Learning to Segment and Label Semi-Structured Documents with
Little or No Supervision

Sander Canisius
Caroline Sporleder

S.V.M.CANISIUSQUVT.NL
C.SPORLEDERQUVT.NL

ILK / Communication and Information Sciences, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The

Netherlands

Abstract

We present two machine learning ap-
proaches to information extraction from
semi-structured documents that can be used
if no annotated training data are available
but there does exist a database filled with
information derived from the type of docu-
ments to be processed. One approach tries to
employ standard supervised learning by ar-
tificially constructing labelled training data
from the contents of the database. Truly
knowledge-free production of these artificial
data turned out to result in suboptimal clas-
sification performance. However, given a
small amount of annotated training data, the
artificially constructed data can be modelled
to better match the structure of target docu-
ments, causing considerable performance im-
provement. The second approach combines
unsupervised Hidden Markov Modelling with
language models. Training such a system re-
quires nothing but the information available
in the database. Empirical evaluation of both
systems pointed out that the Hidden Markov
Model managed best to learn the task of seg-
menting and labelling biological field book
entries from a derived database only. Further
analysis showed that its performance could
be improved even more if the initial segmen-
tation of field book entries is optimised.

1. Introduction

Over the past decades much textual data has become
available in electronic form. Many text types, such as

Proceedings of the 18th Benelearn
P. Adriaans, M. van Someren, S. Katrenko (eds.)
Copyright (© 2007, The Author(s)

lists of classified advertisements, medical records, or
logs of zoological expeditions, adhere to some inherent
structure. Typically, such documents are made up of
a number of shorter texts (or entries), each describing
an individual object (e.g., an appartment, a zoological
find) or event (e.g., a patient presenting to a health
care provider). These descriptions in turn typically
consist of different segments (or fields) which contain
information of a specific type drawn from a more or
less fixed inventory. Example (1), for instance, shows
two descriptions of zoological specimens (a snake and
three frogs) collected during an expedition. The de-
scriptions consist of fields giving information about the
specimens and the circumstances of their collection.
For example, in the first description, Leptophis and
ahaetulla refer, respectively, to the genus and species
of the specimen, road to Overtoom mentions the place
of collection, in bush above water encodes information
about the biotope, in the process of eating Hyla min-
uta is a remark about the circumstances of collection,
16-V-1968 gives the collection date and RMNH 15100
the registration number.

(1) Leptophis ahaetulla, road to Overtoom, in bush
above water in the process of eating Hyla minuta
16-V-1968. RMNH 15100

Hyla minuta 1 ¢ 2 J Las Claritas, 9-VI-1978
quaking near water 50 cm above water surface,

near secondary vegetation, 200 m, M.S. Hoog-
moed, RMNH 27217 27219

Unfortunately, this inherent structure is rarely made
explicit. While the different object or event descrip-
tions might be indicated by additional whitespace or
formatting means, as in the example above, the in-
dividual fields within a description are typically not
marked in any way. However, knowledge of the field
structure would be very beneficial for information ex-
traction and retrieval. For instance, texts in their raw
form only allow key word search. To retrieve all entries
describing specimens of type Hyla minuta from a zoo-

logical field report, one can only search for occurrences
of that string anywhere in the document. This can re-
turn false positives, such as the first description in (1)
above, which does contain the string but is not about
a Hyla minuta specimen but about a specimen of type
Leptophis ahaetulla (the string Hyla minuta just hap-
pens to occur in the SPECIAL REMARKS field). On the
other hand, if the genus and species information in an
entry was explicitly marked, it would be possible to
query specifically for entries whose GENUS is Hyla and
whose SPECIES is minuta, thus avoiding the retrieval
of entries in which this string occurs in another field.

