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Preface

Bouma and Schuurman (1998) state that there have been three language-tech-
nological revolutions: 1) the invention of writing, 2) the invention of printing,
and 3) the invention of the computer. Those languages that have not parti-
cipated in the first two revolutions have eventually disappeared or have been
marginalised. It can be expected that the same will happen to those languages
that do not participate in the third. Being dependent on the availability of
sufficient resources, research in natural-language processing has mostly been
focused on the English language. If this situation sustained, languages with
smaller communities of speakers, such as Dutch, would risk meeting the above
expectation.

Fortunately, recent years have seen the development of resources enabling
the application of language-technology research to Dutch. A notable example
of these resources is the Spoken Dutch Corpus, which provides a large corpus
of annotated Dutch texts. This thesis describes the development of a Dutch
shallow parser based on the Spoken Dutch Corpus and memory-based learning
techniques originating from the ILK research group at Tilburg University and
the CNTS research group at the University of Antwerp. Hopefully, the research
described in this thesis will be a valuable contribution to the field of language
technology for Dutch.

Although the cover of this thesis mentions only my name, many people have,
in one way or another, contributed to an environment that enabled me to write
this thesis. In this preface I would like to take the opportunity to thank them.
First of all, Antal van den Bosch has been my coach and guide into the world of
computational linguistics. His advice has been invaluable throughout the entire
course of my thesis research. Also, his enthusiasm for this research and for his
field of study in general have been very motivating. I am looking forward to our
cooperation in the years to come.

Jaap van den Herik and Eric Postma have been critical readers of this thesis
in its final stages. They provided useful comments on both the global structure
and the smaller subtleties of scientific writing. Moreover, Jaap van den Herik
has especially supported my ambitions in computational linguistics by advising
to do my graduate research in Tilburg. Also, both of them have been inspiring
teachers during my study Knowledge Engineering.

Finally, I would like to thank my family, in particular my parents, for their
support, and my friends for many hours outside university, making the past four
years a happy period in my life.

Sander Canisius
Maastricht, January 2004
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Chapter 1

Introduction

This thesis deals with the topic of parsing of spoken Dutch. Traditional pars-
ing methods give rise to a knowledge-acquisition bottleneck. For the English
language, data-driven techniques have been shown to be able to overcome this
bottleneck. In particular, the memory-based shallow parsing method (Buch-
holz, Veenstra, and Daelemans, 1999) has been quite successful. The question
is whether these techniques are also successfully applicable to languages other
than English. Hence, this thesis explores to what extent the techniques can be
applied to the Dutch language.

This chapter starts with presenting some background on the topic, in section
1.1. In section 1.2, the research objective is formulated. Next, section 1.3
gives a review of previous work, and as a consequence, the research question is
formulated in section 1.4. Section 1.5, finally, presents the outline of the thesis.

1.1 Background

Traditionally, parsing of natural language has been grammar-based. Grammars
are large formal descriptions of a language, describing how sentences are com-
posed of simpler language units such as clauses and words. The form of such
a description is specified by the specific grammar formalism used. Examples
of such formalisms are dependency syntax, X-bar theory, and constraint-based
grammars. Once a grammar has been constructed, a parsing algorithm, which
is often tailored to the formalism used, can parse a sentence according to the
rules defined in the grammar.

The necessity to hand-craft a grammar for each combination of language
and formalism is a serious shortcoming of the grammar-based approach. To
be successful, a grammar should be able to accept all possible sentences. This
means that the grammar should not only describe the most common language
constructs, but also those less frequently used and breaking the rules defined to
describe the most common constructs. Moreover, grammar construction is com-
plicated even more by the constantly evolving nature of language. These factors
give rise to a knowledge-acquisition bottleneck, making grammar construction
a difficult and slow process. In some cases this bottleneck can be overcome by
constraining the language to be parsed, but when a comprehensive grammar is
required, its development may take many years.
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Alternative approaches claiming to overcome the knowledge-acquisition bot-
tleneck use a variety of techniques to construct parsers that can learn the correct
parse of a sentence from examples. Such approaches are collectively referred to
as data-driven parsing methods. One such approach is based on memory-based
learning. Memory-based parsers operate by drawing analogies between the sen-
tence to be parsed and stored example parses, exploiting the fact that similar
sentences often have similar parses. For such an approach to be effective, a large
amount of training material should be available. To meet this need for training
material, large corpora of typical language use are gathered and manually or
semi-automatically parsed. The collections of syntactically annotated sentences
that result from such a process are called treebanks.

The availability of treebanks of sufficient size is a necessary condition for
research on data-driven parsing of a language to be conducted. English language
treebanks, such as the Penn Treebank and the Susanne Corpus, have been
available for a long time and consequently research on data-driven parsing of
English has progressed steadily. The same cannot be said for languages with
smaller communities of speakers. For those languages research is hindered by
the lack of sufficient amounts of training material. For a long time this used to
be the case for Dutch. In the absence of a large syntactically annotated corpus
of Dutch language use, little research on data-driven parsing was performed.
The Spoken Dutch Corpus (Dutch: “Corpus Gesproken Nederlands”, or CGN)
aims to overcome this deficiency by resolving the need for a large-scale treebank
of commonly spoken Dutch. Another initiative is the recent Alpino Treebank
project (Van der Beek et al., 2002). In this thesis, the CGN corpus is used.

The CGN in its final form will comprise approximately ten million words
of contemporary spoken Dutch. One of the primary aims of the CGN project
has been to provide resources for Dutch speech and language technology re-
search. Therefore, large parts of the corpus have been enriched with additional
information suited for computer processing: one million words will be syntactic-
ally annotated, thereby forming a useful source of training data for data-driven
parsing techniques. At the time of writing the final corpus has yet to be com-
pleted, but the large part that has been finished already enables research to be
performed.

1.2 Research objective

As indicated in the previous section, data-driven learning methods, for example
memory-based learning, provide an alternative to grammar-based parser devel-
opment that is not a priori affected by the knowledge-acquisition bottleneck.
However, the performance of memory-based parsing is highly dependent on the
availability of sufficient training data. For the Dutch language, the relatively
large collection of syntactically annotated Dutch sentences provided by the CGN
is intended to fulfil this condition. Therefore, the development of Dutch data-
driven parsers has become possible.

The objective of this research is to construct and optimise a parser for Dutch
using memory-based learning techniques. As much as possible, the memory-
based approach that has been proven to be successful for English (Daelemans,
Buchholz, and Veenstra, 1999) will be adopted. During both parser construc-
tion and parser optimisation the syntactically annotated part of the CGN will
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be used. For constructing the parser, a selection of training sentences will be
drawn from the corpus; for optimising it, a test set will be formed out of the re-
maining sentences. Achieving the research objective would have two important
consequences. First, the development of natural-language processing applica-
tions targetting Dutch would no longer be impeded by the knowledge-acquisition
bottleneck. Secondly, the claim to the language-independence of the memory-
based approach to parsing would be supported by having a language other than
English parsed by a memory-based parser.

In this research, the parsing task consists of two activities. First, the sen-
tence is divided into its grammatical parts. The boundaries of the parts are
identified and each part is labelled with its grammatical type. Next, the syn-
tactic functions of the parts are determined. The syntactic function of a part
is its relation to another part within the grammatical structure of the sentence.
Importantly, rather than performing a full parse, the parsing task is restricted
to what is often referred to as shallow parsing or chunking. During shallow
parsing, only non-recursive constituents, or chunks are considered. The identi-
fication of grammatical relations also has a restricted definition. Only relations
to verbal chunks will be considered. These include relation types such as subject
and object, which are the most informative grammatical relations in a sentence.

The second part of the research objective requires that the parser be optim-
ised. To perform the optimisation, some notion of optimality needs to be defined.
This notion should be quantifiable in such a way that one parser configuration
can be said to perform better than another. In this research, performance will
be measured along two dimensions. The first dimension is the accuracy, that is,
how well the parser is capable of correctly parsing previously unseen sentences.
The other is the speed at which the parser operates. As will be demonstrated,
it is not possible that both dimensions attain their highest levels at the same
time. Increasing performance in one dimension will most likely harm it in the
other. In such a situation, a trade-off between the two needs to be established.

1.3 Previous work

As mentioned in the introduction to this thesis, memory-based shallow parsing
has already been successful when trained on English language corpora. Spe-
cifically, the research described in this section has generally been performed in
combination with the Wall Street Journal corpus, which is a treebank of form-
ally written English. In principle, however, memory-based shallow parsing is
language-independent and therefore it should be possible to apply it to any
language. For this reason, the research objective aims at adopting the memory-
based shallow parsing method for constructing the Dutch memory-based parser.
The groundwork for the memory-based shallow parsing approach is laid
by Daelemans (1996) who claims that all linguistic tasks can be reformulated
as classification problems and that, as a result of this, it is possible to train
memory-based learners for these tasks. To support his claim, he first shows that
tasks in natural-language processing are context-sensitive mappings between
representations and then argues that every linguistic problem can be described
by one of two kinds of mappings: disambiguation and segmentation.
Disambiguation mappings assign one of a predefined set of categories to
a context. This type of mappings includes part of speech tagging, where the
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correct word class, for example noun, verb, or adjective, for a word is determined
given its form and its place in the sentence. Segmentation mappings decide
whether, given a target and its context, a boundary is associated with this
target and, if so, which type of boundary. A typical segmentation task is the
detection of chunk boundaries.

The cascaded Memory-Based Shallow Parser (Buchholz et al., 1999) imple-
ments the ideas described above. The parsing task is split up into a number
of subtasks, each of which can be reformulated as either a disambiguation or a
segmentation task. Starting with only the words forming a sentence, the avail-
able information is enriched by the results of each subtask. This way, the inputs
to subtasks can be partly composed of information that is not directly access-
ible in the original data, but generated by other subtasks. For this reason,
the memory-based classification modules trained to perform the subtasks are
applied in sequence, so that each module precedes those dependent on its res-
ults. The Memory-Based Shallow Parser has modules for part of speech tagging,
chunking, PNP! finding and grammatical-relation finding, in that order. Each
of these tasks is individually introduced in the remainder of this section.

Part of speech tagging

Part of speech tagging is the process of associating each word in a sentence with
its correct word class. This word class, also called the part of speech of the
word, expresses how this word is used in the sentence. One word can be used
in different ways and therefore the part of speech for a word is not always the
same. A part of speech tagger should be able to assign the correct part of speech
to a word, basing its decision on the word itself and the words surrounding it
in the sentence.

Daelemans et al. (1996) introduce a memory-based approach to part of
speech tagging. They show that a memory-based learner can be trained to per-
form part of speech tagging with good results. In addition, a tagger-generator
is presented that automatically generates memory-based part of speech taggers,
given tagged corpora as example data. In this thesis, part of speech tagging
is not performed by a separate module. Rather, part of speech tagging and
chunking are both performed by a single module, which is based on the tech-
niques described by Daelemans et al. (1996).

Chunking

Chunking divides a sentence into non-recursive, non-overlapping constituents,
referred to as chunks. Abney (1991) introduced the concept of a chunk, suggest-
ing that dividing a sentence into chunks is a useful intermediate step towards
full parsing. Nevertheless, chunking is a valuable process in its own right when
the entire grammatical structure produced by a full parse is not required. Stud-
ies by Grishman (1995) and Appelt et al. (1993), for instance, indicate that the
information obtained by a shallow parse is sufficient for information extraction
to be performed. In terms of the two kinds of mappings proposed by Daelemans
chunking is a segmentation task.

LA PNP chunk denotes a prepositional phrase that has a nominal complement; it is a
higher-level kind of chunk than the ones identified in the chunking step.
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The chunking module of the Memory-Based Shallow Parser (Veenstra, 1999)
uses a classification scheme by Ramshaw and Marcus (1995): each word is
assigned a chunk tag denoting whether the word is inside a chunk (I), inside
a chunk, but not in the same chunk as the word directly preceding it (B), or
outside any chunk (O). As there is more than one chunk type to distinguish,
an additional chunk type symbol is added to the chunk tag. A chunk tag
I-NP, for example, means the word is inside a noun phrase (NP). Buchholz
(2002) additionally extends the chunk tag by attaching the part of speech tag,
effectively eliminating the need for a separate part of speech tagging step.

PNP finding

Due to the fact that only non-recursive constituents are identified in the chunking
step, prepositional phrases (PP) will not be recognised as such. Rather, PPs
are divided into a PP chunk containing only a single preposition, and one or
more NP chunks. In order to recover the original prepositional phrase, the PNP
finding module of the parser joins PP chunks and the NP chunks related to it
in PNP chunks. The chunks “[PP met] [NP de commissie] en [NP het consor-
tium]”, for example, would be joined in “{PNP [PP met] [NP de commissie] en
[NP het consortium] }”. PNP finding is implemented in a manner very similar
to grammatical-relation finding.

Grammatical-relation finding

Finding grammatical relations is the final step in the parsing process. During
this step grammatical relations between verbal chunks and chunks of other types
are identified. Relations to verbs include the most important relations to capture
the meaning of a sentence, such as the subject and object relations. Buchholz
(2002) describes the design of a memory-based grammatical-relation finder. The
technique described assumes that grammatical relations hold between the head
words of chunks. The head word of a chunk is the most prominent word in that
chunk.

Grammatical-relation finding is formulated as a disambiguation task: given
the head word of a verbal chunk and the head word of another chunk it is
predicted whether a grammatical relation holds between the two words and, if
so, which type it has. Before relation finding can take place, the parts of speech
and the chunks for the words in the sentence should have been determined. This
information is used in the description of the instances fed to the relation finder.
Apart from part of speech and chunk type, other features that were found to be
good predictors for grammatical relations include spatial features, such as the
number of intervening verb chunks and commas.

1.4 Research question

In the previous sections, it has been recognised that there is a need for techniques
that can accelerate the development of natural-language processing applications
for Dutch. Memory-based shallow parsing has been put forward as a technique
satisfying this need. Although, for practical reasons, the emphasis of memory-
based shallow parsing research has traditionally been on English, the approach
is essentially language-independent and consequently does not exclude Dutch.
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Moreover, as the CGN provides a large body of contemporary spoken Dutch lan-
guage data, the enabling resources for the development of Dutch memory-based
shallow parsers are available. Taking all of the above into consideration, the
research objective has been formulated to be the development and optimisation
of a Dutch memory-based shallow parser.

