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Abstract

In order to discriminate among the different objects
in its environment, an agent may develop a primi-
tive notion of concepts based on the sensor data it
receives. In this paper, this phenomenon is investi-
gated by having software agents play discrimination
games with the sensor data of autonomous robots.
We have compared the Simple Prototype method and
the Adaptive Subspace method. Both methods achieve
high discrimination-success rates. The Adaptive Sub-
space method accomplishes this with a converging and
relatively low number of categories. The purpose of
these discrimination games is to serve as a basis for
lexicon formation experiments. From the experiments
in this paper, we conclude that the Adaptive Subspace
method is more attractive for discrimination games.

1. Introduction

When a robotic agent investigates its environment it
may, depending on its task, need to discriminate between
the different objects it encounters. Deciding whether or
not two observations concern the same object implies a
categorization of the world. Provided a robot has ap-
propriate and sufficiently precise sensors at i1ts disposal,
it can classify observations of the objects surrounding
it into a number of different categories. We investigate
this by letting agents play discrimination games. The
discrimination games the robots play and the theory be-
hind these one-player games were introduced in (Steels,
1996b); see also (Vogt, 1997). These games are investi-
gated in the context of experiments on lexicon formation,
for an overview see (Steels, 1997).

In other experiments at our lab called naming games
(Steels and Vogt, 1997)(Steels, 1996a), the goal is to let
robots communicate about their environment. A prob-
lem for these robots is that repeated encounters with
the same object generally do not yield identical obser-
vations. The differences are caused by changes of the
viewing angle, different lighting conditions, reflections,
or sensor inaccuracies. In spite of these differences, an
agent should categorize its observations such that an ob-
Ject consistently falls into the same category on sepa-
rate encounters. If this is not the case, the development
of meaningful communication about the objects will be

severely hindered. Thus, in these experiments, a mean-
ingful conceptualization of the environment will yield a
limited number of categories; the smaller the number of
categories, the larger the possibility that two agents will
each consistently label an object as belonging to a cer-
tain category. This in turn facilitates the development
of names for such categories which can be used in com-
munication to identify objects. The number of possible
categories to be considered grows rapidly with the num-
ber of sensors.

We are interested in the question of how a robot should
discriminate between objects. In these experiments, what
constitutes an object is directly based on the robot’s
sensory information. This usually, but not always, cor-
responds to a light source. The agent can autonomously
determine whether its categorization allows it to discrim-
inate between the objects in a context. Thus, discrimi-
nation success can be calculated by the agent itself, and
is not externally given as is the case in reinforcement
learning problems. Since no categorization is favored over
other categorizations (as is the case with classification),
the problem here is unsupervised learning. Many meth-
ods for unsupervised learning exist; in this paper, we
investigate two possible methods. Both methods adapt
the features which determine the agent’s categories. Ar-
guments from a cognitive perspective in favor of feature
adaptation as opposed to fixed features are discussed in
(Schyns et al., 1998).

The first method is based on Simple Prototypes. A pro-
totype is a type of feature that can be represented by
a sensor-value pair. New prototypes are created when-
ever discrimination fails. The second method is an adap-
tive subspace method that resulted from an attempt to
combine the Exploration Buckets algorithm (De Jong,
1997) with generalization. This method generalizes over
the sensor space by distinguishing only between features
that enhance discrimination.

2. The robots and their environment

The experiments are carried out with the two mobile
robots shown in figure 1. These robots are controlled by
the sensory-motor board SMBII that was developed at



the VUB Al-Lab (Vereertbrugghen, 1996). The robots
are equipped with several sensors and actuators, as well
as a radio-link. The sensors include a white light sensor,
a modulated light sensor and three infrared (TR) sensors.
One sensor of each type is mounted on the front of the
robot and is used for perception. A virtual sensor is intro-
duced to denote the robot itself, since one of the robots
may be the subject of a naming game as well. Further-
more, the robots have IR sensors on both sides that are
used for IR-taxis and -orientation (Steels and Vogt, 1997)
and four bumpers for obstacle avoidance. The actuators
include four IR emitters to make each robot visible to
the other and two motors to produce the movements of
the robots.