The task of automatically finding and labelling seg-
ments in semi-structured texts has been referred to as
field segmentation (Grenager et al., 2005). It differs
from information extraction tasks of the “template-
filling” variety in that all or most of the information in
the input document is assumed to be relevant and the
goal is to segment the document into fields containing
different types of information. Field segmentation can
be modelled as a sequence labelling problem, where
each text is viewed as a sequence of tokens and the
aim is to assign each token a label indicating to which
field the token belongs (e.g., BIOTOPE). If data in the
form of texts annotated with segment information was
readily available, the problem could be approached by
training a sequence labeller in a supervised machine
learning step. However, manually annotated data is
often not readily available. Creating it from scratch is
time consuming and often requires a certain amount
of expert knowledge. Moreover, the sequence labeller
has to be re-trained for each new domain (e.g., nat-
ural history vs. archaeology) and possibly also each
sub-domain (e.g., insects vs. mammals, different peri-
ods in history) due to the fact that the relevant fields
vary from domain to domain. For example, a report
describing a collection of fish may contain information
about the distance between the place where a specimen
was caught and the nearest coast, which is obviously
irrelevant for other types of animals.

Thus, fully supervised machine learning is not feasi-
ble for this task. In this paper, we explore two ap-
proaches which require no or only a very small amount
of manually labelled training data. Both approaches
exploit the fact that there are often structured re-
sources derived from the original, semi-structured doc-
uments that can potentially be utilised to bootstrap a
sequence labeller. It is common practice, for example,
that information contained in field reports or medical
records is manually entered into a database, usually
in an attempt to make the data easier to search. In
such databases, each row corresponds to an entry in
the original document (e.g., a zoological specimen),

and the database columns correspond to the fields one
would like to discern in the original document. Man-
ually converting raw text documents into databases is
a laborious task though, and it is rather common that
the database covers only a small fraction of the ob-
jects described in the original texts. This is certainly
the case in the cultural heritage domain, on which we
focus in this paper, where database extension is not a
high-priority task for which extra staff is employed but
is done by researchers and collection curators when-
ever their other duties permit it. The research ques-
tion we address in this paper is whether it is possi-
ble to bootstrap a domain-specific field segmentation
system from a small, manually created database for
that domain. Such a system could then by applied
to the remaining texts in that domain, which could
then be segmented (semi-)automatically and possibly
be added to the original database. This approach is
easily portable to new domains, provided that there
are existing databases for that domain.

A database does not make perfect training material
for a field segmenter though, as it is only derived from
the original document, and there are typically signif-
icant (and sometimes systematic) differences between
the two data sources: First, while the ordering of the
segments in a semi-structured text document is of-
ten not entirely fixed, some orderings are more likely
than others. This information is lost in the derived
databases. Second, the databases may contain infor-
mation that is not normally present in the underlying
text documents, for example information relating to
the storage of an object in a collection. Conversely,
some of the details present in the texts might be omit-
ted from the database, e.g., the SPECIAL REMARKS
field might be significantly shortened. Third, pieces of
information are frequently re-written when entered in
the database, in some cases these differences may be
systematic, e.g., dates, person names, or registration
numbers might be written in a different format. De-
spite of this, these databases will provide certain clues
about the structure and content of different fields. We
exploit this in two different ways: (i) by concatenating
database fields to artificially create annotated training
data for a supervised machine learner, and (ii) by us-
ing the database to build language models for the field
segmentation task.

2. Related Work

Most approaches to field segmentation and related in-
formation extraction tasks, such as template filling,
have been supervised. Freitag and Kushmerick (2000)
combine a pattern learner with boosting to perform

field segmentation in raw texts and in highly struc-
tured texts such as web pages and test this approach
on a variety of field segmentation and template filling
tasks. Kushmerick et al. (2001) address the problem
of extracting contact information from business cards.
They mainly focus on field labelling, bypassing the seg-
mentation step by assuming that each line on a busi-
ness card only contains one field (though a field like
ADDRESS may span several lines). Their method com-
bines a text classifier, for assigning likely labels to each
field, with a trained Hidden Markov Model (HMM) for
learning ordering constraints between fields. Borkar
et al. (2001) identify fields in international postal ad-
dresses and bibliographic records by nesting HMMs:
an outer HMM for modelling field transitions and a
number of inner HMMs for modelling token transi-
tions within fields. Viola and Narasimhand (2005) also
deal with address segmentation but employ a trained
context-free grammar.