The approach to memory-based parsing adopted for this research has been
proven to be successful on a corpus of formally written English language. Ap-
plying the same approach to a Dutch corpus can thus be considered a test of
its language-independence. CGN, being a corpus of spoken language, however,
adds another dimension in which the two corpora differ: the nature of the lan-
guage use. Spoken language data, apart from being less formal, typically contain
more noise than written language data as a result of various types of mistakes
made by the speakers. For the above reasons, the CGN data form an interesting
test case for the memory-based shallow parsing approach.

Given both the research objective and the remarks made above, the following
research question is formulated:

To what extent can the memory-based shallow parsing techniques
be applied to a corpus that differs from the original training corpus
in the sense that it is Dutch rather than English and that it contains
spoken rather than written language?

The remainder of this thesis will be centred around answering this question.
The process of constructing, optimising and evaluating the Dutch memory-based
parser will be described in the chapters to come. A detailed outline of the thesis
is given in the next section.

1.5 Thesis outline

The outline of the remainder of this thesis is as follows. Chapter 2 introduces the
learning tasks and the training data. In the first part of the chapter, the differ-
ent stages of the memory-based shallow parser are represented as memory-based
classification tasks. The survey collects work described in several different pub-
lications that makes up the actual memory-based shallow parsing framework.
The second part of the chapter presents the CGN training data. First a gen-
eral overview of the annotation philosophy of the corpus is given. Next, the
transformation of the corpus data to a format suited for the learning tasks, is
described.

In chapter 3, the core of the research is described. The central issue in this
chapter is formed by the experiments conducted to optimise the Dutch memory-
based shallow parser. The results of these experiments will shed light on the
central research question of this thesis. In the first part of the chapter the exper-
imental setup is addressed; an overview of the various algorithmic parameters
that can be varied, is given and the general optimisation method is described.
The second part of the chapter presents the results of the experiments.

Evaluation of the experimental results in the light of the research question
takes place in chapter 4. It is discussed whether the differences in language
and nature of the CGN cause notable difficulties for the memory-based shallow
parsing approach. Chapter 5 concludes this thesis by summarising the results
and proposing an answer to the research question. In addition, recommendations
for future research are presented.



Chapter 2

Learning tasks and data

In chapter 1, the research and its objective have been introduced. Two im-
portant elements of the research are the learning tasks and the training data.
Both have been mentioned shortly in the previous chapter. This chapter gives
a more detailed description of their role in the research and lays the theoretical
groundwork for the experiments. First, the learning tasks to be performed by
the modules that make up the memory-based parser, are presented. Next, the
CGN and the conversion of its contents to a format suited for a memory-based
learner, are dealt with.

2.1 Learning tasks

As explained in section 1.3, the parsing process is split up into 1) a combined part
of speech tagging/chunking step, 2) PNP finding, and 3) grammatical-relation
finding. Analogously to this subdivision, the actual memory-based parser has
been designed as a modular system, consisting of separate memory-based classi-
fiers for each distinct subtask. These classifier modules can be approached from
two different angles. On the one hand, they can be dealt with as independent
units that can be described, trained and optimised individually. Indeed, all the
parsing steps described in this section have individually been the central topic of
one or more publications. These publications proposed a translation of the tasks
to the memory-based learning domain and gave an overview of its performance
when tested in isolation.

On the other hand, the modules are interdependent components of a global
parsing framework, as is illustrated in figure 2.1. The grammatical-relation
finder, for instance, uses results of both the chunker and the PNP finder mod-
ules. Without these two modules, the grammatical-relation finder can only be
applied in a test environment where the necessary information is extracted from
a corpus. This interdependency, then, has two important consequences. First,
actual parsing of a sentence requires that all modules have been implemented
and joined together in the parsing framework. Secondly, the accuracy of the
output of a module not only depends on its own classification performance, but
also on the accuracy of its input data, which are partly generated by other
modules.
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‘ Grammatical relations ‘

4" GR finder '

‘ PNP chunks ‘
A
PNP finder
‘ PoS tags + chunks }
A

' Tagger/Chunker '

Figure 2.1: Architecture of the memory-based shallow parsing framework. The
rounded rectangles represent the three parser modules; the normal rectangles
and the arrows depict the information flow between the modules.

These two faces of the classifier modules will return in chapter 3, which
describes the experimental optimisation and evaluation of the memory-based
parser. In this section, however, the subtasks performed by the modules are
only considered in isolation. In order to train a memory-based learner for any
of the three parsing subtasks, the subtasks first need to be formulated in a form
suited for the memory-based classification algorithm. The three algorithms used
in this research are IB1, IGTree and TRIBL as provided by the TiMBL software
(Daelemans et al., 2002). These algorithms expect their instance base to consist
of instances described by a fixed number of attribute-value pairs and a category
label indicating the correct classification for the instance. The exact details
of the learning tasks and instance formats for tagging/chunking, PNP finding,
and grammatical-relation finding respectively, are described in the following
subsections.

2.1.1 Tagging/chunking

The first module in the parsing cascade combines the part of speech tagging
and chunking steps into a single learning task. Early implementations of the
memory-based chunker, such as those described by Veenstra (1999) and Veenstra
and Van den Bosch (2000), used feature vectors that include features for the
parts of speech of words. These parts of speech, then, had to be predicted by
a separate part of speech tagger that was run before the chunking step. As an
alternative to this two-module approach, Buchholz (2002) introduced a module
that predicted parts of speech and chunks at the same time. This combined
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tagging/chunking approach is adopted for the memory-based shallow parser in
this thesis.

Chunking consists of identifying the syntactic parts of a sentence. Find-
ing syntactic parts can be performed with differing degrees of detail. Many
grammar-based parsers, for example, reconstruct the entire phrase structure
tree as a result of parsing a sentence. In such a tree, the root node represents
the complete sentence and its children denote the immediate constituents en-
tering into the sentence construction. These immediate constituents may be
recursively further reducible to even smaller grammatical units until each such
a unit corresponds to a single word.

In contrast, chunking ignores most of the higher-level constituents of a sen-
tence and only identifies the non-recursive, non-overlapping constructions. Ab-
ney (1991), who proposed this shallow approach to parsing, refers to these spe-
cific constructions as chunks. Central to the notion of a chunk is its head, which
can informally be defined as the most prominent word of its chunk. The rel-
evance of the head is that it establishes the phrasal category of a chunk. For
example, a chunk of type NP is generally headed by a substantive; likewise, the
type of a chunk headed by any form of a verb is one of the verbal categories.

As an example, the sentence “ze waren gewoon vergeten hoe laat de bus
kwam.” is chunked as follows:

[NP ze] [SMAIN waren| [AP gewoon] [PPART vergeten] [ADVP hoe
laat] [NP de bus] [SSUB kwam] .

In order to translate the chunking task to the domain of memory-based classi-
fication, two issues need to be decided upon. First, it should be specified how
to map sentences to machine-learning instances. Then the reverse of this map-
ping, that is, how to extract the chunk properties from the classification results,
has to be established. Both decisions are based on the approach to chunking
as an instance of a class of segmentation tasks, referred to in section 1.3. The
essence of such tasks is to decide for each word in a sentence, whether that word
corresponds to some kind of boundary and, if so, to which kind of boundary.

The first mapping, sentences to machine-learning instances, requires that
the variable-length sentences are mapped to fixed-size instances. Windowing is
the generally accepted technique to meet this requirement. A window consisting
of a fixed number of slots is placed on the sentence; each slot captures a single
word. The word in the centre of the window is often taken to be the focus
word, that is, the word to be classified. The surrounding words, then, encode
information about the local context of the focus word. Starting with the first
word, the window is slid over every word in the sentence, each time making an
instance out of the words shown in the slots. Thereby, one sentence causes as
much instances to be generated as it contains words. The size of the instances,
however, remains fixed, as was required.

After a sentence has been converted into machine-learning instances and
these, in turn, have been classified by a memory-based classifier, the classific-
ation results of all instances should again be rejoined in a chunked version of
the original sentence. Closely related to this reverse mapping of instances to
chunks is the design of the set of classification categories. In fact, these cat-
egories should be able to encode the entire shallow parse of the sentence. The
definition of segmentation tasks suggests classification categories that either de-
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note a type of boundary or indicate that no boundary is associated with the
focus word.

A naive application of this principle would devise category labels for the
boundaries of each type of chunk and another one to signify the absence of
any boundary. The instances corresponding to the phrase “een mooi huis”, for
example, would be classified as “eeny _Np mooi# huisp_np”, which means that
“een” and “huis” are the left and right boundaries of an NP chunk respectively,
and that “mooi” does not correspond to any boundary. While simple, the
naive encoding is not sufficiently robust to be used for machine learning, which
involves the presence of classification errors. Incorrect classification of “een” as
#, for example, would prevent the entire chunk to be found. Therefore, a more
robust encoding should be used.

Tjong Kim Sang and Veenstra (1999) report on an empirical comparison of
various encodings of chunk structures. The Memory-Based Shallow Parser uses
an encoding proposed by Ramshaw and Marcus (1995) that performs better in
the presence of classification errors than the naive encoding. Their technique
assigns each word a tag indicating that the word is either part of a chunk with
a specified type or not contained in any chunk. The same sentence as used
earlier would be classified as: “eenj_n\p mooij.Np huisp\p”, which means
that all three words are inside an NP chunk. Using this encoding, incorrect
classification of “een” as “O”, indicating that the word is outside any chunk,
does not prevent “mooi huis” to be identified as an NP chunk. Most of the time,
this will be preferable over not finding a chunk at all.

Apart from the already mentioned “I” and “O” tags, the encoding addition-
ally includes a B-XP tag. This tag signifies that the focus word is inside a chunk
of type XP, but in a chunk different from the one of the previous word; in short:
the focus word is the first word of a new chunk. The “B” tag is necessary to
distinguish two directly adjacent chunks from one single chunk in case both are
of the same type.

For the purpose of parsing CGN data, the chunk tags are extended to indicate
whether the focus word is the head word of its chunk as well. Chunks for the
English language memory-based shallow parser were defined to end after their
head word. With this definition, head words are easily designated once the
chunks of a sentence have been identified. The chunks that are extracted from
the CGN, however, do not necessarily end after their head word. Therefore, in
order to identify the head words of chunks, their target class label is extended
with an "HD” postfix.

In the presence of classification errors, the use of special chunk tags for head
words may lead to chunks that have no head, or more than one head. However,
each chunk should have one unique head word. For this reason, given the words
making up a chunk, the rightmost of them that has been assigned a head tag is
selected as the head word for that chunk. If no word has been assigned a head
tag, the rightmost word overall is selected as head.

Typically, chunking is preceded by a part of speech tagging step. The part of
speech tags of the words are then available when chunker instances are generated
and thus can be used as instance features. Buchholz (2002), however, shows
that adding part of speech information to the input of the chunker does not
lead to significantly better results. In fact, the chunker can be extended to
predict part of speech and chunk tags in one classification step, without loss of
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performance. This is achieved by letting the classifier predict target classes that
are a concatenation of the part of speech tag and the chunk tag for the focus
word.

With these target classes, the sentence of the start of this section is tagged
as follows:

ze/VNW3-I-NP-HD waren/ WW2-I-SMAIN-HD gewoon/ADJ9-I-AP-
HD vergeten/WW7-I-PPART-HD hoe/BW-I-ADVP laat/WW1-I-
ADVP-HD de/LID-I-NP bus/N1-I-NP-HD kwam/WW1-I-SSUB-HD
.JLET-O

The tagging/chunking module is constructed using the Memory-based tagger
(Mbt) (Daelemans et al., 1996). Although the most obvious use of Mbt is for
generating part of speech taggers, it can be trained to perform any tagging task,
in which a tag is to be assigned to a focus word given a local context consisting
of a number of surrounding words. The task performed by the tagger/chunker
is essentially a tagging task, where the chunk tags described above are to be
assigned to the words in a sentence. Mbt enables a simplified specification of
instances for memory-based tagging tasks. Based on this simplified specification,
Mbt generates feature vectors that are fed to standard memory-based learning
algorithms.

Mbt generates its feature vectors by using the windowing technique on the
words in a sentence. Two types of features are used to describe the words in
a window. One of them is the word form itself. The other is either the tag of
the word or an ambiguous tag, describing all possible tags for the word. If a
word precedes the focus word in the sentence, then Mbt has already predicted
the correct tag for this word; hence, this tag can be used in the instance de-
scription. In contrast, if a word follows the focus word in the sentence, then the
correct tag for this word has yet to be predicted. As an alternative to the fully
disambiguated tag for the word, then, a symbol encoding all possible tags for
this word according to the training data, is used. A more detailed overview of
the issues involved in constructing memory-based classifiers by Mbt is given in
Daelemans et al. (1996).

2.1.2 PNP finding

During the chunking step, prepositional phrases are not recognised as such.
A prepositional phrase consists of a head word, always a preposition, that is
followed by one or more complements, which are generally noun phrases. As
sentences are only parsed into non-recursive, non-overlapping constituents, pre-
positional phrases are split up into a PP chunk and one or more NP chunks.
Nevertheless, finding prepositional phrases in sentences may be very useful, since
they can contain information valuable to higher-level applications, for example
information about times and locations. The PNP finding task consists of recon-
structing the original prepositional phrases out of separate PP and NP chunks.
These reconstructed prepositional phrases will be denoted as PNP chunks.
Although the structure of prepositional phrases is lost when a sentence is
divided into chunks, the information to reconstruct them can be derived from
the grammatical relations between the head preposition and the noun phrases
making up its complement. The technique used by the PNP finder is there-
fore very similar to the one used by the grammatical-relation finder, which is
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described in the next section. However, while the grammatical-relation finder
identifies relations between verbal chunks and other chunks, the PNP finder
aims at those between PP chunks and NP chunks instead. Having found these
relations, PNP chunks are constructed from a PP chunk and the NP chunks
grammatically related to it.

Instances for the PNP finding task, as for the grammatical-relation-finding
task, are centred around pairs of chunks. In PNP finding instances, such a pair
corresponds to a PP chunk and an NP chunk, which is henceforth referred to
as the focus chunk. For a given sentence, instances are generated for each pair
of a PP chunk and an NP chunk following it within a certain distance. To
encode the variable-length chunks by fixed-size feature vectors, the chunks are
represented by their head words only. The heads are the most prominent words
of chunks and therefore, grammatical relations could equally well be considered
to hold between head words of chunks, rather than between chunks themselves.
Apart from the word form, the features to describe the chunks are the part of
speech of the head word and the chunk type.