Figure 1 The robots used in the experiments.

In the experiments, the robots engage in a series of
so-called naming games. As part of the naming game,
the robots perform a perception task. This involves ro-
tating 360 degrees and detecting objects using sensors as
explained below, thus obtaining a context for the naming
game. The objects the robots can detect are made visible
by different light sources; the objects include the robots
themselves. The light sources correspond to the sensors:
there is a white light source, a source emitting light at a
modulated frequency and an infrared source. During the
perception task, the robots scan their sensors, which are
pre-filtered by a threshold to filter out background noise.

The first object in the context is a virtual detection
of the robot itself. When a robot encounters an object as
it turns, one or more of the sensors will increase until a
maximum is reached, after which the sensor value(s) will
drop again. Rotating 360 degrees results in a graph like
that shown in figure 2. A bounding box is drawn around
every hill in the graph in the interval for which the sensor
was activated. Since the robot turns (approximately) 360
degrees, the graph is a panoramic view. Therefore, if a
sensor i1s active at both the beginning and the end of
the graph, they should be interpreted as a single object.
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Figure 2 An object as perceived by the robot.

The two outer bounding boxes for infrared in figure 2 are
thus part of the same bounding box. A bounding box is
interpreted as an object located in the middle of that
box. If the positions of two boxes detected are within a
distance of 5 time steps, these boxes are considered to
represent one object.

For every object, two values for every sensor are ob-
tained as sensory channels. The first one is the filling
ratio of the detected hill inside the bounding box and
the second value is the height of the hill. The represen-
tation for the robot itself is added at the beginning of
the context. For reasons of consistency, this virtual sen-
sor also has two sensory channels, thus making the total
number of sensory channels 8. This method for object
detection differs from previous work. The resulting con-
text contains the detected objects with values for the
8 sensory channels. This data is transmitted to a radio
station linked to a PC for further off-line processing.

3. Discrimination Games

In the perception task, a robot has gathered sensor data
of the objects it has observed in its environment. Every
object can be related to a set of features that the agent
has constructed. These objects together constitute the
context. The agent then chooses one object from the con-
text, called the topic. The aim of the discrimination game
is to distinguish the topic from every other object in the
context. If this discrimination is possible, the game ends
in success. If not, it ends in failure, and the agent will
try to improve its ability to discriminate by generating or
modifying its features. The two methods that have been
investigated, take different approaches to relating objects
to features and for adapting features. These methods are
described in the following two sections.

With the two methods discussed, the agent has a set
of features that it adapts based on its experiences in
order to increase its chances of success in the discrimina-
tion games. The features are quite primitive, in the sense



that they directly correspond to a subset of the values
of a certain sensory channel. If an object’s value v for
that sensory channel is a member of this set, the feature
is said to cover v. Features can be combined into feature
sets. A feature set covers an object if all features in the
set cover the value of the feature’s sensory channel for
that object. For both methods, two features in a feature
set never correspond to the same sensory channel. Thus,
the number of features in a feature set i1s never greater
than the number of sensory channels. A feature set is dis-
criminative iff it covers the topic but none of the other
objects in the context. The discrimination game results
in a set of distinctive feature sets. This set may be empty,
in which case the discrimination game fails and the sys-
tem is adapted, as described in the following sections.

4. The Simple Prototype Method

The Simple Prototype method is based on the gener-
ation of features which can be viewed in some sense
as prototypes. These prototypes should not be confused
with the prototypes that are normally used in AI, which
are frames for whole objects. The prototypical features
discussed here act at the subsymbolic level. Sensor val-
ues observed for objects are mapped onto an appropriate
prototypical feature. These features are compared in the
discrimination games in order to distinguish the topic
from other objects in the context. If the discrimination
game is unsuccessful, a new feature may be generated
for which a sensory channel of the topic is an example.
The successful feature sets remain in the memory of the
agents. In this way the features are selected for their dis-
criminative powers. So, the method constitutes a selec-
tionist approach; see also (Popescu-Belis, 1997), where
Edelman’s theory of neuronal group selection (Edelman,
1987) is used. Note that the method is different from the
one used in previous work (Vogt, 1997)(Steels, 1996b).