An unsupervised approach is provided by Grenager
et al. (2005), who perform field segmentation on bib-
liographic records and classified advertisements, using
EM to fit an HMM to the data. They show that an
unconstrained model does not learn the field structure
very well and propose augmenting it with a limited
amount of domain-unspecific background knowledge,
e.g., by modifying the transition model to bias it to-
wards recognising larger-scale patterns.

3. Learning Field Segmentation from
Databases

3.1. Data

We used two data sources in the experiments: a
database containing information about a small part
of the reptile and amphibian collection of Naturalis,
the Dutch National Museum of Natural History, and
several field book descriptions of such specimens. The
database was created from the same field books but
we made sure that the database entries did not overlap
with the field book entries we used in the experiments,
i.e., both data sets describe different specimens.

The database consisted of 16,670 entries and 41
columns. Many database cells are empty. Those that
are filled come in a variety of formats, i.e., numbers
(REGISTRATION NUMBER), dates (COLLECTION DATE),
individual words (GENUS), and free text (BIOTOPE). 22
of the columns contained information that was missing
from the field books, e.g., information relating to the
storage of the specimens; these columns were excluded
from the experiments.

We randomly selected 300 field book entries which

were not covered by the database and annotated these
with segment information. Annotating this amount of
data took one person three days. To test the reliabil-
ity of the manual annotation, 50 entries were labelled
by two annotators. The inter-annotator accuracy on
the token level was 92.84% and the kappa .92. The
number of distinct field types found in the entries was
19, some of which only occurred in two entries, others
occurred in virtually every entry. The average field
length was four tokens, with a maximum average of
21 for the SPECIAL REMARKS field, and a minimum of
one for fields such as SPECIES or GENUS. The aver-
age number of tokens per entry was 60. Punctuation
tokens that did not clearly belong to any field were
labelled as OTHER. For the experiments, we split the
annotated entries into a development set of 100, which
we used for parameter tuning, and a test set of 200.

3.2. Baselines

In order to get a sense of the difficulty of the task at
hand, we implemented five baseline approaches. For
the first, Majority (MajB), we always assign the field
label that occurs most frequently in the manually la-
belled test data, namely SPECIAL REMARKS. The other
four baselines implement different look-up strategies,
using the database to determine which label should be
assigned to a token or token sequence.

Exact (ExactB) looks for substrings which exactly
match the content of a database cell and then as-
signs each token in the matched string the correspond-
ing column label from the database. There are nor-
mally several ways to match a field book entry to the
database cells; we employed a greedy search, labelling
the longest matching substrings first. All tokens that
could not be matched were assigned the label OTHER.

Unigram (UniB) assigns each token the column label
of the database cell in which it occurs most frequently.
If a token is not found in the database, it is labelled
as OTHER.

Trigram (TriB) assigns each token the most frequent
column label of the trigram centred on it. If a trigram
is not found in the database, the baseline backs off to
the two bigrams covering the token and then to the
unigram. If the token is not found in the database,
OTHER is assigned.

Trigram-+Voting (TriB+Vote) is based on a tech-
nique proposed by Van den Bosch and Daelemans
(2005) for sequence labelling tasks. The main idea is to
assign labels to trigrams in the sequence using a slid-
ing window. Because each token, except the boundary
tokens, is contained in three different trigrams (i.e.,

the one centred on the token to its left, the one cen-
tred on itself, and the one centred on the token to its
right), each token gets three labels assigned to it, over
which voting can be performed. In our case the labels
are assigned by database look-up. If a trigram is not
found in the database, no label is assigned to it. If the
labels assigned to a given token differ, majority voting
is used to resolve the conflict. If this does not break
the tie (i.e., because all three trigrams assign differ-
ent labels), the label of the trigram that occurs most
frequently in the database is assigned. We also imple-
mented two post-processing rules: (i) turning the label
OTHER between two identical neighbouring labels into
the surrounding labels, and (ii) labelling commas as
OTHER if the neighbouring labels are not identical.

