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Abstract. In this paper, we explore how human-like social learning can
be implemented in artificial life models. We focus on the social learning
of both skills and language and we illustrate our considerations and de-
sign issues based on our developments in the NEW TIES project. We
conclude that our assumptions regarding autonomy, embodiment and
situatedness impose many limitations and, consequently require difficult
design choices.

1 Introduction

In the past decade, many computational studies have investigated how languages
can evolve in populations of autonomous agents (see, e.g., [1, 2] for overviews).
Simultaneously, a lot of effort has been put in computational studies regarding
the social learning of behaviours, e.g., through imitation learning [3]. In this
paper, we investigate the possibility of merging these two endeavours such that
a population of agents evolve a language through which they can learn skills
from each other.

Social learning can be categorised in similar ways as individual learning,
but where conspecific demonstrators provide the exemplars [4]. Roughly three
types of learning can be distinguished: (i) learning from a single stimulus, (ii)
learning from the relationship between two stimuli and (iii) learning from action-
response. In social learning, the demonstrator may increase the probability that
an observer attends to or interacts with a stimulus. The demonstrator may
also act as an unconditioned or discriminative stimulus to provoke a matching
response from the observer, or act as a model for imitation or copying [4].

Non-human animals typically learn from stimuli representing some overt be-
haviour. Although humans, too, learn this way, with language they have evolved
the additional capability to explain to others why they act the way they do.
Hence, humans – through language – have the ability to learn from each other’s
decision processes. This form of social learning may be much more powerful than
learning from observing the behaviour of others.

In artificial life and robotics, many studies have focused on social learning at
a lower level (i.e. learning directly from stimuli) [3], but no studies are known
in which individuals learn from other individuals who tell them what they are
doing and why. In this paper, we explore how the human explicit form of social



learning can be studied in artificial life models. Although the model for social
learning we explore assumes that a language exists, we also explore requirements
necessary in case such a language has to emerge in the population. (Note that
language development, too, is a form of social learning.) The purpose of the
paper is to present and discuss problems and possible solutions arising when
developing such models.

We take it as given that agents communicate. Although it is interesting to
investigate how agents can learn to communicate as such (i.e., how they can
learn that communication is valuable), this is beyond the scope of this paper.

This paper aims to present our approach to design and implement social
learning of skills and language based on the NEW TIES project. While doing so,
we also touch upon more general issues of social learning. In the next section, we
introduce the NEW TIES project. Issues regarding social learning of skills are
discussed in Section 3, while Section 4 discusses issues regarding social learning
of language. Section 5 concludes the paper.

2 The NEW TIES project

The NEW TIES project3 aims to set up a simulation platform in which a cultural
society evolves through evolution, individual learning and social learning [5]. The
artificial society lives in a grid world containing various food sources, tokens,
places, building bricks and agents.

The project aims to model agents anthropomorphically, thus imposing strict
autonomy, (virtual) embodiment and situatedness. This aim limits our options
in designing agent interactions (e.g., agents cannot communicate unless they are
within each other’s vicinity), perception (e.g., they cannot see inside each other’s
heads) and learning mechanisms (e.g., no supervised learning).

Agents receive visual stimuli regarding the objects in their visual field and
output actions that move them around, pick up or put down objects, eat, com-
municate or interact otherwise with others (e.g., mating, or giving or taking
objects to/from other agents). Actions of agents are decided upon by their indi-
vidual controllers, which are implemented as decision Q-trees (DQTs) that can
adapt through evolutionary, individual or social learning.

A DQT is a decision tree that contains test nodes, bias nodes and action
nodes (Fig. 1). The test nodes test whether the agent has categorised a concept
from its current context, which includes visual stimuli, objects it may carry,
internal states, and interpretations of communication acts. The concepts are
formed from one or more categories that relate to some feature of an object,
such as shape, colour, direction, sex or action. If the test on a test node succeeds,
the agent traverses to the next node in the left branch; otherwise it traverses to
the next node in the right branch.

