that this requires for the agents to construct similar representations of the
meanings they use. In addition, the construction of semiotic symbols should
be adaptive, because it may be impossible to design ‘static’ anchors that apply
to the dynamic interactions of a robot with its environment [9]. An adaptive
approach to construct semiotic symbols allows robots to create new anchors
when none exist or when existing ones are insufficient. As a result, I assume
that a semiotic symbol can have multiple meanings (or prototypes) to stand
for a referent in relation to a form. These different meanings of a semiotic

3 This problem is coined the physical symbol grounding problem to indicate that
semiotic symbols provide a way to approach symbol grounding with the physical
grounding hypothesis [4] as the semiotic symbols themselves form a coupling be-
tween the environment and an agent’s behavior and thus are physically grounded.



symbol will then be used to interpret a referent on different occasions. To
achieve such a development of semiotic symbols in communication, I assume
that the meanings co-develop with linguistic forms [3] by means of cultural
interactions between agents and their environment [18].

The anchors between meanings and referents arise from the physical inter-
actions between an agent and its environment. The meanings are anchored
to linguistic forms through the production and interpretation of expressions.
These physical anchors between referents, meanings and forms provide an im-
plicit non-physical anchor between the forms and referents through their use
in language (Fig. 1). The way these anchors are formed is influenced by the
agents’ interactions with their environment and individual adaptations as a
self-organizing process [14].

For robots that develop semiotic symbols from the bottom-up, the above re-
quires that robots are capable of interacting with their environment, including
each other. Furthermore, they have to construct and memorize categorizations
that provide anchors between the referents and the categories such that these
can be used appropriately in language. To use these in language they also have
to construct anchors between the categories and linguistic forms adaptively.
How this can be modeled is explained in the next section.

3 Adaptive language games

To illustrate how a set of anchored symbols can be developed from the bottom-
up, an experiment is presented in which two mobile LEGO robots boot-
strapped a symbolic communication system. To achieve this, the robots en-
gaged in a series of adaptive language games [14,17] in which they tried to
communicate the form that stands for an object and adapt their internal
structures in order to improve their performance on later occasions. Various
types of language games have been implemented such as observational games,
guessing games and selfish games, which differ from each other in the type
of learning mechanism the robots use and in what non-verbal input they use
to determine the reference of an utterance [19,20]. For the experiment of this
paper, the robots played a series of guessing games. Below follows a technical
description of the experimental setup.

3.1 The environment

In the experiment two mobile LEGO robots were used that were equipped
with light sensors, bumpers, active infrared, two motors, a radio module and



Fig. 2. The LEGO robots and a light source as used in the experiment.

a sensorimotor board, see Fig. 2. The light sensors were used to detect the
objects in the robots’ environment. The other sensors and the motors were
used to process the physical behaviors of the robots.

The robots were situated in a small environment (2.5 X 2.5m?) in which four
light sources were placed at different heights. The light sources acted as the
objects that the robots tried to name. The four light sensors of the robots were
mounted at the same height as the different light sources. Each sensor outputs
its readings on a sensory channel. A sensory channel is said to correspond with
a particular light source if the sensor has the same height as this light source.

The goal of the experiment was that the robots developed a lexicon with which
they could successfully name the different light sources.

3.2 Sensing, segmentation and feature extraction

Through the interactions of the robots with their environment, they obtain
raw sensory data. In order to reduce the redundant information from this high
dimensional data, the robots transfer this data into low dimensional feature
vectors. The process of acquiring feature vectors was done by sensing, seg-
mentation and feature extraction. Each subsequent step reduced the amount
of sensory data as if it were a sieve.

3.2.1 Sensing

A guessing game started when both robots were standing close to each other
with their backs “facing’ each other.? During the sensing phase, the robots

% TIn the original implementation, the robots aligned themselves autonomously [17],
but to speed up the experiments, the robots were placed by hand for this experiment.
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Fig. 3. The sensing of robot A (left) and robot B (right) during a language game.
The plots show the spatial view of the robots’ environment. It is acquired during
360° of their rotation. The y-axis shows the intensity of the sensors, while the x-axis
determines the time (or angle) of the sensing in PDL units. A PDL unit takes about

%second, hence the total time of these sensing events took about 1.5s for robot A4

and 1.3s for robot B.

rotated one by one 720° to obtain a spatial view of their environment. A
spatial view contained the raw sensory data from the middle 360°, which can
be written in the form of a matrix?®

where each row represents the sensory data of the n sensory channels (4 in the
experiment) and the detection of ¢ measurements are given in the columns. ®
The sensory data was sent to a stand alone PC where all further processing
took place off-line.