3.3. Supervised Learning from Automatically
Generated Training Data

Our first strategy was to automatically generate train-
ing data for a supervised machine learner from the
database. Since the rows in the database correspond
to field book entries and the columns corresponds to
the fields that we want to identify, training data can be
obtained by concatenating the cells in each database
row. The order of the fields in the field book entries
is not fixed and this should also be reflected in the
artificially generated training data. However, the field
sequence is not entirely random, i.e., not all sequences
are equally likely. If a small amount of manually anno-
tated data is available, the field transition probabili-
ties can be estimated from this, otherwise the best one
can do is to assume uniform probabilities for all possi-
ble orderings. We experimented with both strategies,
creating two different training sets, one in which the
database cells were concatenated randomly with uni-
form probabilities, and another in which the cells were
concatenated to reflect the field ordering probabilities
estimated from ten entries in the manually labelled de-
velopment set.! When estimating the field transition
probabilities, we computed a probability distribution
over the initial fields of an entry as well as the con-
ditional probability distributions of a field x following
a field y for all seen segment pairs in the ten entries.
To account for unobserved events, we used Laplace
smoothing.

We found that 10 annotated entries are enough for
this purpose; the results we obtained by estimating the
sequence probabilities from 100 entries were not signifi-
cantly different. This is probably because the probabilities
are only used indirectly to bias the field orderings for the
generated training data. If the probabilities were used di-
rectly in the model, the amount of manually annotated
data would probably matter much more.

The artificially created training data were then con-
verted to a token-based representation in which each
token corresponds to an instance to be assigned a field
label. On the whole, we had just under 700,000 in-
stances (i.e., tokens) in our training data. We imple-
mented 107 features, falling in three classes:

e the neighbouring tokens (in a window of 5 center-
ing on the token in focus)

e the typographic properties of the token (word vs.
number, capitalisation, number of characters etc.)

e the tfidf weight of the token in its context with
respect to each of the columns in the database

The tfidf based features were computed for a window
of three, centering on the token in focus. For all n-
grams in this window covering the token in focus (i.e.,
the trigram, the two bigrams, and the unigram of the
focus token), we calculated the ¢fidf similarity with
the columns in the database, where the similarity be-
tween an m-gram t; and a column col, is defined as:

tfidfti,colz = tfti,colz IOg detl

The term frequency, tfi, cor, is the number of occur-
rences of t; in col, divided by the number of occur-
rences of all n-grams of length n in col, (0 if the n-gram
does not occur in the column). The inverse document
frequency, idf:,, is the number of all columns in the
database divided by the number of columns contain-
ing ¢;. A high tfidf weight for a given n-gram in a
given column means that it frequently occurs in that
column but rarely in other columns, thus it is a good
indicator for that column.

The data was then used to train a memory-based ma-
chine learner (TiMBL (Daelemans et al., 2004), de-
fault settings, k = 3, numeric features declared) to
determine which field each token belongs to.

3.4. Hidden Markov Models

Our second approach combines language modelling
and Hidden Markov Models (HMMs) (Rabiner, 1989).
Hidden Markov Models have been in use for informa-
tion extraction tasks for a long time. A probabilistic
model is trained to assign a label, or state to each of
a sequence of observations, where both labels and ob-
servations are expected to be sequentially correlated;
hence the popularity of HMMSs in natural language
processing and information extraction. Recently, a
large number of more sophisticated learning techniques
have largely replaced HMMs for information extrac-
tion; however unlike most of those newer techniques,
HMNM:s offer the advantage of having a well-established

unsupervised training procedure: the Baum-Welch al-
gorithm (Baum et al., 1970).

Training a Hidden Markov Model, whether supervised
or unsupervised, comes down to estimating three prob-
ability distributions.

1. An initial state distribution 7, which models the
probability of the first observation of a sequence
to have a certain label.