In addition to the PP and focus chunks, instances include features to encode
the local context of the focus chunk. This local context consists of a number of
chunks directly preceding and a number of chunks directly following the focus
chunk. Again, these chunks are represented by their head words, part of speech
tags and chunk types. In short, the complete feature vector of PNP finding
instances consists of the following features:

e The distance between the preposition and the focus chunk, counted in
number of chunks or words outside chunks.

e The number of PP chunks between the preposition and the focus chunk.
e The head word of the PP chunk.

e The focus chunk, which is described by two features.

— The head word of the focus chunk.
— The part of speech of the head word.

e The context chunks, each described by three features.

— The head word of the context chunk.
— The part of speech of the head word.
— The type of the context chunk.

The classification categories for the PNP finding task are kept simple. Instances
are classified to decide whether a given preposition and focus chunk are to be
joined in a PNP chunk. This is the case if the two are grammatically related.
In contrast with the grammatical-relation-finding task, for PNP finding, the
type of the grammatical relation is unimportant and consequently need not be
predicted. PNP finding instances can be classified as one of either “4” or “-”,
thereby only indicating whether, not how, the preposition and focus chunk are
related.
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2.1.3 Grammatical-relation finding

The final step in the memory-based parsing cascade is grammatical-relation
finding. Having found the chunks of a sentence in the two preceding parsing
steps, in this step, the parser determines their syntactic functions by identifying
grammatical relations between pairs of chunks. Important grammatical rela-
tions include the subject and object relations. By adding grammatical relations
to the parse of a sentence, it is transformed from a set of separate chunks to a
coherent structure of interrelated constituents. Additional processing modules
could, for example, extract the intended message from this structure.

As was already mentioned in the research objective and following Buchholz
(2002), grammatical-relation finding in this thesis is restricted to relations to
verbal chunks. Although this restriction will exclude potentially useful relations,
the central meaning of a sentence can often be retrieved quite well by only con-
sidering relations to verbs. Moreover, Buchholz (2002) speculates that finding
relations to nouns or adjectives might require information different from that
useful for finding relations to verbs and would therefore be better performed in
separate tasks.

The essence of the grammatical-relation-finding task has already been re-
viewed in the previous section. As PNP finding and grammatical-relation find-
ing share many similarities, the learning tasks are very similar too. With
grammatical-relation finding, however, the relations to be identified are not
those between PP chunks and NP chunks, but consist of relations between
verbal chunks and any other chunks. Furthermore, while the PNP finder only
needs to determine whether two chunks are related, the grammatical-relation
finder should predict the type of the relation as well.

Machine-learning instances for the grammatical-relation-finding task are cen-
tred around the head words of two chunks. They represent the verbal chunk
and a focus chunk, which may be of any type. Additionally, instances contain
features to encode the local context of the focus chunk. This local context con-
sists of a number of chunks directly preceding and a number of chunks directly
following the focus chunk in the sentence. To find the grammatical relations
in a sentence, instances are generated for each verbal chunk and focus chunk
within a certain distance to the left or to the right. The classifications of these
instances indicate whether and, if so, how the focus chunk is related to the
verbal chunk.

More features than those mentioned above can be added to the instance de-
scription to improve classification performance. Buchholz (2002) specifically in-
tends to identify features that are useful for memory-based grammatical-relation
finding. A notable result is the highly informative value that features coding
sequences of part of speech tags or chunks, appear to have. In this thesis, how-
ever, the simpler instance format used by Buchholz et al. (1999) is used. The
features of this format are presented below.

e The distance between the verb and the focus chunk, counted in number
of chunks or words outside chunks. A negative distance indicates that the
focus chunk is to the left of the verb, a positive distance means the focus
chunk is to the right of the verb.

e The number of verbal chunks between the verb and the focus chunk.
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e The verb, that is, the head word of the verbal chunk.
e The part of speech of the verb.

e The focus chunk, which is described by four features.

— The prepositional head word, if the focus chunk is a PNP chunk, or
“.” otherwise. This is the head word of the PP chunk within the
PNP.

The head word of the focus chunk. If the focus chunk is a PNP chunk,
this means the head word of the NP chunk within it.

The part of speech of the head word.

The type of the focus chunk.
e The context chunks, each described by three features.

— The head word of the context chunk.
— The part of speech of the head word.
— The type of the context chunk.

The classification categories to be assigned to these instances correspond to the
types of relations to be predicted and “-”, to indicate that the given focus chunk
is not related to the given verb.

2.2 Data

The previous section described the instance formats for the three learning tasks
that make up for the memory-based shallow parsing framework. In this sec-
tion, the extraction of the information required for generating these instances is
presented. First, the format of the syntactic annotations of the CGN is reviewed.
Then, the conversion of CGN annotations to the chunks and grammatical rela-
tions required for the learning tasks, is explained.

2.2.1 The Spoken Dutch Corpus

The CGN was the first corpus to provide a large-scale treebank for Dutch. It
has been developed, and actually still is being developed at the time of writing,
in the context of a project aiming to compose a corpus consisting of 1,000
hours of spoken standard Dutch. The data for the corpus are collected both
in The Netherlands and in Belgium. As the corpus is intended to be a useful
resource for various different research interests, among which is speech and
language technology, it includes a wide variety of transcriptions and annotations.
The design of the corpus aims at a high degree of theory-independence, while
preserving the possibility to adapt the corpus data to specific theories.

In the final release of the CGN, a selection of one million words will have
been assigned an extensive, syntactic annotation. At the time of writing, ap-
proximately half of this material is publicly available. This particular part of
the CGN forms the basis for the experiments in this thesis. For this reason, the
annotations that are relevant for the experiments are reviewed in this section. A
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SMAIN

su hd mod hd hd
@(?)@él) Gz Gwd D

TOO1 T501d TOO1 T302 U526a T202 T101 T702 T314 TOO7

mm-hu wij uh zullen daar goede nota van nemen

Figure 2.2: Graphical representation of a CGN annotation structure.

general overview of the CGN is provided by the various publications that have
originated from the project (Oostdijk, 2000; Oostdijk et al., 2002).

The syntactically annotated part of the CGN is structured very similarly
to the NEGRA corpus (Skut et al., 1997). The annotation format used by
both corpora structures its information as a directed acyclic graph (DAG), an
example of which can be seen in figure 2.2. In this DAG, three kinds of informa-
tion are stored!. The leaf nodes of the DAG correspond to the individual words
in a sentence and are labelled with part of speech tags. The internal nodes
represent non-terminal constituents and are labelled according to their phrasal
types. Finally, the edges of the DAG encode information about the semantic
relations, or dependencies, between constituents.

Words appear at the lowest level of the annotation structure as terminal
nodes and are assigned a part of speech label. The complete tag set comprises
316 different part of speech categories (Van Eynde, 2001); the labels starting
with T or U in figure 2.2 denote part of speech categories. For the syntactic an-
notation, the tag set is reduced to a set consisting of 72 different labels relevant
for the annotation. In addition to part of speech tags, some words may be as-
signed additional annotations. For example, slips of the tongue and interrupted
or foreign words are marked as such.

Although most terminal nodes in the annotation structure correspond to
transcriptions of words, terminal nodes are also created for other events during
the conversation, such as unintelligible words or laughter. Such phenomena
are transcribed using specific labels and are assigned special part of speech
tags. Furthermore, the annotation structures also include punctuation marks,
for which nodes are created as well. Only three such punctuation marks appear

LAn overview of all labels used in the CGN syntactic annotation is given in appendix A.
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in the CGN transcriptions: the full stop (“.”), the question mark (“?”) and
the omission mark (“...”). No commas are transcribed, since their position in
spoken sentences cannot be objectively determined.

The non-terminal nodes in the annotation structure correspond to higher-
level syntactic constituents, dependency domains in CGN terminology. They are
assigned one of 25 phrasal category labels (Moortgat, Schuurman, and Van der
Wouden, 2001). The daughter nodes of a dependency domain are either words or
lower-level dependency domains. Generally, a dependency domain has exactly
one daughter that is referred to as the head of that domain. The other daughters
of the domain complement or modify the head.

If a domain would only have a head daughter and no complements or modifi-
ers, no node is created for this domain. Instead, the head represents its mother
domain in the annotation structure. For example, the word “wij” in figure 2.2
is directly attached under the SMAIN domain, although syntactically, its dir-
ectly enclosing constituent is an NP. However, as there are no complements or
modifiers for “wij”, the intermediate NP domain has been left out and “wij” is
made a direct descendant of the SMAIN domain. This approach leads to flat
annotation structures.

The final element of the CGN annotation is the dependency relation, which
is stored on the edges of the annotation graph. A dependency relation between
a daughter and a mother domain either identifies that daughter as the head
of its mother domain or expresses its syntactic function to that head. The
CGN annotation uses 34 dependency labels. The semantic meaning of these
labels is context dependent, however. For example, in a nominal domain MOD
denotes an adjectival adjunct, while in a verbal domain, it indicates an adverbial
adjunct.

As a result of the choice for a DAG structure, a node can be dependent on
zero, one or even several mother domains. A node that has no mother domain is
either at the highest level of an annotation structure or represents a disfluency
in the sentence, in which case it is just a single terminal node. In figure 2.2,
for example, “mm-hu” and “uh” are disfluencies. A daughter can have multiple
dependency relations to express the fact that it has a syntactic function in
several dependency domains. In this case, one of those dependencies is denoted
as the primary relation, thereby expressing that this is the function of the node
in the main argument structure. All remaining dependencies are referred to as
the secondary relations.

Another property of the CGN annotation format is its use of crossing branches
to simplify the notation of discontinuous dependencies. For example, the an-
notation structure in figure 2.2 uses a crossing branch to express that “daar” en
“van” are part of the same PP domain, even though, in the sentence, they are
separated by “goede nota”. Annotation formats that use a tree structure rather
than a DAG, require special features to deal with both multiple dependency
roles and crossing branches. The high frequency with which these phenom-
ena appear in spoken Dutch justifies the DAG structure of the NEGRA/CGN
format.

2.2.2 Data conversion

The syntactically annotated CGN data described in the previous section form
the basis for the experiments that are reported on in this thesis. The parsed



2.2. DATA 17

fn000573.syn 1 0 I-NP VNW3  ze SU waren 1
fn000573.syn 1 1 I-SMAIN WW2 waren None - -1
fn000573.syn 1 2 I-AP ADJ9 gewoon MOD waren 1
fn000573.syn 1 3 I[-PPART WWT7 vergeten VC waren 1
fn000573.syn 1 4 I[-ADVP BW hoe NOFUNC laat 5
fn000573.syn 1 5 I[-ADVP WW1 laat OBJ1 vergeten 3
fn000573.syn 1 6 I-NP LID de NOFUNC  bus 7
fn000573.syn 1 7 I-NP N1 bus SU kwam 8
fn000573.syn 1 8 I-SSUB WW1 kwam BODY laat 5
fn000573.syn 1 9 O LET . NOFUNC _ -1

Table 2.1: Example of a CGN sentence in intermediate format. The first three
columns of the intermediate format contain administrative information: a file
identifier, a sentence number and a word number. The remaining columns
encode syntactic information: an IOB-style chunk tag, a part of speech tag, a
word, the grammatical relation of the word, the target word of the grammatical
relation and the word number of this target word.

sentences are used as training and test data for all learning tasks in the parser.
However, while these learning tasks are all formulated in terms of chunks and
relations between chunks, the CGN data are fully parsed. Thus, in order to
create machine-learning instances from the corpus data, the chunks and the
relations between them have to be extracted from the annotation structures.

All of the learning tasks require that chunks have been explicitly annotated
in the learning data and two out of three, PNP and grammatical-relation find-
ing, additionally require that relations between chunks have been annotated,
as well. Therefore, extracting these chunks and relations is a process that has
to be repeated for each type of machine-learning instance that is created from
the dependency annotation. Buchholz (2002) has performed the similar task of
converting the Penn Treebank data to machine learning instances. She splits up
this conversion into two subtasks. The original treebank data is first converted
into an intermediate format in which chunks and grammatical relations are ex-
plicitly marked. Then, machine-learning instances can quite easily be generated
from this intermediate format data.

In this thesis, the same intermediate format is used. An example of the
intermediate representation of a sentence taken from the CGN is displayed
in table 2.1. The steps required to convert CGN dependency annotations to
this intermediate format are described in this section. The conversion process
mainly consists of extracting chunks and relations from a CGN dependency
structure. Buchholz (2002) describes this process for converting the Penn Tree-
bank format to the intermediate format. In comparison with the Penn Treebank
format, the CGN format has the advantage that, in general, heads of constitu-
ents are marked explicitly. Also, grammatical relations, although not between
chunks, are an elementary part of the CGN annotation structure, while the
Penn Treebank format indirectly indicates them by appending a function tag to
the syntactic labels of constituents.

The conversion process described in the remainder of this section is restricted
in the sense that it only considers primary dependency relations. The decision
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to ignore secondary relations is based on several reasons. First, it is more
difficult to identify the chunks of a sentence unambiguously when secondary
relations are taken into consideration. Secondary relations generally break the
main syntactic structure of a sentence. One of the consequences is that a single
word might function as head for several dependency domains. Chunks, however,
were defined to be non-overlapping and to have a unique head word. Secondly,
grammatical-relation finding on data where chunks can perform multiple func-
tions has not received as much attention in the literature as the case in which
chunks perform only one function. Finally, the research objective of this thesis
is to apply existing memory-based parsing methods to data of a different nature.
It does not aim to develop a new learning task.

Heads and chunks

The first step in converting the CGN data to the intermediate format is the
extraction of chunks from the dependency structures. The chunks in a sentence
can be found by identifying their head words. From these head words, the other
words in the chunks can be inferred by applying the following definition from
Abney (1991): the root node R of a chunk with head A is the highest node
in the parse tree T' that has h as its head. Given this root node, the syntactic
structure of a chunk is the largest continuous subgraph of T' rooted in R and not
containing the root of any other chunk. The words of a chunk, then, correspond
to the leaf nodes of its chunk structure and the chunk label is defined as the
phrasal type of its root node. With Abney’s definition, finding chunks comes
down to identifying the head words in a sentence and determining the chunk
structures they give rise to.

As mentioned in the previous section, the CGN annotation format expli-
citly indicates heads of dependency domains by means of dependency labels.
Some domains, however, have not been assigned a head. Such is the case if an
annotation error has been made, but also for some types of domain that have
simply been defined to be headless. Whatever the cause, for these domains, a
head is determined using a head table. A head table specifies for each type of
domain, which are the types of dependency the head may have to this domain.
Using such a head table, determining the head of a domain comes down to the
following.