Figure 3 shows the sensing of the two robots during a guessing game. The left
figure shows that robot A clearly detected the four light sources; there appears
a ‘winning’ peak for every light sensor s; that corresponds to one light source.
The right figure shows that robot B did not sense all four light sources clearly
and thus acquired a different view than robot A. This happened because both
robots were not located at the same position.

5 The robots rotated twice instead of once to ensure they rotated at a constant
speed when the actual sensing started. This is done because the onset and offset of
the movement induced a warped view, which in turn induced much noise for the
segmentation.

6 Note that although the robots have more than four sensors only the four light
sensors are used to construct anchors.



3.2.2 Segmentation

The segmentation phase extracted connecting regions where the sensory data
exceeded a threshold that represented the upper noise level of that sensor.
These regions were supposed to be induced by the sensing of a light source.
To accomplish this segmentation, the raw sensory input X was thresholded
for noise resulting in X' = matrix(z;} ;) according to

z; ;= H(zi; — ©;) (2)
where
zifx >0
H(z)={ (3)
0ifxz <0

and ©; represents the upper noise level of light sensor 7, which was acquired
empirically for each sensor.

Given the preprocessed sensory data X', a segment Sy can be defined as the
largest matrix

where in each column j there is at least one element for which x;] > 0 for
1 =1,...,nand j = r,...,m; and where 1 < r < m < ¢. Note that the
inequality » < m implies that the segments have to contain at least two
measurements to filter out further noise. When a segment was detected at the
start of the view and another was detected at the end, both segments were
concatenated.

Ideally, the segmentation resulted in a set that contained a segment for each
light source. This set constituted what is called the context of the guessing
game, i.e. Cxt = {Sy,..., Sy}, where N is the number of segments that were
sensed. Each robot participating in the guessing game acquired its own context
which could differ from another.



3.2.8 Feature extraction

The feature extraction results in a feature vector f = (f; ..., f,), where f; =
©(Sk) is a function that normalizes the maximum intensity of a sensory channel
1 to the overall maximum intensity within a segment Si. l.e. the maximum
value in row 7 of the matrix S; is normalized to the maximum value of the
entire matrix. Mathematically the function ¢(Sk) is given by:

MaXe[r,m] (x;])

maxg, («

©(Sk) = (5)

pa)

This way the function extracts the invariant property that the feature of the
sensory channel with the overall highest intensity inside a segment has a value
of 1, whereas all other features have a value < 1. Or, in other words, the feature
with value 1 corresponds to the light source the feature vector refers to. The
space that spans all possible feature vectors f is called the n dimensional
feature space F = [0,1]|", or feature space for short.

3.8 Discrimination game

Each robot played a discrimination game [15] to form a memorized represen-
tation of the meaning — or meaning for short — for each (potential) topic. A
topic is a segment from the acquired context as described by its feature vec-
tor. The speaker selected its topic randomly from the context and this topic
became the subject of communication. As the hearer of a guessing game tried
to guess what the speaker’s utterance referred to, it had to consider all seg-
ments in its context as a potential topic. A discrimination game was successful
when it resulted in one or more categories that distinguished the topic from all
other segments in the context. When the robot failed to find such a category,
the discrimination game failed and the robot expanded its ontology in which
the categories were stored. The discrimination game is a sequence of three
processes: categorization, discrimination and adaptation.

3.3.1 Categorization

A category ¢ = {(c, v, p, k) was defined as a region in the feature space F and it
was represented by scores v, p and k and a prototype ¢ = (yy,...,Y,), where
y; were the coordinates of the prototype in each of the n dimensions of F. The
category was the region in F in which the points had the nearest distance
to c. Each feature vector in the context was categorized using the I-nearest



neighbor algorithm [6]. So, feature vector f was categorized with that category
¢ for which the prototype c¢ had the smallest Euclidean distance ||f — c]|.

In order to allow generalization and specialization of the categories, different
versions of the feature space F, were available to a robot. In each space a
different resolution was obtained by allowing each dimension of F, to be ex-
ploited up to 3* times, where A\ = 0,..., Amax. How this was done will be
explained in section 3.3.3.