The bias node allows the agent to select from a multiple of branches based
on a specific bias towards some attitude, such as socialness, agressiveness or

3 NEW TIES stands for New Emerging World models Through Individual, Evolution-
ary and Social learning. http://www.new-ties.org.
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Fig. 1. A simplified example of a decision Q-tree (DQT). The diamonds represent test
nodes, the rectangles bias nodes and the ovals action nodes.

food-mindedness. These biases are determined genetically through evolution and
ontogenetically through individual learning. The attitudes are related to certain
actions. For instance, socialness is related to talking, agressiveness to hitting
and food-mindedness to eating. The biases, which are values between 0 and 1,
determine the probability with which a certain branch is visited in the tree.

The leaves of the DQT are action nodes, which include simple actions, such
as move, turn-left or turn-right, first order predicates such as eat(x) or hit(y),
and second order predicates such as give(a,o). The arguments can be any object,
but if, e.g., an agent attempts to eat a non-food item, this action will fail in the
world.

The agent traverses the DQT until an action node is reached. The agent
then performs the action, which will cost a certain amount of energy. When the
agent’s energy drops below zero, the agent dies, which may also happen if the
agent reaches a certain age.

Agents can mate with agents of the opposite sex, thus producing offspring.
The offspring is produced with a genome that is the result of cross-over be-
tween the genomes of its parents and some mutation like in standard genetic
algorithms. The genome, which does not change during lifetime (so evolution is
non-Lamarckian), carries information regarding both the initial structure of the
DQT and the genetic biases. The selection criterion for mating is not following
any standard genetic algorithm and does not use an explicit fitness function. The
agent can mate at any time (provided they are near to each other), so evolution
is asynchronous. The longer an agent lives, the more offspring it can produce,
thus the agent’s fitness is implicit.

Individual learning is achieved by reinforcement learning. Agents can insert
or delete nodes in the DQT and change the learnt biases. Each node is assigned a
Q-value, which alters based on rewards (primarily energy gain or loss). Inserting
new nodes can be random, but may also be based on information received from
other agents, thus amounting to social learning, which we will explain later.



Simulations in NEW TIES are challenge-driven, which means that world
scenarios are designed that pose a problem for the population’s survival. For
instance, the world may contain two types of food: edible and non-edible plants
and in order for the agents to survive they have to learn that eating the non-
edible poisonous plants is not good.

In the remainder of this paper, we will ignore evolutionary and individual
learning. Instead, we will focus our attention on social learning of skills and
language.

3 Social learning of skills

We consider social learning (SL) as an adaptation method that operates at the
same level as evolutionary learning (EL) and individual learning (IL), i.e. it
operates on the same search space [5]. Agents use SL to exchange knowledge
pieces (behaviour rules), thus learning from each other. Other aspects of SL can
be considered, such as observing the behaviour of other individuals and imitating
that (e.g., only eating what other conspecifics eat) or exchanging information
about the state of the environment and using that to make your own decisions
(e.g., telling another individual where to find food). However, for the purpose of
this paper, we will restrict our discussion to the SL of behavioural rules that are
transmitted explicitly through communication.

As mentioned, the agents’ controllers are decision trees (DQT), inherited
(for the initial population: generated) at birth. Through EL, only the inherited
controller is passed on (i.e. non-Lamarckian); agents do not inherit knowledge
that their parents may have gained through experience (e.g., modifications to
the controller due to IL); they can only recombine the controllers that their
parents had at birth (with some mutation added). This means that, without
some additional method of spreading the knowledge through the population of
agents, everything an agent learns through experience (IL) will be lost when it
dies.

This is where social learning comes into play: anything an agent learns during
its lifetime can be taught to other agents, so this knowledge does not necessarily
die with the agent that originally discovered it. With agents exchanging knowl-
edge pieces through SL, the population as a whole becomes a knowledge reservoir
– not only for EL, but also for IL. Social learning does not, however, distinguish
between learnt and inherited knowledge, so it can function even without indi-
vidual learning.

In combination with EL we expect faster convergence with EL maintaining
diversity (by clinging to only genetic modifications). Our hope and expectation
is that, IL and SL combined will provide mutual leverage, enabling the spread
of individually acquired knowledge and turning the population into a repository
for acquired as well as innate knowledge.