1. If the domain has a daughter linked by an HD dependency, this daughter
is the head of the domain.

2. If the domain has no HD daughter, the head table is consulted for this
domain type:

(a) If there are terminal daughter nodes linked by one of the dependencies
listed in the head table, the right-most of those is the head of the
domain.

(b) If only non-terminal daughter nodes are linked by a dependency listed
in the head table, all of those are considered head of the domain.

3. Finally, if none of the previous steps led to a head, the domain is kept
headless. This step would only be reached if the annotation is erroneous
and the head table incomplete.
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The conversion described by Buchholz (2002) uses such a head table for all
constituents, to compensate the fact that heads are never explicitly marked in
the Penn Treebank. In contrast, the CGN does explicitly mark most heads;
hence, the head table is only needed in a few exceptional cases.

The above procedure identifies the head words of multi-word chunks, but fails
to recognise head words of single-word chunks. Single-word chunk head words
are not explicitly marked in the CGN due to its flat annotation approach. A
consequence of this flat annotation is that no dependency domain is created
for a constituent if there are no complements or modifiers for its head. Such is
the case for constituents comprising only one word. This means that no non-
terminal node is created for a constituent consisting of only a single word and
therefore this word is not marked as a head word, unless it is the head word
of a higher-level domain as well. The above procedure, however, presupposes
that head words are annotated as such and consequently will not identify head
words of single-word chunks.

In this thesis, head words of single-word chunks are determined by assuming
that terminal daughters of certain types of domains, in particular verbal and
prepositional domains, are all head words of single-word chunks. Their chunk
structures, then, equal the single terminal node corresponding to the head word.
In brief, a word is marked as a head word if it is identified as the head of its
mother domain or if this mother domain is verbal or prepositional.

Each head word found by this procedure represents a chunk in the sentence.
Unless such a head word corresponds to a single-word chunk, its chunk is further
made up by those words that satisfy all of the following requirements.

1. It has the same mother domain as the head word.
2. All words between this word and its head word are also part of the chunk.

3. It does not correspond to a single-word chunk.

Not all words will be part of a chunk. The requirement that chunks are con-
tinuous, as implied by requirement 2, might cause some words to fall outside a
chunk, even though they are related to the same dependency domain as a head
word. Such a situation arises when words in a domain are intersected by cross-
ing branches, disfluencies, or single-word chunks. Words preceding or following
such an intersection do not end up in the chunk. In the intermediate format,
such words are annotated as being outside any chunk, unless they correspond
to a single-word chunk.

Having identified the chunks in a sentence, their types can be determined. In
general, the type of a chunk equals the phrasal type of its root node. According
to Abney’s definition this is the node corresponding to the highest constituent for
which the head of the chunk is the head word. For single-word chunks, however,
this method does not produce the correct chunk type. The chunk structure for
such chunks consists of only the node for the head word and, consequently, this
node is the root of the chunk structure. The label of such a node denotes a part
of speech type, rather than a phrasal type that can serve as chunk type.

In the CGN, the actual root node of such a single-word chunk has been left
out to achieve a flat annotation. Nevertheless, the type of this missing node can
be inferred from the available information. In the CGN annotation, the label of
a dependency domain is projected by its head. Thus, nouns give rise to an NP
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domain, while prepositions give rise to PP domains. This property of the CGN
annotation is used to create a table that associates each part of speech with the
chunk type it projects. Then, the type of a single-word chunk is determined by
consulting the table entry matching the part of speech of the head word.

Grammatical relations

Having found the heads and chunks, grammatical relations can be extracted
from the CGN data. In contrast with the Penn Treebank format, the CGN
annotation explicitly represents these relations. A dependency link between a
daughter node and its mother domain corresponds to a grammatical relation
between the head word of the daughter node and that of the mother domain.
For the purpose of converting the CGN data to intermediate format, these
correspondences have to be recorded explicitly.

In the intermediate format, grammatical relations are considered to be dir-
ected. The origin of a relation matches the head word of the daughter node and
its target corresponds to that of the mother domain. As all the head words in
a sentence have already been identified, the task that remains is, given a head
word as origin, to find its grammatical relation as well as the target of this
relation.

Two useful concepts for extracting grammatical relations from the CGN
annotation are those of a projection and projection line of a node. A projection
of a terminal node is a dependency domain of which the word corresponding to
that terminal node is the head word. The maximal projection of a node, then, is
the highest-level dependency domain that is a projection of that node. Finally,
the projection line of a node is the path starting at that node containing all of
its projections.

With these two concepts, the process of finding the grammatical relation
originating at a given head word can be explained as follows. The projection line
of the head word is followed upwards until its maximal projection is reached.
Then, the grammatical relation to be found equals the dependency relation
between this maximal projection and its mother domain. The target of this
relation corresponds to the head word of that mother domain. It is found
by following the projection line downwards from the mother domain, until a
terminal node is reached.

As noted earlier, the procedure used to determine the head of a depend-
ency domain sometimes designates several heads for one domain. As a result,
following the projection line of a dependency domain downwards may end up
in several words, rather than one. In such a case, all of these words are con-
sidered target of the grammatical relation. In the intermediate format, then,
only one relation is recorded, but at the time instances are generated for the
grammatical-relation-finding task, the relation causes as much instances to be
generated as there are target words.



Chapter 3

Optimisation and
evaluation

The previous chapter described the learning tasks making up the memory-based
shallow parser framework, as well as the conversion of CGN data to a format
that is suited for training the parser modules. These two procedures form the
groundwork for the experiments that have been performed to optimise the parser
framework and to evaluate its performance. A report of these experiments is
given in this chapter. In section 3.1, the general approach to the experiments is
presented. Next, the optimisation of the individual modules and the evaluation
of the entire parsing cascade are described in sections 3.2 and 3.3, respectively.

3.1 Experimental setup

The central issue in this chapter is the experimental optimisation and evalu-
ation of the Dutch memory-based shallow parser. The three main ingredients of
the experiments are introduced in this section. Subsection 3.1.1 describes the
machine-learning algorithms that are used and their parameters. The procedure
followed to find an optimal parameter setting is discussed in subsection 3.1.2.
Finally, subsection 3.1.3 presents the evaluation techniques used to measure the
performance of the parser.

3.1.1 Parameter setting

The central goal of the experiments reported in this chapter is finding parameter
settings for the various parser modules that yield optimal performance on their
learning tasks. The performance of different parameter settings is evaluated by
systematically varying the values of each parameter of a module. In general,
two types of parameters can be distinguished. The first type relates to the
properties of the learning task itself. Rather than fixing these in advance and
only optimising parameters of the learning algorithm, part of the optimisation
is aimed at improving the instance format in order to boost performance.

In this research, the optimisation of this type of parameters is given a restric-
ted definition. Given the instance formats as described in section 2.1, the only
parameters to be optimised are those describing the size of the local context of

21
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focus words or chunks. The optimal settings of this parameter are expected to
be highly language-specific and therefore optimal context sizes reported in the
literature are likely to be suboptimal for spoken Dutch.

The second type of parameters comprises the algorithmic parameters of the
machine learner that is used to train the parser module. The most important one
of those is the choice for the machine-learning algorithm itself. All the remaining
parameters are dictated by this choice. In this research, the algorithms that are
tested are IB1, IGTree and TRIBL as implemented by the TiMBL software.
A short introduction to these algorithms and their parameters is given in this
section. For a thorough description as well as for implementation details, the
TiMBL reference guide (Daelemans et al., 2002) should be consulted.

All three algorithms have in common that their instances are described by
fixed-length vectors of feature-value pairs and a label describing the class the in-
stance belongs to. Having been trained on a large number of example instances,
the learning algorithm should be able to predict the class of a test instance that
is consistent with the information in the training data. The technique that is
used to determine this class is specific to each of the algorithms and, as such,
gives rise to different parameters.

IB1

IB1 (Aha, Kibler, and Albert, 1991) is a variant of the classic memory-based
k-Nearest Neighbour algorithm (Cover and Hart, 1967). Of the three algorithms
used in this research, it is the purest representative of the memory-based learn-
ing method: every training instance is kept in memory and test instances are
classified by drawing analogies with similar training instances. The conditions
according to which two instances are to be considered similar and the method to
derive correct classes from a number of similar instances are both configurable
by setting the parameters of the algorithm.

Similarity in IB1 is defined by a distance between the test instance and an
instance stored in memory. Equation 3.1 shows the function used by IB1 to
compute this distance between instances X and Y, both described by a feature
vector of length n.

AXY) = ZW@(%,%) (3.1)

In this equation, distance is defined as the weighted sum of the distances per
feature. w; signifies a weight factor for feature ¢ and §; denotes a function for
feature ¢ that computes the distance per feature. In TiMBL, feature weights can
either be turned off, that is w; equals 1, or configured to be one of the following.

e Gain Ratio (Quinlan, 1993)

e Information Gain (Quinlan, 1986)

e Chi-squared (White and Liu, 1994)

e Shared Variance (White and Liu, 1994)
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Possible functions for the distance per feature parameter in TiMBL are listed
below.

e Overlap (Aha et al., 1991)

e Modified value difference (Stanfill and Waltz, 1986; Cost and Salzberg,
1993)

e Numeric difference

Using this distance metric, the classification of a test instance starts by finding
the k£ nearest instances in the instance base. Next, the correct class for the test
instance is derived by applying a voting mechanism to these nearest neighbours.
The classic voting mechanism, called majority voting, assigns the class most
frequently found in the neighbouring instances, to the test instance. With this
mechanism, each instance has equal importance, even though some may be more
similar to the test instance than others. For this reason, other voting mechanism
have been proposed in which the vote of an instance is weighted by a function
of its distance to the test instance. In TiIMBL, the following voting mechanisms
have been implemented.

e Majority voting
e Inverse distance (Dudani, 1976)
e Inverse linear (Dudani, 1976)

e Exponential decay (Shepard, 1987)

IGTree

The IB1 algorithm has two important drawbacks, both caused by the fact that
it defers most of its work until a test instance is classified. First, storing every
training instance in memory causes the memory requirements for the algorithm
to be very high. Additionally, having to search through the entire instance base
for instances that are similar to a given test instance results in higher processing
times than for eager learning algorithms. Although both of these drawbacks are
dealt with by optimised implementations, IB1 remains an algorithm with high
resource requirements, which, in some situations, might not be desirable.

IGTree (Daelemans, Van den Bosch, and Weijters, 1997) is a heuristic ap-
proximation of IB1 aiming to overcome these drawbacks, while still retaining
acceptable performance. The algorithm stores its training instances in a de-
cision tree structure, in which each level corresponds to a test on one of the
features and the branches of nodes on a level are labelled with the possible
feature values. A training instance, then, is encoded by a path from the root
node to one of the leaf nodes. This path, however, contains only as much nodes,
or feature tests, as necessary to distinguish uniquely this instance from all the
other instances in the training set. As a result, the instance base of the IGTree
algorithm consumes less space if features with high informative value are stored
early in the tree. In order to benefit from this property and achieve high com-
pression, IGTree uses the feature weights that were introduced with IB1 to sort
instance features according to their informative value.
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Classification in IGTree comes down to simply following the path starting
at the root node, of which the edge labels correspond to the feature values of
the test instance. In contrast, IB1, theoretically, has to search the entire in-
stance base for instances similar to the test instance. The faster classification
procedure of IGTree, however, does come at the expense of generalisation accur-
acy. Nevertheless, IGTree shows adequate performance while keeping memory
requirements and processing time low.

TRIBL

As made clear by the previous two sections, IB1 achieves good generalisation
accuracy at the expense of high memory requirements and long classification
times, while IGTree manages to limit both the memory requirements and clas-
sification times, though shows lesser accuracy. The choice for either IB1 or
IGTree, therefore is a choice between the quality of classification results and
resource efficiency; no trade-off between the two is possible.

The TRIBL algorithm combines IB1 and IGTree and thereby the advantages
of both algorithms. A configurable number of features that have the highest in-
formative value according to a chosen feature weight is stored in an IGTree.
Unlike in standard IGTree, however, in TRIBL the leaf nodes do not denote
a class but correspond to an IB1 instance base comprising all the training in-
stances that are consistent with the feature tests on the path to this leaf node.
For the remaining features, IB1 is applied to this instance base, which is now
considerably smaller than a standard IB1 instance base.

3.1.2 Parameter-optimisation method

In this section, two choices with respect to the optimisation are discussed. First,
the procedure that is used for finding optimal parameter settings is introduced.
Secondly, the choice between global optimisation of the parsing cascade and
local optimisation of individual parser modules is presented. Arguments for
deciding upon the latter are given.

To determine optimal parameter settings for the parser modules, a number
of experiments are conducted in which the various parameters of both the learn-
ing tasks and the learning algorithms are systematically varied. An important
difficulty in experiments in which multiple parameters have to be optimised, is
the possibility of interaction between parameters. Therefore, in order to find
the optimal parameter setting, each possible combination of parameter values
should be tested. However, given the size of the CGN data set, the cost of eval-
uating only one parameter setting makes such an exhaustive search infeasible
for the experiments in this research.

The alternative approach taken in this thesis is best described as a heuristic
hill-climbing search through the parameter space. Each parameter is, in turn,
tested with all possible values, while the value of the other parameters remains
fixed. The parameter value showing best performance in these tests is selected
and kept fixed for the rest of the optimisation. As is a well-known property
of hill-climbing search, this will most likely not end up in a global optimum.
Instead, it enables a trade-off between quality of the results and cost of the
optimisation procedure.
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The second choice discussed in this section, is about whether to optimise the
global performance of the entire parsing cascade or only the local performance of
the individual parser modules. In section 2.1, it was already mentioned that the
memory-based shallow parsing framework can be approached from two different
points of view. These two approaches reflect upon the optimisation procedure.

On the one hand, the parser is composed of three separate modules that can
each be considered individual units. As a result of this modularity, each module
can be optimised and tested in isolation, in which case the data on which the
module is trained and tested, consist of gold-standard, that is, perfect corpus
data. The advantage of optimising each module in isolation is that errors in the
output of the module are known to be caused by the module itself, not by any
side-effect as a result of the module being part of a larger whole.

On the other hand, the parser modules are interdependent parts of the global
framework and their performance may well be highly dependent upon each
other. For example, both the PNP finder and the grammatical-relation finder
use information about chunks, which, unless gold-standard corpus data are used
as input, is generated by the chunking module. Consequently, errors made by
the chunker will affect the performance of the other two modules.