The use of different feature spaces allowed the robots to categorize a segment in
different ways. The categorization of segment Sy resulted in a set of categories
Cr ={coy--.,Cm}, where m < Amax.

3.3.2 Discrimination

Suppose that a robot wants to find distinctive categories for (potential) topic
S, then a distinctive category set DC' can be defined as follows:

DC = {Ci € C, | V(Sk € CXt\{St}) e ¢ Ck} (6)

Or in words: the distinctive category set DC' consists of all categories ¢; of the
topic S; that are not a category of any other segment Sy in the context Cxt.

3.3.8 Adaptation

If DC = (), the discrimination game fails and the robot should adapt its ontol-
ogy by constructing new categories. Suppose that the robot tried to categorize
feature vector f = (f1,..., fn), then new categories were created as follows:

(1) Select an arbitrary feature f; > 0.

(2) Select a feature space F, that has not been exploited 3* times in di-
mension ¢ for A as low as possible. If no such space can be found, the
adaptation is stopped.

(3) Create new prototypes ¢; = (Y1, -- ., Yn), Where y; = f; and the other y,
are made by combining the features from all existing prototypes in F,.

(4) Add the new prototypical categories ¢; = (c;,v;, pj, k;) to the feature
space Fy, with v = p=0.0l and k =1 — 2

Amax’

The three scores v, p and k together constitute the meaning score p = %(V—I— p+
k), which was used in the naming phase of the guessing games. Although the
influence of this score was small, it helped to select a form-meaning association
in case of an impasse. Where x was kept constant, v and p were increased
when the category was distinctive (v) and when it was used successfully in

10



the naming phase (p); they were lowered otherwise. Exact details of these
updates can be found in [20].

If the distinctive category set DC # (), the discrimination game was a success
and the DC was forwarded to the naming phase of the guessing game. If a
category c was used successfully in the guessing game, the prototype c of this
category was moved toward the feature vector f of the topic:

c:=c+e-(f—c) (7)

where € = 0.1 is a constant step size with which the prototype moved toward
f. This way the prototypes became more representative samples of the feature
vectors it categorized.

The discrimination game as implemented here differs from the implementation
of Steels [15] mainly in the representation and construction of categories. Steels
used binary trees to split up the sensory (or feature) channels rather than using
prototypes. The reason for using prototypes is that the world as sensed by a
robot is not binary and splitting up categories in binary trees seems therefore
inappropriate. In addition, Steels allowed categories to be formed in only one
dimension or in any combination of the different feature dimensions; while in
this implementation the categories were always n dimensional.

It is important to realize that all processing up to this point was carried out
by each robot individually. This way, the ontologies, contexts and distinctive
category sets differed from robot to robot.

3.4 Production

After both robots obtained distinctive categories of the (potential) topic(s),
the speaker tried to communicate its topic based on its lexicon. The lexicon L
was defined as a set of form-meaning associations: L = {FM,;}, where FM; =
(F;, M;,0;) was a lexical entry. Word-form F; was made from an arbitrary
combination of consonants and vowels taken from the alphabet, meaning M;
was represented by some category, and association score o; € (0,1) was a
real number that indicated the effectiveness of the lexical entry based on past
interactions. Each form could be associated with multiple meanings, and each
meaning could have associations with more than one form.

The speaker of the guessing game ordered the distinctive category set DC
based on the meaning score . It selected the distinctive category with the
highest meaning score and searched its lexicon for form-meaning associations
of which the meaning matched this distinctive category. If it failed to find such

11



an element, the speaker first considered the next best distinctive category from
the ordered DC. If all distinctive categories were explored and still no entry
was found, the speaker could invent a new form as will be explained in section
3.7.

If there were one or more lexical entries that fulfilled the above condition, the
speaker selected the entry that has the highest association score ¢. The form
that was thus produced was uttered to the hearer. In the on-board implemen-
tation this was done using radio communication, off-line the utterance was a
shared variable.

3.5 Interpretation

On receipt of the utterance, the hearer searched its lexicon for entries for
which the form matched the utterance and the meaning matched one of the
distinctive categories of the potential topics. If it failed to find one, the lexicon
had to be expanded, as explained in section 3.7.

If the hearer found one or more entries, it selected the entry that had the
highest score ¥ = 0 + - u, where oo = 0.1 is a constant weight. The potential
topic that was categorized by this meaning was selected by the hearer as the
topic of the guessing game. l.e. this segment was what the hearer guessed to
be the subject of communication.