With SL in place, the population as a whole will have characteristics similar
to that of an evolutionary system, even without EL - think, e.g., of ‘memes’ [6]
or cultural evolution [7]. Moreover, although SL does not use an explicit fitness



function as in standard genetic algorithms, population selection works similar
to Darwinian selection: ill-adapted individuals tend to die, hence cannot further
distribute their knowledge, while well-adapted individuals tend to survive and
have more opportunities to distribute their knowledge. In addition, mechanisms
are imaginable that can improve adaptation, e.g., by letting individuals choose
to learn from fit conspecifics rather than from unfit ones.

When designing algorithms on social learning, some considerations need to be
taken into account. The most crucial considerations concern

1. the type of information that agents pass on,
2. the decision mechanism of agents to decide who to learn from, and
3. the mechanism with which new knowledge is incorporated.

In our model, the type of information exchanged should be either the whole
controller (DQT) or parts thereof. Exchanging the whole DQT would allow the
receiver to incorporate a lot of knowledge at once, which may be good or bad,
but from a natural point of view this is highly unrealistic; we cannot exchange
all the contents of our brains, even if we wish to, simply because the bandwidth
of our communication channel (the evolved language) is too narrow.

So agents will exchange parts of the DQT and therefore an agent has to decide
which part to exchange. If the agent has some notion of the quality of parts of
its DQT (e.g., the Q-values of nodes), it can decide to use a particularly useful
(or often used) sub-tree. Since communicating sub-trees successfully requires a
complex syntax and since we intend to use SL together with an evolved language
whose syntax is not likely to be sufficient, we opt to have agents exchange (parts
of) a single path. In particular, agents will exchange knowledge concerning the
path they traversed leading to the action node at that time step. In addition,
since the language will only be able to express concepts that imply a test node,
the transfers would be of the form [hungry, food, eat] or [no food, move].

When an agent receives a fragment of knowledge, it decides if it will discard
or accept it, based on

1. its natural proclivity to learn socially (implemented as the socialness bias),
2. the relative fitness of the sender (e.g., as a function of energy, age or perceived

DQT utility), and
3. (at a later stage) the level of trust or social ties of the other agent.

The idea is that agents who are evolutionary more biased to being social are
more likely to learn from other agents. This would allow us – at a later stage –
to investigate some interesting interactions between EL and SL. If SL is good
for the population, it is expected that the socialness gene yields a high bias.

Agents can determine the fitness (e.g., through age and energy level – both
observable as discrete values such as old/young or high/low) of the source of a
particular piece of knowledge. The agent can use that to estimate the usefulness
of that piece. This would be even better if a path were passed to an agent along
with some measure of its utility (e.g., Q-value).



Agents can keep track of their social network, allowing them to determine
which agents they interact with on a frequent basis. It would make sense if agents
are more inclined to learn from other agents in their social group, thus allowing
forms of group selection to emerge.

The considerations regarding the incorporation of knowledge focus on inte-
grating a received DQT path into an agent’s own DQT. We considered three
options:

1. De- and recomposition of decision trees using Fourier spectrum cf. [8].

2. Analysing/synthesising the partitions of the state-action space, or

3. Listing all possible paths for the DQTs and then comparing/combining these.

The latter option seems most promising as it is most amenable to DQTs
– it is unclear how the first two options should deal with bias nodes. When
incorporating a received DQT path, agents select the most similar path in their
own DQT and insert the received path as an alternative. This is achieved by
inserting a bias node that branches into the original and the newly inserted
paths.

The current state of the project is that the above mechanisms have been
implemented and preliminary experiments have been carried out. In these ex-
periments, the knowledge is exchanged through explicit meaning transfer, i.e.
by sending the contents of test nodes directly. In the near future we intend to
have the knowledge exchanged through an intermediate language that the agents
evolve by engaging in language games, as will be discussed in the next section.