The above suggests that global performance of the entire parsing cascade is
not a straightforward result of the performance of each of its modules. Interde-
pendencies between modules are an important factor in the actual performance
of the parser. Therefore, in order to optimise global parsing performance, the
modules should be optimised as part of the framework from the start, rather
than optimising each of them separately and only then joining them. For ex-
ample, the PNP finder module could be optimised on input that is generated
by the chunker. In this case, it would “learn” which kinds of errors the chunker
makes and, thereby become more robust to these errors. Modules optimised
in this way, would probably be suboptimal when tested in isolation, but would
perform better in the parsing cascade. Van den Bosch (1997) shows that such an
optimisation strategy, in which modules are trained on the output of preceding
modules, is an effective countermeasure against cascading errors, that is, errors
that can be traced back to faulty output of preceding modules.

The advantages of this global optimisation do come at the expense of trans-
parency. Observed errors are not as easily attributed to a single module as for
local optimisation, which makes analysis of the separate learning tasks more dif-
ficult. For this reason, in this thesis, optimisation is only performed on the level
of modules. The central research goal is testing the effectiveness of a memory-
based approach to parsing on a corpus of spoken Dutch. This goal will benefit
more from transparency than from better performance.

3.1.3 Ewvaluation method

During the experiments, evaluation is used for two different purposes. First,
while optimising the parser modules, test results are evaluated in order to
compare the performance of two parameter settings. Secondly, after optimal
parameter settings have been found for the individual parser modules, the per-
formance of the entire parsing cascade has to be measured. Such an evaluation
of the performance of the memory-based shallow parser on spoken Dutch will
lay the groundwork for answering the central research question of this thesis.
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In this section, three performance measures that are often used in combin-
ation with linguistic data, are described. These measures are used to quantify
the parsing performance. To actually evaluate the effectiveness of an approach,
some kind of reference score should be available. For this purpose, baseline
experiments are performed; they are also introduced in this section. Finally,
at the end of this section, some tools are presented with which the statistical
significance of results is tested.

Performance measures

For evaluating a parser module or the parsing cascade, measures are needed
that can quantify their performance. In combination with linguistic data, the
performance measures generally in use are precision and recall, which are well-
known measures from information retrieval. In this research, they are applied to
the results of all three parsing tasks, that is tagging/chunking, PNP finding, and
grammatical-relation finding. Precision measures the percentage of syntactic
units found by a module that are correct. Recall corresponds to the percentage
of syntactic units present in the corpus that are found by a module. In these
definitions, a syntactic unit corresponds to a chunk, a PNP and a grammatical
relation, respectively. A chunk is considered to be correct if 1) both of its
boundaries match those in the corpus, 2) it has the same type as the chunk in
the corpus and 3) the head word is the same as in the corpus.

In addition to precision and recall, another performance measure that is
often used is the F-score (Van Rijsbergen, 1979), which equals the harmonic
mean of the precision and recall scores. The function to compute this score is
shown in equation 3.2.

(B+1) - precision - recall
Fg=-— — (3.2)
(% - precision + recall

[ denotes the relative importance attached to the precision and recall scores.
In this research, it equals 1, which means that both scores are considered equally
important. The F-score measure is useful in optimisation experiments, in which
different parameter settings are to be compared. Rather than basing this com-
parison on two measures, only one figure has to be taken into consideration.

Baseline performance

Using the precision, recall and F-score measures, the performance of different
parameter settings can be quantified. However, quantified results only are not
very informative with respect to the effectiveness of a certain approach. They
become meaningful when related to an estimate of the difficulty of the learning
task that has been performed. Therefore, experimental results of the system
to be evaluated are compared to those of another system performing the same
task.

Theoretically, this other system could be another research result of which
performance measures have been published. In this case, however, the learning
task on which it has been tested should be exactly the same as the one used to
test the system that is evaluated. Often, such research results are not available.
For this reason, baseline experiments are performed. Such a baseline corres-
ponds to the simplest classifier that is able to perform the given learning task.
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Its performance is used as a reference for the difficulty of the task. A machine
learner, then, is considered to be effective if it performs at least significantly
better than the baseline score for the learning task.

For all three learning tasks that are evaluated in this research, baseline ex-
periments have been proposed in parsing literature. They will be used to assess
the quality of the memory-based shallow parser modules for spoken Dutch. A
description of each baseline is given in the sections that report on the optimisa-
tion and evaluation of the corresponding parser modules.

Statistical significance

In the experiments, instances extracted from the CGN corpus serve two different
purposes. On the one hand, they are used as example data when training the
parser modules. On the other hand, instances are also needed as test cases for
measuring the generalisation accuracy of a trained module. Those instances used
for training and those for testing must not overlap, since classifying an instance
that is a member of the training set does not require generalisation, but merely
reproduction of training experience. This is certainly the case with memory-
based learning, which stores every training instance in memory. Therefore,
techniques for evaluating machine-learning applications divide the data set into
disjoint training and test sets.

The technique used in this research is k-fold cross-validation. In this tech-
nique, the data set is divided into k disjoint subsets of approximately equal size.
Then, k experiments are performed, each time using a different subset as test
set and the other k — 1 subsets as training set. The measurements of these runs
are averaged into one score for each one of precision, recall and F-score.

The results of two k-fold cross-validation experiments, for example two dif-
ferent parameter settings or a memory-based parser module and a baseline score,
are tested by means of a one-tailed paired ¢-test. Rather than directly comparing
the scores of two different experiments, a t-test decides whether two perform-
ance measures are significantly different. Given that one parameter setting is
found to be significantly better than another, one can be fairly confident that
it will also perform better on new, unseen test instances.

3.2 Optimisation of the parser modules

In the previous section, the general approach to optimising the memory-based
shallow parser has been described. As part of this approach, it has been decided
to optimise each parser module in isolation, rather than optimise the parsing
cascade as a whole. With respect to the central research question of this thesis, a
modular system in which the role of each learning task can be easily recognised,
is preferable to one that is more accurate but tightly coupled. Therefore, in this
section, each of the three parser modules is individually optimised for perform-
ance on gold-standard corpus input. In section 3.3, they are put together to
form the actual memory-based shallow parser.

Each of the following subsections reports the systematic experimental op-
timisation of one of the parser modules. The starting point of these experiments
is the default parameter setting of TiMBL, which is depicted in table 3.1. Each
of these parameters is, in turn, tested with every possible value, while using the



28 CHAPTER 3. OPTIMISATION AND EVALUATION

Parameter || Setting |
Learning algorithm 1B1

Feature weighting Gain Ratio
Distance metric Overlap

Number of nearest neighbours || 1

Voting mechanism Majority voting

Table 3.1: Default parameter setting.

current setting for the remaining parameters. The best performing setting for
the parameter under consideration is then selected for future use.

As the experimental optimisation aims at finding a parameter setting that
is optimal with respect to generalisation performance, the role of the learning
algorithm parameter in it is a different one from that of the other parameters.
As a consequence of their design, both TRIBL and IGTree will most likely be
outperformed by IB1. They have been devised as alternatives to IB1 that run
faster at the expense of generalisation accuracy. Therefore, initially, all optim-
isation experiments are performed using IB1 as the learning algorithm, thereby
determining the potential of the Dutch memory-based shallow parser with re-
spect to generalisation accuracy. In this phase, the focus is on generalisation
performance; no attention is paid to run-time performance.

However, different uses for a parser might have to meet different requirements
and, consequently the trade-off between generalisation performance and run-
time performance is a different one for each case. For this reason, after an
optimal parameter setting has been determined for the IB1 algorithm, TRIBL
and IGTree are used to measure both the generalisation performance and the
run-time performance of various trade-offs between the two.

3.2.1 Optimisation of the tagger/chunker

In this section, various parameter settings for the tagger/chunker module are
tested in order to determine an optimal setting for the tagging/chunking task.
Having found such a parameter setting, the quality of the module is evaluated.
For this evaluation, it is important to have a reference score to which to compare
the obtained results. For this reference a baseline score is computed. A baseline
often used for tagging tasks, labels a word with the tag that is most frequently
associated with it in the training data. If the word is not present in the training
data, the tag most frequently encountered overall is assigned. When applied to
the tagging/chunking task on the CGN data, this results in a precision of 64.62,
a recall of 62.14 and an Fj of 63.36.

What follows is a review of the results obtained by performing the optimisa-
tion procedure described in subsection 3.1.2 on the tagging/chunking task. The
main goal of this optimisation is selecting a configuration that makes optimal
use of the available information. Finding out why certain parameter settings
perform better than others is not part of this goal. Therefore, the scores of
different parameter settings will only be shortly commented upon.

Size of the local context Feature vectors for the tagging/chunking task con-
sist solely of features describing the local context of the focus word, that is the
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| left | right || precision | recall | Fs |
6 4 77.98 79.05 | 78.51
78.45 79.64 | 79.04
79.07 80.45 | 79.75
79.16 80.60 | 79.87
79.25 81.12 | 80.18

QO Q| = Ot
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Table 3.2: Performance on the tagging/chunking task using different local con-
text sizes.

| || precision | recall | Fs |

No weighting 68.46 70.70 | 69.56
Gain ratio 79.25 81.12 | 80.18
Information gain 79.69 81.42 | 80.54
Chi-square 78.52 80.69 | 79.59
Shared variance 79.03 81.32 | 80.16

Table 3.3: Performance on the tagging/chunking task using different feature
weighting schemes.

words directly preceding and those directly following it in the sentence. The
size of this context is therefore an important factor in the performance of the
tagger/chunker: if it is too small, the context may not be sufficiently informat-
ive for a good classification of the focus word, but if it is too large, performance
may be harmed by the presence of irrelevant features.

Daelemans et al. (1999) report good results on a corpus of written English
with a context of five words to the left and three words to the right. This context
size is adopted as a starting point for the experiments. In addition, one larger
context size and three smaller ones are also tested. The scores for these context
sizes are presented in table 3.2.

Remarkably, all of the smaller context sizes perform better than the starting
point. Furthermore, the larger context scores worse than all the other. The
context of three words to the left and one word to the right is selected for the
following experiments.

Feature weighting The feature weighting parameter selects a weighting scheme
that computes the weight of a feature in the distance calculation. The default
parameter setting uses Gain-ratio weighting. Table 3.3 shows the performance
changes for different weighting schemes. Information gain performs better than
the default, Gain ratio, which is second best. Assigning equal weight to all fea-
tures performs considerably worse than all the other options. Information-gain
weighting will be used in the following experiments.

Distance metric The distance metric calculates the distance in a single feature
between two instances. The default distance metric for IB1 is Overlap. This
metric defines the distance between two feature values to be 1 if they are equal,
or 0 otherwise. In contrast, the Modified value difference metric (MVDM)
distinguishes degrees of similarity, based on the co-occurrence of values with



30 CHAPTER 3. OPTIMISATION AND EVALUATION

| || precision | recall | Iy |

Overlap 79.69 81.42 | 80.54
All MVDM 82.27 83.17 | 82.72
Words MVDM 80.76 81.95 | 81.35
Tags MVDM 80.87 82.40 | 81.63

Table 3.4: Performance on the tagging/chunking task using different distance
metric configurations.

| || precision | recall | Fs |

1 82.27 83.17 | 82.72
3 83.59 85.53 | 84.55
) 83.62 85.86 | 84.72
7 83.55 85.92 | 84.71
9 83.39 85.85 | 84.60
11 83.32 85.85 | 84.56
13 83.16 85.71 | 84.42

Table 3.5: Performance on the tagging/chunking task using different numbers
of nearest neighbours.

target classes. MVDM is particularly suited for linguistic data, in which, for
example, two nouns should obviously be considered more similar than a noun
and a verb.

Distance metrics are configured on a per-feature basis. Table 3.4 gives an
overview of the scores of four different configurations: all features are assigned
the Overlap metric, all features are assigned the MVDM metric and finally two
configurations in which either the word features or the tag features are assigned
the MVDM metric and the remaining features the Overlap metric.

The results reveal that the configuration in which all features are assigned
the MVDM metric outperforms those that only assign it to either words or
tags. In turn, those configurations score visibly better than the Overlap metric
assigned to all features. The following experiments will use the MVDM metric
for all features.

The number of nearest neighbours Thus far, the target class assigned to an
instance is the class of the most similar instance in the instance base. In a series
of experiments, the number of nearest neighbours on which the classification of
a test instance is based, is gradually augmented. In table 3.5 the performance of
various numbers of neighbours is presented. Taking the five nearest neighbours
into consideration when determining the class of test instance scores best, and
therefore, this setting is selected for the remaining experiments.

Voting mechanism The voting mechanism specifies how the target class for
a test instance is derived from the multiple nearest neighbours that have been
configured in the previous optimisation step. Majority voting, the default mech-
anism, chooses the class that is most frequently present among the nearest
neighbours. Other mechanisms attach different importance to the classes of the
neighbours, depending upon their distance to the test instance.



3.2. OPTIMISATION OF THE PARSER MODULES 31

| || precision | recall | Iy |

Majority 83.62 85.86 | 84.72
Inverse distance 83.91 85.91 | 84.89
Inverse linear 83.27 84.59 | 83.92

Exponential decay, o = 10 82.82 83.98 | 83.39
Exponential decay, o = 20 82.38 83.37 | 82.87
Exponential decay, o = 30 82.22 83.11 | 82.66
Exponential decay, o = 40 82.17 82.99 | 82.58

Table 3.6: Performance on the tagging/chunking task using different voting
mechanisms. The a parameter for the Exponential decay mechanism is a con-
stant determining the slope of the decay function.

| Algorithm || precision [ recall | Fjs | words/sec |
IB1 83.91 85.91 | 84.89 29
TRIBL, g =1 82.75 84.80 | 83.77 125

TRIBL, g =2 || 82.41 | 84.53 | 83.46 174
TRIBL, g =3 || 78.00 | 79.30 | 78.64 615
TRIBL, =4 || 77.34 | 78.72 | 78.03 470
TRIBL, g =5 || 77.26 | 78.66 | 77.95 471
IGTree 7703 | 7847 | 7774 | 2923

Table 3.7: Performance on the tagging/chunking task of different trade-offs
between classification speed and accuracy, established by using the IB1, IGTree
and TRIBL algorithms.

Table 3.6 shows test results for the various voting mechanisms. Remarkably,
only Inverse-distance voting performs better than majority voting. The other
voting mechanisms score considerably worse. For this reason, Inverse-distance
voting is selected for future use.