3.6 Corrective feedback

The effect of the guessing games was evaluated by the corrective feedback.
If the speaker had no lexical entry that matched a distinctive category, or if
the hearer could not interpret the speaker’s utterance because it did not have
a proper lexical entry in the context of the game, then the guessing game
was a failure. The guessing game was successful when both robots commu-
nicated about the same referent. So if the hearer interpreted the utterance
and thus guessed the speaker’s topic, the robots had to evaluate whether they
communicated about the same referent.

In previous work there have been various attempts to implement the corrective
feedback physically as a pointing behavior. All these attempts, however, failed.
In order not to focus too long on this problem and to prove the principle, it was
assumed for the time being that the robots could do this and the verification
was simulated. Naturally this problem needs to be solved in the future.

The corrective feedback was simulated by comparing the feature vectors of

12



the two robots relating to their topics. If the features with value 1 matched
for both topics, this means that the topics corresponded to the same referent
and the guessing game was considered successful. If the hearer selected an
inconsistent topic during the interpretation, then there was a mismatch in
referent and the guessing game failed.

3.7 Lexicon adaptation

Depending on the outcome of the game, the lexicon of the two robots was
adapted. There were four possible outcomes/adaptations:

(1) The speaker had no lexical entry: In this case the speaker created a new
form and associated this with the distinctive category it tried to name.
This was done with a certain probability, which was kept constant during
the experiment at P, = 0.1.

(2) The hearer had no lexical entry: The hearer adopted the form uttered
by the speaker and associated this with the distinctive categories of a
randomly selected segment from its context.

(3) There was a mismatch in referent: Both robots adapted the association
score o of the used lexical entry by o := - o, where n = 0.9 is a con-
stant learning parameter. In addition, the hearer adopted the utterance
and associated it with the distinctive categories of a different randomly
selected segment.

(4) The game was a success: Both robots reinforced the association score of
the used entry by o0 :=n-0+1 —n. In addition, they lowered competing
entries (i.e. entries for which either the form or the meaning was the same
as in the used entry) by o := n - 0. The latter update is called lateral
inhibition.

The coupling of the naming phase with the discrimination game and the sens-
ing part makes that the emerging lexicon is grounded in the real world. The
robots successfully solve the physical symbol grounding problem in some sit-
uation when the guessing game is successful, because only in those case a
semiotic triangle (Fig. 1) is constructed completely in a functional — and thus
meaningful — sense.

4 Experimental results

An experiment was done for which the sensory data of the sensing phase during
1,000 guessing games was recorded. From this data set it was calculated that
the a priori chance for successful communication was 23.5% when the robots

13
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Fig. 4. (Left) The communicative success (CS) and discriminative success (DS) of
the experiment. (Right) The evolution of the number of meanings and forms that
were used successfully by the robots in one run of the experiment.

randomly chose a topic. Because the robots did not always detect all the
light sources that were present, their context was not always coherent. This
incoherence caused an upper limit to the success rate that could be reached,
called the potential understandability, which was 79.5% on the average.

The 1,000 recorded situations were processed off-line on a PC in 10 runs of
10,000 guessing games. Figure 4 (left) shows the average communicative and
discriminative success of the 10 runs. The communicative success measures
the number of successful guessing games, averaged over the past 100 games.
The discriminative success measures the number of successful discrimination
games, also averaged over the past 100 guessing games. As the figure shows,
the discriminative success reaches a value near 1 very fast. Hence, the robots
were well capable of finding distinctive categories for the sensed light sources.
The communicative success was somewhat lower. It increased toward a value
slightly below 0.8 near the end. Since this is close to the potential under-
standability, the robots were capable to construct a shared lexicon within its
limits.

Figure 4 (right) shows the number of different meanings and forms that were
used at least once successfully in one run of the experiments. As the figure
shows, the number of meanings used were much higher than the number of used
forms. The robots used up to 450 meanings in relation to the four referents,
while they only used 16 forms to name them. So, there are approximately 28 x
more meanings used than forms. Although the robots used about 450 meanings
to distinctively categorize the four light sources, further analysis revealed they
only used about 20 to 25 meanings frequently. In addition, only 6 or 7 forms
were used regularly. So, the robots named each referent consistently with one
or two forms.