The preliminary results seem to indicate that SL combined with EL outper-
forms EL only. In addition, we carried out simulations where a small proportion
of the population was pre-designed with controllers that could solve the problem
at hand (teachers) and the rest was initialised with a random controller (learn-
ers). The results revealed that the pre-designed knowledge spread through the
entire population rapidly.

4 Social learning of language

Social learning of language is based on Steels’ language game model [9] that
allows a population of to develop (or evolve) a language from scratch. The lan-
guage game model was adapted to fit the quasi-realistic environment of our
project [10]. In our model, whose details are beyond the scope of this paper,
agents can at each moment initiate a language game by producing an expres-
sion, which is received by one or more agents (a.k.a. hearers) within a certain
range.

The speaker (i.e. the initiator) chooses a set of concepts to communicate
and tries to encode an expression conveying this set using its acquired private
lexicon that contains word-meaning associations. In turn, the hearers try to
decode this broadcasted message into a set of concepts, which may or may not



be the same.4 When an agent’s private lexicon is insufficient for encoding or
decoding an expression, the agent can, respectively, invent or adopt a new word-
meaning association; thus expanding its lexicon. (Note that at the agent’s birth,
its lexicon is empty.) Using a number of heuristics described in [10], agents adapt
the weights of word-meaning associations, thus aligning their lexicons such that
a shared lexicon can emerge.

This alignment is primarily based on cross-situational learning [12–14] in
which associations of words with meanings are reinforced when both occur in the
present context. The success of learning, thus depends on the size of the context
[15] and on the consistency with which agents name a particular meaning [16]. In
our model, the context size may be reduced using pointing gestures that identify
the object – not the exact meaning – about which the speaker communicates.
In addition, associations may be reinforced or weakened using feedback signals
based on agents’ self-evaluations of success. However, in [10] it was shown that
this did not contribute much to the success of emergence.

Since we assume full autonomy, (virtual) embodiment and situatedness of
the agents, the problems they face are similar to those faced by real robots
(see, e.g., [2, 14] for discussions). In our project, concepts relate to properties
of objects, such as shape, colour, direction, distance, weight, sex, energy level
or actions (the latter three only apply to agents). Developing a shared lexicon
regarding observer invariant properties, such as shape and colour, is relatively
straightforward. However, words about observer dependent properties, such as
direction and distance, are much harder to align, because what is left of me, need
not be left of you. This depends on the relative locations and headings of the
agents participating in the language game, who cannot be at the same location
at the same time.

This fact, which is typically ignored in many simulations on language evolu-
tion (e.g., [17, 13, 16]), also has the consequence that agents do not tend to see
the same objects. Not taking into account what the other can or cannot see, may
cause the speaker to communicate something that the hearer does not see. This
in itself may not be harmful if the hearer knows the meaning of the word (it may
even be beneficial when the hearer learns, e.g., the location of a food source),
but when it still needs to learn the meaning of the word (be it by adopting the
association or aligning its weight), this poses problems. This is especially the
case, because cross-situational learning assumes that words are about meanings
that are present in the current context. Combined, these problems regarding
spatial relations and different visual stimuli, had the effect that in the simula-
tions reported in [10] yielded a communicative accuracy hardly exceeding 60%.
(Communicative accuracy is the rate with which hearers can successfully decode
the words expressed by speakers – i.e., they retrieve the same concepts intended
by speakers – averaged over 50 time steps.)

Recent tests with only 2 agents in which they only communicated about
concepts concerning observer independent properties yielded communicative ac-

4 For now we assume these concepts are predefined, though these could be constructed
ontogenetically using the discrimination game framework [11].



curacy above 90%. Simulations that also included observer dependent properties
yielded a success of around 50%. Hence, it seems that mismatches regarding spa-
tial relations have a larger effect on the success of language development than
mismatches in objects agents see (i.e. mismatches in context). To overcome this
problem, we are currently implementing methods in which agents can take per-
spective, which have proven to be successful in robotic experiments [18].