Learning algorithm The parameter setting obtained in the preceding optim-
isation steps has been tuned for optimal generalisation accuracy. With respect
to the trade-off between generalisation accuracy and run time, all focus has
been directed at accuracy. This might, however, not be the suitable trade-off
for every application of the parser. To shed some light on the consequences
of various different trade-offs, the TRIBL algorithm has been applied to the
tagging/chunking task using the parameter setting found above and a number
of threshold values ¢ to switch from IGTree to IB1 behaviour. In addition to
the three performance measures used earlier, the classification speed in terms
of words per second is also measured.

As can be seen in table 3.7, the differences in speed between the three al-
gorithms are considerable. Nevertheless, this increase in speed does not always
negatively affect generalisation performance. TRIBL with ¢ = 1 runs consid-
erably faster than IB1, being only slightly less accurate. The same is true for
IGTree in comparison with TRIBL and ¢ = 5.
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| left | right || precision | recall | Fs |

1 1 97.09 97.83 | 97.45
2 1 97.19 98.00 | 97.59
2 2 97.07 97.86 | 97.46

Table 3.8: Performance on the PNP finding task using different local context
sizes.

| || precision | recall | Fz |

No weighting 95.78 98.20 | 96.97
Gain ratio 97.19 98.00 | 97.59
Information gain 97.26 97.94 | 97.60
Chi-square 97.25 98.02 | 97.63
Shared variance 97.25 98.02 | 97.63

Table 3.9: Performance on the PNP finding task using different feature weight-
ing schemes.

3.2.2 Optimisation of the PNP finder

The optimisation of the PNP finding module is performed in the same way as
the optimisation of the tagger /chunker module described in the previous section.
First, a baseline score for the PNP finding task is determined. This score will
be used as a reference point for assessing the quality of the optimal memory-
based PNP finder. The baseline experiment for PNP finding is straightforward
but already quite good. Predicting a PNP chunk if and only if the NP directly
follows the PP chunk, results in a precision of 98.23, a recall of 92.44 and an Fjg
of 95.24.

Next, an optimal parameter setting for performing the PNP finding task
is searched for. Again, this search is performed by systematically varying the
algorithmic parameters and selecting the best performing value for each para-
meter. The intermediate steps in this procedure are shortly commented upon
in this section.

Size of the local context Three different context sizes have been tested. The
performance for each context size is listed in table 3.8. The context of two words
to the left and one to the right scores best, but the other two are only slightly
worse. The following experiments will all use a context of two words to the left
and one word to the right.

Feature weighting As can be seen in table 3.9, all feature-weighting schemes
perform better than no feature weighting. Gain ratio, the default waiting
scheme, scores second worse. Chi-square and Shared-variance weighting are
the best performing schemes. From those two schemes, Chi-square weighting is
arbitrarily selected for future use.

Distance metric The same distance metric assignments that were tested for
tagging/chunking have also been tested for PNP finding, that is: Overlap for
all features, MVDM for all features and two in which MVDM is assigned to
words only or tags only, respectively, and Overlap to the remaining features.
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| || precision | recall | Fs |

Overlap 97.25 98.02 | 97.63
Words MVDM 97.03 96.96 | 96.99
Tags MVDM 97.17 97.58 | 97.37
Words+tags MVDM 96.12 95.17 | 95.64
Distance numeric 97.00 97.61 | 97.30
Intervening numeric 97.15 97.55 | 97.35
Distance+intervening numeric 96.86 97.56 | 97.21
All MVDM 95.94 95.15 | 95.54

Table 3.10: Performance on the PNP finding task using different distance metric
configurations.

| || precision | recall | Iy |

1 97.25 98.02 | 97.63
3 97.45 98.45 | 97.95
) 97.37 98.45 | 97.90
7 97.11 98.37 | 97.74
9 97.00 98.28 | 97.64
11 97.01 98.11 | 97.55
13 96.96 97.98 | 97.47

Table 3.11: Performance on the PNP finding task using different numbers of
nearest neighbours.

Additionally, another configuration, in which the default metric is MVDM, but
the distance and intervening PPs features are treated as numeric features, is
tested. For numeric features, the distance is defined as a normalised difference
between the two numbers.

Table 3.10 shows that, surprisingly, the best performing configuration is the
one that assigns the Overlap metric to all features, which will therefore continue
to be used in the following experiments. Also remarkable is the fact that the
global MVDM metric performs worse of all. Specifically treating the distance
and intervening PPs features as numeric does not improve performance.

The number of nearest neighbours The scores listed in table 3.11 reveal that
considering the class of three nearest neighbours in classification performs best
and that, as neighbours are added or removed, the performance deteriorates.
For this reason, all remaining experiments will use three nearest neighbours.

Voting mechanism The voting mechanisms and their corresponding perform-
ance are presented in table 3.12. Inverse-distance voting is the best performing
mechanism. Simple majority voting outperforms all remaining options, of which
the exponential-decay variants are the four worse performing. The following ex-
periments will use Inverse-distance voting.

Learning algorithms As was done for chunking, the trade-off between speed
and accuracy has been explored by applying IGTree and TRIBL to the PNP
finding task. The results of these tests, presented in table 3.13 show that the
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|| precision | recall | Fs |

Majority 97.45 98.45 | 97.95
Inverse distance 97.48 98.48 | 97.98
Inverse linear 97.26 98.21 | 97.73

Exponential decay, o = 10 92.50 99.57 | 95.90
Exponential decay, o = 20 92.50 99.57 | 95.90
Exponential decay, o = 30 92.50 99.57 | 95.90
Exponential decay, o = 40 92.50 99.57 | 95.90

Table 3.12: Performance on the PNP finding task using different voting mech-
anisms. The « parameter for the Exponential decay mechanism is a constant
determining the slope of the decay function.

| Algorithm || precision | recall [ Fj | instances/sec |
IB1 97.48 98.48 | 97.98 247
TRIBL, ¢ =1 97.50 98.48 | 97.99 233
TRIBL, ¢ =2 97.61 97.30 | 97.45 1008
TRIBL, ¢ =3 97.63 97.26 | 97.45 1028
TRIBL, ¢ =4 97.57 97.30 | 97.43 988
TRIBL, ¢ =5 97.73 96.61 | 97.16 2057
I1GTree 98.23 92.44 | 95.24 4114

Table 3.13: Performance on the PNP finding task of different trade-offs between
classification speed and accuracy, established by using the IB1, IGTree and
TRIBL algorithms.

baseline performance is only slightly outperformed by the best scoring machine
learning implementations. As for precision, the baseline score is even better than
six out of seven learning algorithms; only the precision of IGTree is comparable
to the baseline performance. However, the recall rate of IGTree also matches
that of the baseline, while the other algorithms perform considerably better on
this measure, which makes them the better performing implementations overall.
Among these configurations, the two best performing are IB1 and TRIBL with
a threshold value of 1, which perform equally well; as do the TRIBL variants
with thresholds from 2 to 4.

3.2.3 Optimisation of the grammatical-relation finder

In this subsection, the grammatical-relation finder is trained and optimised to
find three types of relations: subject, direct object, and indirect object. In
the CGN annotation these relations correspond to dependencies of types SU,
OBJ1 and OBJ2, respectively. The optimisation procedure performed for the
grammatical-relation finder is the same as for the tagger/chunker and the PNP
finder.

Before the optimisation is described, a baseline score is established. Buch-
holz (2002) proposes a baseline experiment that always predicts the class most
frequently associated in the training data with the value of the distance feature
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| left | right || precision | recall | Fs |

2 1 82.81 85.28 | 84.03
1 1 83.44 84.44 | 83.94
2 2 83.77 86.12 | 84.93
3 3 83.38 86.03 | 84.68

Table 3.14: Performance on the grammatical-relation-finding task using different
local context sizes.

| | precision | recall | Fz |

No weighting 78.91 85.97 | 82.28
Gain ratio 83.77 86.12 | 84.93
Information gain 79.15 85.85 | 82.37
Chi-square 76.33 85.18 | 80.51
Shared variance 79.34 85.88 | 82.48

Table 3.15: Performance on the grammatical-relation-finding task using different
feature weighting schemes.

of the test instance. When applied to the CGN data this strategy results in
predicting SU if the distance is 1 or -1 and no relation for all other distances.
The precision rate obtained by this baseline is 63.88; its recall is 57.84 and its
Fj3, 60.71.

The remainder of this section contains a survey of the intermediate steps in
the optimisation of the grammatical-relation finder.

Size of the local context Buchholz (2002) describes the optimisation of the
memory-based grammatical-relation finder for written English and reports an
optimal context size of two chunks to the left and one chunk to the right of
the focus chunk. This context size, together with one smaller and two larger
context sizes have been tested with the CGN data.

Table 3.14 shows that the two larger context sizes yield better performance
than the one from Buchholz (2002), which is, itself, more accurate than a context
of only one chunk both to the left and to the right of the focus chunk. Hence,
a context of two words to the left and two words to the right is selected for the
following experiments.

Feature weighting Gain-ratio weighting is by far the best performing feature
weighting scheme on the grammatical-relation-finding task, as can be seen in
table 3.15. In contrast, the Chi-square weighting scheme shows the worse ac-
curacy; the other schemes are in between. Gain-ratio weighting will continue to
be used in the remaining experiments.

Distance metric The same distance metric assignments as were tested for PNP
finding have been applied to grammatical-relation finding. The results of these
settings are presented in table 3.16. It can be seen that, unlike the results for
PNP finding, the global Overlap assignment is not among the best performing
options for grammatical-relation finding. As for the numeric features, explicitly
marking the intervening verbs feature does result in good performance, while
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| || precision | recall | Fs |
Overlap 83.77 86.12 | 84.93
All MVDM 86.66 84.84 | 85.74
Tags MVDM 85.07 85.15 | 85.11
Words MVDM 84.43 84.55 | 84.49
Distance numeric 84.50 85.23 | 84.86
Intervening numeric 86.66 84.84 | 85.74
Distance+intervening numeric 84.50 85.23 | 84.86

Table 3.16: Performance on the grammatical-relation-finding task using different
distance metric configurations.

| || precision | recall | Fj |

1 86.66 84.84 | 85.74
3 89.18 85.87 | 87.49
) 89.84 85.99 | 87.87
7 90.23 85.90 | 88.01
9 90.41 85.84 | 88.06
11 90.49 85.70 | 88.03
13 90.54 85.55 | 87.97

Table 3.17: Performance on the grammatical-relation-finding task using different
numbers of nearest neighbours.

this is not the case for the distance feature. Overall, the best performance
is obtained by the global MVDM metric, which will therefore be used in all
following experiments.

The number of nearest neighbours Table 3.17 reveals that examining nine
nearest neighbours in order to classify a test instance leads to the best perform-
ance, which is far better than that for one neighbour classification. However, the
other options listed in the table are not drastically worse. In future experiments,
nine nearest neighbours will be used.

Voting mechanism As demonstrated by table 3.18, all weighted voting mech-
anisms except Inverse-linear voting improve upon the performance of the default
setting, that is, majority voting. The best performing parameter setting uses
Inverse-distance voting. Furthermore, all exponential-decay variants score ap-
proximately the same. Inverse-distance voting is selected as best performing
voting mechanism.

Learning algorithm The trade-off between speed and accuracy implemented
by the IB1 and IGTree algorithms, is illustrated by table 3.19. Surprisingly,
TRIBL with a threshold of 4 is the best performing setting, thereby outper-
forming both IB1 and TRIBL with ¢ = 1, 2, and 3. The results of the other
settings show the usual situation: accuracy deteriorates and speed rises as the
threshold parameter of TRIBL increases.
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|| precision | recall [ Fj

Majority 90.41 85.84 | 88.06
Inverse distance 90.56 85.94 | 88.19
Inverse linear 89.73 86.25 | 87.96
Exponential decay, o = 10 90.40 85.96 | 88.12
Exponential decay, o = 20 90.40 85.96 | 88.12
Exponential decay, o = 30 90.40 85.97 | 88.13
Exponential decay, o = 40 90.42 85.99 | 88.15

Table 3.18: Performance on the grammatical-relation-finding task using different
voting mechanisms. The « parameter for the Exponential decay mechanism is

a constant determining the slope of the decay function.

| Algorithm || precision | recall [ Fj | instances/sec |
IB1 90.56 85.94 | 88.19 58
TRIBL, ¢ =1 90.56 85.94 | 88.19 60
TRIBL, ¢ =2 90.56 85.94 | 88.19 63
TRIBL, ¢ =3 90.56 85.95 | 88.19 81
TRIBL, ¢ =4 90.85 86.25 | 88.49 272
TRIBL, ¢ =5 90.47 85.47 | 87.90 497
IGTree 77.96 71.82 | 74.76 4089

Table 3.19: Performance on the grammatical-relation-finding task of different
trade-offs between classification speed and accuracy, established by using the

IB1, IGTree and TRIBL algorithms.
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3.3 Evaluation of the parsing cascade

Thus far, the three parser modules have been treated as individual units, each
of them being independent of the other two. Section 2.1 has described the
learning tasks devised for the parser modules in terms of certain presupposed
input information. In the previous section, memory-based implementations of
these learning tasks have been trained and optimised using gold-standard cor-
pus data to provide this information. However, in practical parsing applications,
the only information actually available are the raw words, grouped in sentences.
The PNP finder and the grammatical-relation finder, which require chunk in-
formation for their input, are therefore unable to operate in isolation.

To resolve the input requirements of the parser modules, they are linked
together in a cascade in which output of one module is used to construct in-
put vectors for the following modules. As part of such a parsing framework,
the modules are no longer the independent units as they have been presen-
ted throughout the preceding chapters. Rather, the performance of one module
may be tightly related to that of the modules responsible for providing its input.
For example, in the memory-based parsing cascade, the quality of the output
of the grammatical-relation finder is as much affected by the accuracy of the
tagger/chunker and the PNP finder, as it is by the accuracy of the grammatical-
relation finder itself.

As made clear by the above, the individually optimised parser modules from
the previous section alone are not sufficient to answer the research question. An
evaluation of the effectiveness of the memory-based shallow parsing method on
spoken Dutch should be based on the performance of the entire parsing frame-
work, rather than on the scores collected in the previous section. For this reason,
the experiments in this thesis are concluded by evaluating the performance of
the final Dutch memory-based shallow parser.

This section reports on the evaluation of three different variants of the
memory-based shallow parser. The first variant corresponds to the standard
parsing cascade consisting of the tagger/chunker, PNP finder and grammatical-
relation finder. The other two try to improve the performance of the parser by
filtering disfluencies, which are phenomena typical of spoken language, from the
input sentences. The performance of the standard parsing cascade is reviewed
in subsection 3.3.1. After that, the value of adding disfluency filtering to the
parsing framework is evaluated in subsection 3.3.2.