The competition diagram of Fig. 5 (left) shows how the occurrence frequencies
of the used forms to name one of the referents evolved during one run of the

14
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Fig. 5. The referent-form competition diagram (left) shows the competition between
forms to name referent light source L1. The referent-meaning diagram (right) shows
the competition between meanings to interpret light source L1. In both diagrams
the y-axis shows the occurrence frequencies of successfully used forms or meanings
over the past 200 games relative to the occurrence of the referent. The x-axis shows
the number of games played.

experiment. As this figure makes clear, the most frequently used form “tyfo”
clearly won the competition to name light source L1. At the bottom of the
diagram, other forms reveal a weak competition. Similar competitions have
been observed for the other referents [20,22]. Figure 5 (right) shows that the
competition between meanings to categorize a referent is stronger, which would
be expected given Fig. 4 (right). More experimental results can be found in
[20,22].

5 Discussion

In this section, I will discuss why the notion of semiotic symbols is useful in
relation to the anchoring problem. The discussion will be based on the ob-
servation that semiotic symbols can be constructed by optimizing the anchor
between their forms and the objects they stand for; thus solving the object
constancy problem. Furthermore, I will explain how the use of semiotic sym-
bols can model the phenomenon of family resemblance.

In this paper the ‘alternative’ definition of symbols as semiotic symbols is
adopted to provide the possibility to construct anchors between symbols (or
forms as I call them) and the real world. But is there any advantage of using
semiotic symbols over the traditional symbols in relation to the anchoring
problem? In the original anchoring problem [5], anchors are sought between
symbols and perceptual features, while the symbols’ relations to the real world
objects are somewhat brought to the background. The experiment of this
paper revealed that it is the relation between the form and the real world object
that is being optimized in terms of a one-to-one relationship. The relation
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between the form and the sensory data (or even the categories) does not
reveal this optimization. I do not argue that the relationship between form
and sensory data is unimportant, but I do want to argue that the relation
between form and referent is the one we should care for.

Before explaining why the relation between form and referent is crucial, I
will elaborate on the importance of the relation between sensory images and
forms. The processes between sensing and feature extraction are extremely
important because these transform the raw sensory data into more manageable
feature vectors that additionally bear some invariant information concerning
the referents. In addition, the intermediate representations of categories are
important to allow the optimization between form and referent, because the
discrimination games function — like the sensing, segmentation and feature
extraction — as a sieve. This sieve enables the robots to bind the numerous
variation of the sensing to more informative granules that are less numerous.
These granules are, although still numerous, more manageable than the raw
sensory data; thus allowing to close the coupling between referents, meanings
and forms more easily.

The optimization between referent and form, however, is the most dominant
process for the construction of consistent anchors between these two elements.
To understand how this optimization works, it is important to realize that
robots try to construct a lexicon that they can apply in different contexts.
The lexicon is constructed through the interplay of adaptations under selec-
tive pressures and pragmatic language use. In the experiment, anchors were
formed between referents and meanings, between meanings and forms; and
between forms and referents. The results show that many anchors were used
between referents and meanings, and between meanings and forms. However,
when forms were used, they were well anchored to the referents they name.
Failures in the discrimination game caused the emergence of so many mean-
ings, because every time a discrimination game fails, a new category was added
to the ontology. Many of them were associated with a form when they became
distinctive in a later discrimination game. As associations were selected during
a guessing game when their meanings fitted in the context — even if the scores
were not high — a lot of these meanings were used successfully in the game.

The same context dependency causes the emergent tendency that the robots
do not use so many forms, despite the variability of the acquired contexts
during different games and between the robots. This can be understood by
realizing that when one robot categorizes a referent differently in different
guessing games, this does not necessarily mean that the other robot finds
different distinctive categories. When the robot that uses the same distinctive
category on different occasions, it will most likely use the same form to express
this meaning too. This allows the other robot to use the form in association
with the two different meanings successfully, as the game is context dependent.

16



ML

M2

77,
?
s

V4
%,

N

N\

Fig. 6. Illustration of two semiotic relations between referent R, meaning M and
form F. The left figure shows the continuum of possible sensing P of referent R
are displayed as a rectangle. Some part of the rectangle may be interpreted by M1
and another by M2. When both meanings relate to the same form, this mechanism
solves the problem of object constancy. The right figure shows how the model may
explain family resemblance. The ovals should be interpreted as Venn-diagrams of
the meanings M1 and M2.