It is necessary to take perspective because the required autonomy and em-
bodied does not allow agents to have access to each other’s stimuli, nor do
they have a common absolute frame of reference. Taking perspective can be im-
plemented using straightforward triangulation and from two sides: the speaker
taking perspective of the hearer or the hearer taking perspective of the speaker.
(Note that this requires that agents can see each other, which is a rare event
with their current controllers not dedicated to communication, but to random
movement and foraging.) In addition, an agent can take perspective of the other
for two reasons: 1) to transform spatial relations and 2) to determine which ob-
jects the other agent can see. Since the objective is to communicate about parts
of an agent’s own decision tree (see previous section), it is undesirable to have
the speaker change the concepts regarding spatial relations as these make up its
controller. It is better to have – as a convention – the hearer change perspective,
so interpreted concepts can directly be applied to change its own DQT. It may,
however, be desirable to have the speaker take perspective in order to know what
the hearer can see, especially when it is aware that the hearer may not know the
word. This awareness can be the result of a feedback signal sent by the hearer,
but may also be inferred, e.g., in case the hearer is a young agent or was never
seen before.

In the simulations of [10], agents only communicated about properties of
visible objects, whereas for SL the agents require to communicate about paths
through their DQTs. Such paths do include such properties, but additionally
contain internal representations and actions. The latter are important to com-
municate as these form the consequence of the rules to be learnt. The speaker
expresses its own action, which is visible to other agents.

Since paths in the DQTs may become relatively large (e.g., larger than 10
nodes), expressing a complete path would only be feasible once both agents
have acquired (nearly) all necessary word-meaning pairs. Otherwise, learning
the proper meaning becomes too hard as the uncertainty becomes too high.
Suppose you hear the speaker communicating [see-agent, has-food, am-hungry,
take, food, agent] (meaning something like if see an agent who has food and I am

hungry, then I take this food from the agent), but you only know three words.
Then you have to learn three novel words at once and all could potentially mean
many different things. Using a pointing gesture to reduce the learning context
may not be a solution, as the novel words may relate to different objects.

Two solutions are possible here: First, it is possible to allow agents to en-
gage in rich multimodal interactions such that hearers can, for instance, request
clarifications of words, which are then (if necessary one by one) provided by the
speaker accompanied by pointing gestures. This allows agents to fill in gaps in



their knowledge, but requires rather sophisticated interaction protocols, which
may include aligning their visual fields. The latter may also be achieved by let-
ting agents construct a cognitive map of their surroundings. Second, and more
straightforward, is letting agents communicate short (e.g., one word) utterances
to young or unfamiliar agents and longer utterances to older or more famil-
iar agents. We decided to start testing with the straightforward method, and
if this does not yield satisfactory results, we will move on to incorporate more
sophisticated dialogues.

Social learning of skills, as described in the previous section, and currently
implemented with explicit meaning transfer poses an upper limit to what can
be achieved using an acquired language as described in this section. A learnt
language leaves room for misunderstanding and ambiguity, especially during its
acquisition, thus limiting the accuracy of knowledge transfer. Social learning of
skills will have to deal with this inherent inaccuracy. For instance, agents could
assign some level of confidence to the interpretation of received messages when
they consider incorporating the knowledge they contain.

5 Conclusions

In this paper we explore how we can design an artificial life model of social learn-
ing of both skills and language. Regarding skills, we focus – unlike many previous
studies [3] – on social learning where the stimuli come from verbal transmission
of rules that make up agents’ controllers. This, thus, implements a human-like
form of social learning. Most methods presented have been implemented and are
currently being tested in preliminary experiments.

The strict application of autonomy of the agents, their virtual embodiment
and situatedness impose a number of restrictions to the model. We restrict agents
to use language-like communication for social learning of skills, which reduces the
bandwidth for knowledge transfer. In addition, inaccuracies in language learning
reduce the efficiency of knowledge transfer. These inaccuracies are exacerbated
by the fact that agents have different frames of reference. To overcome these
differences, agents need to align perspectives.

We are currently working on integrating the social learning of skills and lan-
guage, such that the learnt language will be used as the medium for knowledge
transfer. Once this is achieved, it is possible to start investigating how the popu-
lation can learn to communicate and ultimately learn to learn. The NEW TIES
platform does allow for such experiments and is publicly available.5
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