3.3.1 Evaluating the standard parsing cascade

The memory-based parsing cascade consists of the three parser modules op-
timised earlier in this chapter, linked in sequence. Sequential execution of the
modules is important, since both the PNP and grammatical-relation finder re-
quire information that is only available after the tagger/chunker is finished; in
addition, the grammatical-relation finder depends on the PNP finder for inform-
ation about PNP chunks.

For these experiments three different versions of the parsing cascade have
been tested, based on different parameter settings. One parsing cascade is
formed by using the optimal parameter settings found for the parser modules;
this parser produces the most accurate results. Another cascade combines the
three modules, this time implemented by the IGTree algorithm, which produces
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tagger/chunker PNP finder relation finder
prec. | recall | Fs prec. | recall | Fs prec. | recall | Fs

gold-standard | 83.91 | 85.91 | 84.89 || 97.48 [ 98.48 | 97.98 [[ 90.56 | 85.94 | 88.19 |

optimal 83.91 | 85.91 | 84.89 || 86.15 | 90.71 | 88.37 || 83.76 | 79.11 | 81.37
fastest 77.03 | 78.47 | 77.74 || 81.89 | 78.95 | 80.40 || 68.07 | 62.29 | 65.05
trade-off 82.41 | 84.53 | 83.46 || 84.88 | 88.22 | 86.52 || 83.07 | 77.94 | 80.42

Table 3.20: Performance of the parser modules as part of the memory-based
shallow parsing cascade. For comparison, the performance of the modules tested
in isolation is also listed.

the fastest running version, and, finally, a reasonable trade-off between speed
and accuracy is built using TRIBL-based modules.

The performance scores for all three versions have been collected in table
3.20, which shows the performance of the individual modules tested on gold-
standard input data, too. The results clearly show that the performance of the
tagger/chunker has an important impact on the performance of the other two
modules. With optimal settings, both score almost ten and seven percent worse
in comparison with their performance in isolation.

3.3.2 Improving performance by disfluency filtering

The memory-based shallow parser that has been constructed and evaluated in
the previous section consists of the same three modules as are used by Buch-
holz et al. (1999) for parsing written English. Although using the exact same
framework for spoken Dutch does illustrate its generality and robustness, it is
expected that performance can be improved if the default framework is adapted
to the specific properties of the target data. Such a property of the CGN data
that is the central issue in this section, is its spoken nature. An important
property of spoken language is the existence of a variety of phenomena that are
considered to be noise, that is, data that do not contain any informative value
with respect to the correct classification. In contrast, written language hardly
ever contains such noise.

More specifically, the type of noise the optimisations in this section try to
counteract are disfluencies. In the CGN annotation disfluencies are represented
as single nodes that are not connected to the rest of the syntactic tree. They
include such phenomena as laughter and fragmented or repeated words. In
the default parsing cascade, disfluencies are treated as any other word and
therefore may end up in the local context of instances for all of the learning
tasks. However, considering that they most likely do not add any informative
value to the local context of a chunk, it is expected that filtering them out of the
data could improve the performance of the individual modules and the entire
parser in general. Two approaches to disfluency filtering have been evaluated,
one of which can easily be added to the existing parser, whereas the other would
require an additional classification module.

The first approach to filtering of disfluencies uses information generated by
the tagger/chunker to filter interjections, a restricted subclass of disfluencies,
from the input to the PNP finder and the grammatical-relation finder. In the
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tagger/chunker PNP finder relation finder
prec. | recall | Fs prec. | recall | Fs prec. | recall | Fs

| gold-standard | 83.91 | 85.91 [ 84.89 |[ 97.48 [ 98.48 | 97.98 |[ 90.56 | 85.94 [ 88.19 |
| standard | 83.91 | 85.91 | 84.89 [[ 86.15 | 90.71 | 88.37 |[ 83.76 | 79.11 [ 81.37 |

interjection filter | 83.91 | 85.91 | 84.89 || 86.17 | 90.70 | 88.37 || 83.81 | 79.28 | 81.48
disfluency filter | 85.50 | 86.61 | 86.05 || 88.04 | 92.39 | 90.17 || 85.66 | 80.48 | 82.99

Table 3.21: Comparison of the performance scores for the standard memory-
based shallow parsing cascade and two parsing cascades to which some form of
disfluency filtering is added.

CGN annotation, interjections are assigned the TSW part of speech tag. Con-
sequently, they are detected by the tagger/chunker, the same way nouns or
verbs are detected. This information can be exploited by inserting an inter-
jection filter between the tagger/chunker and the PNP finder that removes all
TSW-tagged words that are not part of a chunk.

The second approach does not use information that is already generated by
one of the existing modules, but instead, requires an additional classifier to be
added to the parsing cascade. Lendvai, Van den Bosch, and Krahmer (2003)
describe a memory-based classifier that detects any type of disfluency present
in the CGN. An important property of this classifier is that it does not require
any other information than what can directly be extracted from the raw input
text. For this reason, it can be inserted as the very first step in the parsing
cascade, thereby not only improving the input to the PNP- and grammatical-
relation-finder modules, but also that to the tagger/chunker. As was shown in
the previous section, improving the performance of the tagger/chunker might
also have an important effect on the performance of the other two modules.

For the experiments reported in this section, the classifier described by Lend-
vai et al. (2003) has not actually been implemented. Rather, the input data to
the tagger/chunker is preprocessed based on the information available in the
CGN. This has the effect of an infallible disfluency detector. Undeniably, this
decision causes the results to turn out too positive with respect to those that
would result from using a real disfluency classifier. However, the scores obtained
by this experiment do provide an approximate upper-bound for the actual per-
formance.

The effect that both filters have on the performance of the parsing cascade
is presented in table 3.21. For comparison the scores of the standard parsing
cascade and those of the individual modules tested in isolation on gold-standard
input data, are also listed. The interjection filter does not significantly improve
the accuracy of the PNP finder. The improvement of the grammatical-relation
finder is significant, but only small. In contrast, the cascade with disfluency
filter does show a significant improvement for all three modules with respect to
the unfiltered parser. It should be kept in mind, however, that these scores have
been obtained by applying a perfect disfluency filter to the input data.



Chapter 4

Discussion

Chapter 3 reported on the experimental optimisation of the three memory-based
parser modules. Additionally, the performance of the complete memory-based
shallow parser, obtained by applying the three modules in sequence, has been
reviewed. In this chapter these findings are related to the central research
question of this thesis, that is, to what extent can the memory-based shallow
parsing method be employed to parse spoken Dutch.

The answer to this research question is divided into two parts. First, it is
demonstrated that the Dutch memory-based parser of the previous chapter has
successfully learned to parse spoken Dutch. Successful learning, in this sense,
is assessed by comparing the performance measures that have been collected in
the previous chapter with the minimum requirements that could be expected
from a trained system.

Secondly, the performance of the Dutch memory-based shallow parser is
compared with that of its English equivalent. Rather than verifying successful
learning this comparison relates the performance of the Dutch parser to the
potential of memory-based parsing that has been illustrated on written English.
As a result of this, speculations with respect to the possible cause of observed
differences are given and improvements to the Dutch parser are proposed.

4.1 Assessing parser performance

To decide whether a memory-based parser module has successfully learned its
task, the conditions a successfully learned module should fulfil, have to be
defined. For this purpose the baseline experiments that have been introduced
in chapter 3 are used. These baselines have straightforward classification pro-
cedures, based on naive task representations. The tagging/chunking baseline
assigns a tag to a word solely based on the word form itself. Likewise, the
baselines for the PNP finding and grammatical-relation finding tasks use noth-
ing but the distance between PP or verbal chunk and the focus chunk to predict
the correct target relation.

In contrast to these baselines, the memory-based parsing task representa-
tions used in this thesis are much more complex. Their design has been based
on linguistic knowledge to select properties of the input data that are expected
to be good predictors for the target class and include these as features in the
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| || precision | recall | Iy |

tagging /chunking baseline 64.62 62.14 | 63.36
tagging/chunking mbsp 83.91 85.91 | 84.89
pnp finding baseline 98.23 92.44 | 95.24
pnp finding mbsp 97.48 98.48 | 97.98
gr finding baseline 63.88 57.84 | 60.71
gr finding mbsp 90.56 85.94 | 88.19

Table 4.1: Comparison of the performance scores of the baseline experiments
and the best performing memory-based classifiers for the three shallow parsing
subtasks.

instance representation. As for all three learning tasks in this thesis, the most
important contribution from linguistics is the finding that the local context of
a word or chunk is an important predictor for its syntactic type or function.
Therefore, an encoding of this local context makes up the largest part of the
feature vectors.

Deciding whether a certain learning task representation enables a task to
be learned, then, is a question of whether the extra information leads to an
improvement in performance with respect to the baseline score. Such an im-
provement ascertains that the features used in the instance representation are
useful for performing the task. From that, it can be concluded that the task
has been successfully learned.

In table 4.1, the baselines scores for the three parsing subtasks are compared
with the optimised memory-based classifiers that have been trained. It can be
seen that all three memory-based classifiers improve upon the baseline score.
As could be expected, the improvement achieved by the tagger/chunker and by
the grammatical-relation finder is much greater than the improvement observed
for the memory-based PNP finder. Detecting PNP chunks is a relatively easy
task that can already be performed well with only minimal information, as is
shown by the baseline score.

In fact, the precision rate of the baseline PNP finder is higher than that of
the memory-based PNP finder. This can be explained by the fact that almost all
PP and directly following NP chunks are PNP chunks. As the baseline always
predicts a PNP if the NP chunk directly follows the PP chunk, its precision is
very high. The memory-based PNP finder also tries to predict PNP chunks if
the NP chunk is further away and thereby its precision drops slightly. However,
it does result in a considerably higher recall rate, which makes that, overall, the
memory-based PNP finder outperforms the baseline.

Conclusion

Considering that all memory-based parser modules perform better than the
baseline scores, it can be concluded that they have successfully learned to parse
spoken Dutch using the memory-based shallow parsing techniques. In accord-
ance with expectations, it can therefore be confirmed that the memory-based
shallow parsing method is language-independent.
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CGN WSJ
prec. | recall | Fp prec. | recall | Fj
tagging/chunking baseline || 64.62 | 62.14 | 63.36 || 72.58 | 82.14 | 77.07
tagging /chunking mbsp 83.91 | 85.91 | 84.89 || 91.05 | 92.03 | 91.54
pnp finding baseline 98.23 | 92.44 | 95.24 || 98.21 | 95.38 | 96.77
pnp finding mbsp 97.48 | 98.48 | 97.98 || 98.50 | 97.40 | 97.90
gr finding baseline 63.88 | 57.84 | 60.71 || 49.43 | 37.30 | 42.51
gr finding mbsp 90.56 | 85.94 | 88.19 || 85.41 | 75.39 | 80.09

Table 4.2: Comparison of the performance of the parser modules trained on
CGN data and on WSJ data. The performance measures for the WSJ chunker,
PNP finder and grammatical relation finder are obtained from Veenstra and
Van den Bosch (2000), Buchholz et al. (1999) and Buchholz (2002), respectively.

4.2 Restrictions of the current approach

By comparing the performance of the Dutch memory-based parser modules with
baseline scores, it has been shown that the three parsing subtasks have been
successfully learned. A partial answer to the research question, then, is that the
approach proven to be effective for written English is also applicable to spoken
Dutch. However, given the supposed language-independence of memory-based
parsing, this finding only confirms what was already expected. For this reason,
the research question specifically mentions the extent to which the techniques
are useful for parsing spoken Dutch.

This aspect of the research question is discussed by reviewing whether the
memory-based shallow parsing method is as effective for spoken Dutch as it
is for written English. The fact that techniques developed for written English
can successfully be applied to spoken Dutch demonstrates that there are many
similarities between the two and that the dissimilarities do not require a funda-
mentally different approach to parsing. Nevertheless, it is expected that some
of these dissimilarities do have a negative effect on the parsing performance. To
verify this, the performance of the Dutch and English memory-based shallow
parsers are compared.

This comparison is presented in table 4.2, in which the performance scores
of the three memory-based parser modules trained on CGN data or Wall Street
Journal (WSJ) data, are listed, together with baselines scores for all tasks on
both corpora. The Wall Street Journal corpus is a treebank of written Eng-
lish. In contrast, the CGN treebank consists of spoken Dutch sentences. Con-
sequently, performance differences are likely to be caused by the differing prop-
erties of the data set.

Tagging/chunking As for the tagging/chunking task, it can be seen that
the baseline score on the WSJ data is considerably higher than on the CGN
data. This suggests that the word form alone, is a better predictor for the cor-
rect syntactic type on the WSJ data than it is on the CGN data. Therefore,
tagging/chunking on the CGN can be considered a more difficult task. This
is reflected in the performance difference between the two memory-based tag-
ger /chunkers, which indicates that written English is better parsed than spoken
Dutch.
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PNP finding The PNP finding baseline scores are very similar on both corpora.
It has been mentioned earlier that PNP finding is the simplest of the three
parsing tasks and that heuristics such as the one used by the baseline PNP
finder perform almost as good as the best memory-based classifiers. This is
confirmed by the scores in table 4.2, which show that the memory-based PNP
finders score a few percents better than the baselines. The performance on both
corpora can be considered to be equally good.

Grammatical-relation finder For the grammatical-relation finder, the scores
in table 4.2 cannot be used to make a fair comparison. The WSJ grammatical-
relation finder was trained to find all relations to verbs, while the CGN gram-
matical-relation finder only finds subject and direct or indirect object relations.
This difference is expressed by the baseline scores, which suggest that the task
performed by the WSJ relation finder is more difficult than the one performed
by the CGN relation finder. However, to make a sound comparison between
the two grammatical-relation finders, a carefully designed experimental setup,
in which all factors are equal, will be necessary.

The above shows that, in comparison with the original English memory-based
parser, the tagger/chunker module performs notably less accurate when applied
to CGN data. The PNP finders perform approximately equally well. Based
on the available information, the grammatical-relation-finding modules cannot
be compared soundly. However, in the parsing cascade, the performance of
the tagger/chunker module has already an important impact on the accuracy
of the PNP finder and the grammatical-relation finder. Consequently, these
two modules will nevertheless perform worse than their English counterparts in
practical applications, where the input information has to be provided by the
tagger/chunker. For this reason, in order to improve the overall performance
of the Dutch memory-based parser, the factors that hinder tagger/chunker per-
formance should be identified, after which the learning task can be adapted to
overcome them.