When such situations occur frequently, this, in turn, allows the robots to use
more meanings than forms. This emerging dynamics of the lexicon can be
classified as semiotic dynamics and illustrates how conceptual development
is, at least to some extent, dependent on language acquisition and language
use; and vice versa. This is conform the — in a weaker version — revived Sapir-
Whorf thesis [3]. A similar argument in favor of this weaker version of the
Sapir-Whorf thesis was made in another study using language games [1]. In
this study it was shown that agents developed a shared categorization of the
color space when they used language, but a distinctive categorization when
they developed categories without engaging in guessing games.

The optimization between referent and form solves, at least to some extent,
the notion of object constancy: How can an object be recognized as being
the same when different sensing of such an object can result in dramatically
different sensory stimuli, for instance because it is partly obscured? Figure 6
(left) illustrates how the semiotic dynamics can explain the solution to the
object constancy problem. In the experiment, the robots detected the light
sources from different positions, resulting in different sensings — illustrated as
the continuum of sensings P in Fig. 6 (left) — which may yield different mean-
ings M1 and M2. Nevertheless, the system identifies the objects consistently,
because the one-to-many relations between form and meaning converge at the
level of form and referent.

The results of the experiment in this paper show that minimal autonomous
robots can develop a shared set of semiotic symbols from the bottom-up by
optmizing their anchors between forms and referents. However, one of the driv-
ing forces for this optimization — the corrective feedback — was simulated. This
is a major shortcoming as the method used — inspecting each other’s inter-
nal states — is unrealistic and may undermine the principle. Nevertheless, the
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assumption was adopted to test the principles of the underlying bootstrap-
ping mechanisms and not to get stuck on solving this problem. A solution
may come from applications were robots evaluate the corrective feedback us-
ing task-oriented behaviors, as was recently investigated in simulations [21].
In these simulations, the feedback came from the effect of the task that the
agents had to perform using the evolved language.

The semiotic dynamics of the guessing games help to solve the object con-
stancy problem, but it may also help to explain another interesting phe-
nomenon observed in cognitive science, namely family resemblance [23]. Fam-
ily resemblance is the observation that seemingly different things are called
the same without being ambiguous, like the meaning of games. Where soccer
and chess are typical games, a game like swinging is not typical. Swinging
lies near the border of the ‘conceptual space’ of games — e.g. referent R1 in
Fig. 6 (right). It has no direct resemblance with games like soccer and chess
— e.g. R2 and R3 — but it has some resemblance with other games that in
turn do have resemblance with soccer and chess. Such categorization process
can be explained with the one-to-many relations between form and meaning.
The word “games” is associated with different meanings for soccer, chess and
swinging. The successful use of these meanings in different situated language
games allows the system to emerge a family of resemblance. Optimization here
should be made on the relation between a form and different referents. This
optimization can be realized through the use of language.

Concluding, the above discussions provide many arguments in favor of using
semiotic symbols over the traditional symbols with respect to anchoring. The
most important argument is that in the construction of semiotic symbols,
anchors between forms and reality are implicitly being optimized, rather than
optimizing anchors between symbols and sensory images.

6 Conclusions

This paper illustrates how a small group of autonomous robots can develop a
set, of shared semiotic symbols in a bottom-up fashion by engaging in adaptive
language games. The semiotic symbols the robots construct are defined by
physical anchors between referents and meanings, and between meanings and
forms, which yield a non-physical anchor between form and referent. The use of
semiotic symbols allows a profitable optimization to find, track and (re)acquire
anchors between forms and referents, rather than between forms and sensory
images as proposed in the original description of the anchoring problem [5].

The experiments show how a consistent construction of semiotic symbols is
positively influenced by their use in language. Through the use of language,
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the forms are shared externally to the robots. In addition, the robots share
the reference of their communication through the received feedback. These
external factors, together with the internal adaptations influence the way the
robots organize their conceptual spaces. Thus their conceptual development is
influenced to a large extent by their language use, hence providing an argument
in favor of a weak interpretation of the Sapir-Whorf thesis as discussed in [3].

To further broad our understanding on the emergence of semiotic symbol sys-
tems in language use, additional research is required on the emergence of com-
positionality as this is one of the key aspects of human language use. Future
research should concentrate on how compositional structures can be grounded
in the sensorimotor flow through grammatical language use. In addition, more
research is required to design robotic applications that are capable of verifying
the effectiveness of their language use in order to provide corrective feedback
autonomously. Although further research is required to improve and scale the
model, adaptive language games provide a potentially valuable technology for
a bottom-up approach toward anchoring semiotic symbols.
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