Now, suppose an agent that has a set of prototyp-
ical features {f; =< sc¢;, v, s;,u; >}, where the sc¢; is
the attribute, which is the sensory channel on which the
feature works, v; is a value, s; is the success score and
u; 18 the use score for f;. Suppose furthermore that the
agent has a context C' of objects 0;, where every object
has a sensorvalue o; ; pairs for every sensory channel j.
The context is obtained from the perception of the robot.
The agent has chosen one of the objects from the context
to be the topic ¢. The method can now be described as
follows:

— Every object og € C 1s covered by a set of features

A% = {fi [Vf; o (((f; # Fi) A (s¢; = sci =1)) —
(lvi = okl < lvj —okal)) A(vi > 0)}
where oy ; is the detected value for sensory channel

l. This method for covering is shown schematically
in figure 3.

Set of prototypic Values of sensory Mapping of sensor values

features per channel channels for object onto the features
Sensor 1 }—ay—yb—cyd—{ [ ——— . ———
Sensor2  |—28 € 4 o 2
Sensor 3 }—a,—b,—,—c{ + | © ————
Sensord 2B & 4 ] —

a b ° b
Sensor5 " A

Figure 3 Determining which features cover an object using
the Simple Prototype method

— The agent tries to distinguish topic ¢ from the other
objects in the context. The result of the discrimina-
tion is the set of distinctive feature sets:

D'= {D! | DL C A* AVo € C\{t}:
(3f; € Dn i =(f; € A%))}

Every D! is associated with a pair of < s,,u, >,
where s, is a success score and u, 1s a usage score.
The usage u,, for all D% € D! is incremented.

— If |D*| > 1, we prefer the set D for which:

(1) VD, € D' : |D| < |DL,|, or
(2) if this holds for more than one n, we prefer the
set for which holds: s, /u, > sm/um for all m # n.
The success score s, 1s incremented for the chosen
Dt

— If D' = 0, the features need to be adapted. A new
feature f =< sc,v > is generated, so that sc = s¢;
and v = o;; > 0 for an arbitrary sensory channel i.

Initially, every agent has exactly one feature for every
sensory channel, with a value that is in the middle of the
range for that sensory channel.

Let us look at the example given in table 1. Agent rl
has observed 5 objects 00,. . .,04. Object 00, for example,
has value 1 for sensory channels 0 and 1 and value 0 for
the remaining channels, and ol has values 200 and 1 for
sensory channel 4 and 5 respectively.

Feature sets rl:

00: {sc0-1,scl-1}

ol: {sc4-127,s¢5-127}

02: {sc2-127,5¢3-127}

03: {sc4-66,sc5-127}

04: {sc2-127,5¢3-127 s¢6-127 5c7-127}

In this example, sc0-1 is a prototypical feature, where
sc0 is the sensory channel and the feature has the value
1; use and success scores are not given. For each object,
the features are determined. These together constitute
the object’s feature set. Object 00 is covered by features
sc0-1 and sci-1, and object ol is covered by sc4-127 and
sc5-127. Now, suppose that the agent has chosen object



ol to be the topic. Since the feature set that covers this
object does not cover any other object, this feature set
is discriminative. Furthermore, feature sc4-127 does not
cover any other object and is therefore also discrimina-
tive. On the other hand, we see feature sc5-127 in 03,
and this is not a distinctive feature set. The game is suc-
cessful and since {sc{-127} is the smallest set, this set is
preferred.

Now suppose object 02 was the topic. In this case
both features that cover 02 can also be found in the
feature set that covers o4. The distinctive feature set
would be empty, and a new feature would be made. The
feature that would be made is either sc2-245 or sc3-57,
since these are the only non-zero sensor values for 02.

Since a discrimination game may yield several distinc-
tive feature sets, the number of feature sets may be larger
than necessary. This increases the search space consider-
ably, and therefore it is attractive to forget unsuccessful
feature sets. Starting from discrimination game 420, ev-
ery 30 games the agent starts to forget those feature sets
that sofar have not been successful (s = 0), and that
have been acquired more than 300 games before. This
way, the unsuccessful feature sets may have the oppor-
tunity to become successful.

sc |0 1 2 3 4 5 6 7
o0|1 10 0 O 00 0
0ol|0 0 O 0 20010 0
020 0 245 57 0 00 0
03|/0 0 0 0 57 30 0
040 0 245 57 0O 0 113 130

Table 1 An example of a context with 5 objects. The table
lists the values of 8 sensory channels for each object.