It can reasonably be expected that most of the factors hindering tagger/
chunker performance on the CGN data but not on the WSJ data are caused by
the differences between these two corpora. The two most obvious properties in
which the CGN differs from the WSJ corpus are the language and the nature
of the language use, that is, the CGN is Dutch rather than English, and it
contains spoken rather than written language. Therefore, factors hindering
the performance of the CGN tagger/chunker are most likely to be related to
properties of the Dutch language or to phenomena specific to spoken language.
In the present research, there have been no findings that point in either direction.
Moreover, from an analytical point of view, the CGN corpus is not particularly
suited to relating performance issues to one of these causes, since the CGN, at
the same time, differs in two dimensions from the WSJ corpus. For this reason,
it would be worthwhile to apply the memory-based parsing techniques also to
the Alpino Treebank, which is a treebank of written Dutch. Then, it would be
possible to vary either language or nature of language use, while keeping the
other dimension fixed.

Among factors that are specific to spoken language are constructs that break
common grammatical practice and noise such as disfluencies. As for the first,
memory-based parsing does not have an inherent notion of grammaticality, but
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instead, learns to parse whatever grammatical constructs are frequently used in
the training data. Consequently, it is to a certain extent robust to grammatical
errors, provided these errors are often committed. At present, it is unclear,
however, whether less predictable grammatical errors have an important impact
on parsing accuracy.

With respect to disfluencies, it has been shown in chapter 3 that perfect
filtering of disfluencies from the input to the tagger/chunker improves perform-
ance. For this reason, it would be interesting to test whether this improvement
remains significant when disfluencies are automatically predicted by a memory-
based classifier. Still, the performance increase caused by disfluency filtering is
quite small, which suggests that the tagger/chunker is already largely robust to
noisy input.

A property of the Dutch language that might hinder parsing accuracy is the
fact that it is less constrained in its word order than English. In languages
that have a relatively free word order, immediately neighbouring words may be
poorer predictors of the target class of the word than is generally the case for
constrained-order languages. Parsing of less constrained-order languages such
as Dutch might benefit from larger amounts of training data. This hypothesis
can be tested when the final release of the CGN arrives, since this release will
contain a million syntactically annotated words as opposed to half a million
words that are available in release 6, which has been used in this research.
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Chapter 5

Conclusions

In the introduction of this thesis, it was stated that traditional methods of parser
development give rise to a knowledge-acquisition bottleneck. Data-driven pars-
ing techniques, and in particular memory-based shallow parsing, were identified
as alternatives that overcome this bottleneck and that have been proven to be
successful in parsing written English. With the aim of transferring the benefits
of memory-based shallow parsing to the development of a Dutch parser, the
research objective formulated in this thesis was to apply these techniques to the
CGN, a corpus of spoken Dutch. This led to the research question: to what
extent can the memory-based shallow parsing techniques be applied to a corpus
that is Dutch rather than English and that contains spoken rather than written
language?

This final chapter discusses the results of the research; it is subdivided into
two parts. First, the answer to the research question is presented, based on the
findings in chapters 3 and 4. Then, recommendations for future research in the
context of Dutch memory-based parsing, are given.

The main conclusion of this thesis is that parsing of spoken Dutch can be suc-
cessfully learned using the memory-based shallow parsing techniques. All three
parser modules yield a good performance when trained and tested on the CGN
data, which shows that most dissimilarities between spoken Dutch and written
English do not require a fundamentally different learning-task definition. When
applied in sequence, these modules form a complete shallow parser that can
divide sentences into syntactic chunks and identify the most important gram-
matical relations.

By comparing the performance scores of the memory-based parsing modules
applied on spoken Dutch and those applied on written English, it is expected
that, of all three parser modules, the tagger/chunker is affected most by the
differences between the two target languages. Therefore, the performance of
the tagger/chunker and the parsing cascade overall, would benefit most from
additions to the learning-task definition that are specifically directed at prop-
erties unique to spoken language or to Dutch. This is supported by the results
showing that filtering disfluencies from the input of the tagger/chunker causes
a small but significant performance increase.
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Future research

Extensions to the current research that aim to improve parsing performance
should be based on a systematic analysis of the causes of parsing errors com-
mitted by the current parser. As the CGN differs in two dimensions from the
original written English training data, it is difficult to predict whether frequently
committed errors are caused either by properties of Dutch or by properties of
spoken language. Therefore, it would be worthwhile to apply the same memory-
based parsing techniques also to the Alpino Treebank, a corpus of written Dutch.
Then, comparisons could be made between parsers for spoken Dutch and written
Dutch, as well as between parsers for written Dutch and written English.

If the cause of certain types of errors has been determined, solutions can
range from extensions of the current learning task to additional modules that
preprocess the input data. For example, it has been shown that perfect filter-
ing of disfluencies from the input to the tagger/chunker improves performance.
Whether this improvement remains significant if disfluencies are automatically
predicted, however, should be established by further empirical tests.

Furthermore, in chapter 4, it has been explained that the availability of
the final release of the CGN, which will approximately double the number of
syntactically annotated words available as training data, may have a positive
effect on the performance of the parser. While it is generally the case with all
parsing tasks that increasing the amount of training data improves performance,
it is hypothesised that increasing the amount of training data will particularly
benefit parsers for languages with a relatively free word order, such as Dutch.
This hypothesis can be tested as soon as the final release of the CGN is available.
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Summary

Traditional methods of parser development have mostly been grammar-based.
When developing grammar-based parsers, much effort needs to be invested in
constructing comprehensive grammars of the target language. This eventually
leads to a knowledge-acquisition bottleneck. Data-driven parsing methods, and
in particular those based on memory-based learning, are alternative approaches
to parser development that are not a priori affected by this bottleneck. While the
English language has seen steady progress in memory-based parsing, languages
with smaller communities of speakers, such as Dutch, lagged behind due to a
lack of the necessary resources. For Dutch, this situation has changed with the
arrival of two large-scale syntactically-annotated corpora: the Spoken Dutch
Corpus (CGN) and the Alpino Treebank, which are both enabling resources for
data-driven parser development.

With the above in mind, the research objective of this thesis has been for-
mulated to target the development of a Dutch shallow parser based on the
memory-based shallow parsing framework by Buchholz et al. (1999) and on the
CGN as training data. This objective has led to the research question: “To
what extent can the memory-based shallow parsing techniques be applied to a
corpus that differs from the original training corpus in the sense that it is Dutch
rather than English and that it contains spoken rather than written language?”
The remainder of the thesis is centred around answering this question.

The memory-based shallow parsing framework splits up the parsing task
into three subtasks: 1) part of speech tagging/chunking, 2) PNP finding, and
3) grammatical-relation finding. The modules performing these subtasks are
applied in sequence to the input data, so that results produced by one module
can be used as input by another. In order to train memory-based classifiers for
these tasks, they have to be formulated in a form suited to memory-based learn-
ing algorithms, that is, into fixed-length vectors of feature-value pairs that have
a unique class label. The task representation of all three subtasks is essentially
based on the windowing technique: an instance contains one focus word or chunk
and a number of words or chunks directly preceding or following it. In addition,
instances encode other information useful for the task. For example, instances
for the tagging/chunking task include the classifications of words preceding the
focus word in the sentence. Instances for the PNP-finding task and for the
grammatical-relation-finding task contain features describing spatial properties,
such as the distance and the number of verbal chunks between the focus chunk
and the target verb.

The CGN stores its annotations in dependency structures, which are directed
acyclic graphs of which the nodes and edges have been labelled with syntactic
information. To convert the CGN dependency structures to the instance format
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of the learning tasks, a conversion procedure has been described. The main task
of this procedure is to extract chunks and grammatical relations from the CGN
data, which only implicitly contain these concepts.

To optimise the performance of the parser modules, a systematic optimisa-
tion procedure is performed on all three modules in isolation, that is, the input
of the modules is composed of gold-standard corpus data, rather than of the
outputs of the preceding modules in the parsing cascade. The optimisation pro-
cedure leads to Fj scores of 84.89 for the tagger/chunker, 97.98 for the PNP
finder, and 88.19 for the grammatical-relation finder.

Combining the three modules into a complete memory-based shallow parsing
cascade reveals that the performance of the modules drops significantly due to
errors committed by the preceding modules. In particular the performance of
the tagger/chunker appears to have an important effect on that of the entire
parsing cascade. The Fjg scores for the PNP finder and the grammatical-relation
finder drop to 88.37, and 81.37, respectively. In addition to experiments with
the standard memory-based shallow parsing cascade, some other experiments
have been performed in which either all disfluencies or only interjections are
filtered from the input sentences. The results of these experiments show that
this intermediary filtering step improves the performance of the parser slightly,
but significantly. The Fj3 scores for the tagger/chunker, the PNP finder and the
grammatical-relation finder with perfectly filtered disfluencies are 86.08, 90.17,
and 82.99, in that order.

Based on the experimental results, the answer to the research question is
centred around two main considerations. One the one hand, the memory-based
parser modules appear to have successfully learned to parse spoken Dutch sen-
tences. On the other hand, a comparison of the scores of the Dutch memory-
based shallow parser with the memory-based shallow parser for written English,
brings to light that parsing spoken Dutch is a more difficult task than parsing
written English. Future research should therefore focus on extending the learn-
ing tasks to deal better with the typical properties of spoken Dutch that hinder
the performance of the parser. In order to identify such properties, more analyt-
ical experiments will have to be performed, for example experiments comparing
the performance of the memory-based shallow parser for spoken Dutch with one
trained for written Dutch.



Appendix A

Syntactic labels in the CGN

A.1 Part of speech tags

ADJ1 Prenominal adjective, base form

ADJ2 Prenominal adjective, comparative form
ADJ3 Prenominal adjective, superlative form
ADJ4 Nominalised adjective, base form

ADJ5 Nominalised adjective, comparative form
ADJ6 Nominalised adjective, superlative form
ADJ7 Postnominal adjective, base form

ADJ8 Postnominal adjective, comparative form
ADJ9 Adjective used predicatively, base form
ADJ10 Adjective used predicatively, comparative form
ADJ11 Adjective used predicatively, superlative form
ADJ12 Adjective, dialectal word

BW Adverb

LET Interpunction

LID Determiner

N1 Common noun, singular

N2 Common noun, singular, genitive case
N3 Common noun, plural

N4 Common noun, dialectal word

Nb5 Proper noun, singular

N6 Proper noun, singular, genitive case

N7 Proper noun, plural

N8 Proper noun, dialectal word

SPEC Rest category

TSW Interjection

TW1 Ordinal number

TW2 Cardinal number

VG1 Coordinating element

VG2 Subordinating element

VNW1 Personal pronoun, nominative case
VNW2 Personal pronoun, oblique case

VNW3 Personal pronoun, nominative or oblique case
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VNW4 Personal pronoun, genitive case

VNW5 Personal pronoun, dialectal word

VNW6 Personal or reflexive pronoun

VNW7 Reflexive pronoun

VNWS8 Reciprocal pronoun, oblique case

VNW9 Reciprocal pronoun, genitive case

VNWI10 Reciprocal pronoun, dialectal word

VNWI11 Possessive pronoun

VNW12 Question word

VNW13 Relative pronoun

VNW14 Question word or relative pronoun

VNW15 Question word or relative pronoun, used adverbially
VNW16 Exclamative pronoun

VNW17 Question word or relative pronoun, used as determiner
VNW18 Exclamative pronoun, used as determiner

VNWI19 Demonstrative pronoun

VNW20 Demonstrative pronoun, used adverbially

VNW21 Demonstrative pronoun, used as determiner
VNW22 Indefinite pronoun

VNW23 Indefinite pronoun, used adverbially

VNW24 Prenominal indefinite pronoun, used as determiner
VNW25 Nominalised indefinite pronoun, used as determiner
VNW26 Indefinite pronoun used predicatively as determiner
VNW27 Indefinite pronoun, dialectal word

VZ1 Preposition preceding its complement

VZ72 Preposition following its complement

V73 Fused preposition + article

WWwW1 Inflected verb form, singular

WWw2 Inflected verb form, plural

WW3 Inflected verb form with -t

Ww4 Infinitive used predicatively

WW5 Prenominal infinitive

WW6 Nominalised infinitive

WWwW7 Past particle used predicatively

WWS8 Prenominal past particle

WW9 Nominalised past particle

WW10 Present particle used predicatively

WWwWi11 Prenominal present particle

WWwWi12 Nominalised present particle

WW13 Dialectal verb

A.2 Domain types

AHI Long infinitive group headed by aan het

AP Adjectival group

COMPP Various comparative constructions

CONJ Conjunction

CP Clause headed by any kind of complementiser

DU Discourse unit



A.3. DEPENDENCY TYPES

o7

INF
LIST
MWU
NP

OTI

PP
PPART
PPRES
REL
SMAIN
SSUB
SV1
SVAN
TI

Ul
WHQ
WHREL
WHSUB

Short infinitive group

Asyndetic conjunction

Merged-word unit

Nominal group

Long infinitive group headed by om
Prepositional group

Past/passive particle group

Present particle group

Relative clause

Main clause, verb in second position
Subordinate clause, verb in final position
Sentence with a sentence-initial inflected verb
Subordinate clauses headed by van

Long infinitive group

Long infinitive group headed by wit
WH-question, verb in second position
Headless relative

Embedded WH-question

A.3 Dependency types

APPOS
BODY
CMP
CNJ
CRD
DET
DLINK
DP

HD
HDF
LD

LP

ME
MOD
MWP
NUCL
OBCOMP
OBJ1
OBJ2
PART
PC
POBIJ1
PREDC
PREDM
PRT
RHD
SAT

SE

Apposition

Body of subordinate clause

Grammatical complementiser

Member of conjunction

Coordinator

Determiner

Discourse particle joining discourse fragments
Discourse part (member of a DU domain)
Head

Second part of a circumposition
Locational or directional complement
List part (member of a LIST domain)
Measure complement

Modifier

Multi-word part (member of a MWU)
Nuclear clause (member of a DU domain)
Comparative complement

Direct or first object

Indirect or secondary object

Partitive

Prepositional complement

Provisional direct or first object
Predicative complement

Secondary predicate

Part of particle group

Complementiser heading (headless) relative
Satellite (member of a DU domain)
Obligatory reflexive object
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SU Subject

SUP Provisional subject

SVP Verbal particle

TAG Tag (member of a DU domain)
vC Verbal complement

WHD Complementiser heading a WH question