5. The Adaptive Subspace Method

The Adaptive Subspace method is based on the prin-
ciple that different sets of sensory inputs should only
be treated as different if this distinction is meaningful.
Which distinctions are meaningful is determined by the
application. In the case of discrimination games, a dis-
tinction should be made if and only if this increases the
ability of the agent to discriminate the topic from the
other objects, in one or more of the discrimination games
it has played. This method results from research on gen-
eralization, an important issue in machine learning. An
overview is beyond the scope of this paper, but for in-
teresting contributions on generalization, including other
subspace methods, see (Landelius, 1994; Murao and Ki-
tamura, 1997; McCallum, 1996). In this paper, orthog-
onal splits were used; an interesting variation would be
to allow non-orthogonal splits as well. Oja discusses sub-
space methods where, unlike here, subspaces have a lower
dimensionality than the original data (Oja, 1983).

After refinement: feature set has been
replaced by 2 more specific sets.
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Figure 4 Refining a feature set using the Adaptive Subspace
method.

When a discrimination game is played, the agent de-
termines for each object it has observed, by which feature
set it 1s covered. If the feature set of the topic covers no
other object, the agent can discriminate the topic from
the other objects, and the game is a success. When a
game fails, the feature set of the topic is investigated to
see whether it should be refined. Refining a feature set
amounts to splitting one of the ranges in half and replac-
ing the existing feature set with two new feature sets, one
for each half. This is illustrated in figure 4. We will now
describe the refinement procedure in greater detail, and
then give an example.

— For sensory channel j, feature F; is a tuple of two
integers < Fj;, F;, >, which represent the lower
and upper values of an interval. An object o; 1s
represented by its values for the n sensory chan-
nels o; j, where j € [0...n — 1]. F; covers o;; if
F;1 < 0;; < Fjy. This is written as covers(Fj, o; ;).
Every feature set contains a feature for each sensory
channel. A feature set F' = < Fy, Fy,...F,_1> covers
an object 0; if Vj € [0...n — 1] : covers(Fj,o; ;).

— Every point in the statespace is covered by exactly
one feature set. This property is not lost during a re-
finement. The method thus adapts a division of the
statespace into regions, hence the name. The con-
texts C' here contains all the objects in a discrimina-
tion game except the topic . The success ratio s is
the fraction of the objects in C' that are not covered
by the feature set F' that covers ¢, and can thus be
distinguished from the topic:

[{olo € C A —covers(F,o0)}|
o €]

— For each dimension, we compute the success increase
that a split in that dimension would yield. After a
split, I is replaced by 2 new feature sets F'A and F'B.
The success increase Asg for a split in dimension d
is calculated as follows:

F',I+F',u
m; =~ : J



j#d

<Fj Fu> if
FAJ:{ P j=d

<ijl,m]’> Zf

j#d

<Fji, Fiu> if

<'mj,Fj7u> Zf

covers(F A, t)
covers(F B, 1)

[{o|lo€CAcovers(FB,o)}| Zf
Asq = Il
d [{olo€CAcovers(FA, o)} Zf

[C]

This is the fraction of the objects in the context (not

including the topic) that can be discriminated from

the topic after, but not before a split in dimension d.
— The highest success increases of the past h games are

stored in a history window named sh. If the inequal-

ity

m(?x Asqg > mhax shy,
holds, the split in the corresponding dimension is ac-
tually performed. Sometimes,

mdax Asg=0As< 1.0

This means no split would have yielded an increase
of the success for this discrimination game, but dis-
crimination is nevertheless imperfect. This is the case
when all of the objects in the topic’s feature set have
all of their sensor values in the same halve of the
corresponding feature’s interval as the topic. In that
situation, a distance split is performed. During a dis-
tance split, the feature set covering the topic is split
in the dimension dim with the highest average dis-
tance between the sensor values of the objects cov-
ered by the feature set and the corresponding sensor
value of topic ¢:

: 3 [loi; — ]
d e - 4
m arg max ] Z

j€[0..n—1] |
Jel i€fl...|c]]

It is crucial that the refinement in the range of the sen-
sory channel is made only for the current feature set (=
subspace). This is what allows the method to handle the
higher-dimensional statespaces that result when several
sensory channels are used (8 sensory channels or dimen-
sions in these experiments).

We now give an example of discrimination games us-
ing the Adaptive Subspace method. Let us assume agent
rl has the following feature sets:

FS1 = [o,255] [0, 255] [0, 255] [0, 255] [0, 255] [0, 255] [0, 127] [0, 255]

FsS2 = [o,255] [0, 255] [0, 255] [0, 255] [0, 255] [0, 255] [128, 255] [0, 255]

Furthermore, suppose the agent chooses 04 (see table
1) to be the topic. Since all objects have a value below

128 for sensory channel 6, all objects are covered by FS1.
Thus, none of the 4 objects in the context can be discrim-
inated from the topic, yielding a success score of % =0.
Since discrimination fails, the agent considers splitting
the subspace of the topic, FS1, for each dimension. Di-
mensions 0 through 5 yield no improvement, but if FS1
is split in dimension 6, it would be replaced by the fol-
lowing two feature sets:

FS1A = [0,255] [0, 255] [0, 255] [0, 255] [0, 255] [0, 255] [0, 63] [0, 255]

0
-
ol

|

= [0, 255] [0, 255] [0, 255] [0, 255] [0, 255] [0, 255] [64, 127] [0, 255]

After this split, the topic would be covered by FS1B,
but all 4 other objects would be covered by FS1A. Thus,
the new success is % = 1. If the success increase (1 -
0 = 1.0) is greater than or equal to the maximal suc-
cess increase 1n the history window, the split is actually

performed.

6. Results

In the experiments described here, the Simple Prototype
method and the Adaptive Subspace method have been
applied to discrimination games with the same robot
data. The data set contains 321 contexts. For each con-
text the data contains the sensory channel values of the
objects. During an experiment, the sequence of contexts
encountered by a robot is repeatedly presented to an
agent in the original order. In this section we describe
the results of these experiments, and compare the two
methods. The robot data has been collected in runs of
about 45 minutes (a period limited by the robot’s bat-
tery). To collect the data, the robots have both been
active for 9 hours in total.

Figure 5 shows the success of the Simple Prototype
method. The initial success is already quite high. It in-
creases and then continuous to vary, mostly between 0.87
and 1. Figure 6 shows the success of the Adaptive Sub-
space method. The success steadily increases over time,
and a very high performance is attained; after 4,000
games the average success varies mostly between 0.96
and 1. Figure 7 shows the total number of feature sets
used as a function of the number of games played for both
methods. For the Simple Prototype method, the number
of feature sets is rather capricious, and does not seem
to converge during the 10,000 games that have been ob-
served. With the Adaptive Subspace method the number
of feature sets used does converge, and is substantially
smaller.

7. Conclusions

Two methods for discrimination between objects based
on sensor data have been compared. Both methods are
based on the principle that an agent adapts its cate-
gorization of the world to increase its ability to distin-
guish different objects from each other. The development
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Figure 5 Success using the Simple Prototype method.

Success averaged over 50 games

0.2 B

L L
0o 2000 8000 10000

4000 6000
Number of discrimination games

Figure 6 Success using the Adaptive Subspace method.

of discrimination success for both methods makes clear
that this objective is attained. Since 1t is essential that
the number of feature sets is as low as possible, the de-
velopment of this number over time has also been mea-
sured. The Simple Prototype method yielded a high suc-
cess rate, but the number of feature sets does not appear
to converge within 10,000 games. The Adaptive Subspace
method refines a feature set only after some considera-
tion. This yields an even higher success rate, and has the
advantage that the number of feature sets converges to
a relatively low number. The question we addressed in
this paper is how a robot should discriminate between
objects. From the results, we have seen that the Adap-
tive Subspace method is more attractive with respect to
both aims, i.e. a high success rate and a low number of
feature sets.
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