2. A state-transition distribution A, modelling the
conditional probability of being in a certain state
s, given that the previous state was s’.

3. A state-emission distribution B, which models the
conditional probability of observing a certain ob-
ject o given some state s.

For information extraction tasks, the typical interpre-
tation of an observation as referred to above, is that of
a token, where the entire observation sequence com-
monly corresponds to one sentence. In the current
study, we chose to apply HMMs on a somewhat higher
level, where an observation corresponds to a segment
of the field book entry. Ideally, one such segment maps
one-to-one to a cell in the specimen database, though
we leave open the possibility of merging several seg-
ments into one database cell.

Provided that a field book entry can be segmented
reliably, we have turned one part of the learning prob-
lem, that of estimating the state-emission distribution,
into one for which we have (almost) perfect super-
vised training data: the contents of the database cells.
The general form of a Hidden Markov Model’s state-
emission distribution is P(o|s), where s is the state, i.e.
a field type in our case, and o is the observation. As
mentioned before, we treat a segment of tokens as one
observation, therefore our state-emission distribution
will look like P(o = t1,ta,...,t,|s). Essentially, what
we have here is a language model, conditioned on the
current state. Since the specimen database provides a
large amount of labelled segment sequences, any prob-
abilistic language modelling method can be used to
estimate the state-emission distribution.

Whereas the specimen database provides sufficient in-
formation to estimate the state-emission distribution
in a fully supervised way, the initial-state and state-
transition distributions cannot be derived from the
database alone. Columns in a database are either
unordered or ordered in a way that does not neces-
sarily reflect the order they had in the field book en-
tries they were extracted from. However, the original
field book entries do show a rather systematic struc-
ture. Often, using information about the order fields

typically occur in, seems to be the only way to distin-
guish certain field types from one another. To estimate
the two missing probability distributions, the Baum-
Welch algorithm was used, updating the initial-state
and state-transition distributions, while keeping the
state-emission distributions unchanged.

3.4.1. SEGMENTATION OF FIELD BOOK ENTRIES

In our setup, the Hidden Markov Model expects the
input texts to be presegmented. To come up with a
good initial segmentation of an input entry, we again
chose a language-modelling approach. It is expected
that segment boundaries can best be recognised by
looking for unusual token subsequences; that is, token
sequences that are highly unlikely to occur within a
field according to the information we obtained from the
specimen database about what a typical segment does
look like. An n-gram language model has been trained
on the contents of all the columns of the specimen
database. Using this language model and the Viterbi
algorithm, the globally most-likely segmentation of the
input text is predicted.

3.4.2. THE STATE-EMISSION MODEL

The state-emission model is constructed by training a
separate language model for each column of the spec-
imen database. Combining those gives us the con-
ditional distribution required for a Hidden Markov
Model. However, in the specimen database, not ev-
ery column has actually been filled for every record.
There are columns that only contain actual data as
infrequently as in 5% of the records. Relative to
columns that contain data more often, these sparsely-
filled columns tend to be overestimated when sim-
ply computing a likelihood according to the language
model. For this reason, a penalty term is added to the
state-emission distribution corresponding to the prob-
ability that a record contains data for the given col-
umn. The likelihood computed by the language model
and the corresponding penalty term are then simply
multiplied.

3.4.3. LANGUAGE MODELLING

For building both types of language model presented
in the two previous sections, we used n-gram language
modelling as implemented by the SRI Language Mod-
elling Toolkit (Stolcke, 2002). With this toolkit, high-
order n-gram models can be built, where the sparsity
problem often encountered with such models is tack-
led by various smoothing methods. We supplemented
this built-in n-gram smoothing, with our own smooth-
ing on the token level by replacing low-frequent words

with symbols reflecting certain orthographic features
of the original word, and numbers with a symbol only
encoding the number of digits in the original number.

In addition to these general measures to deal with
sparsity, we also applied a small number of knowledge-
driven modifications to the training data for the lan-
guage models. The need for those is caused by the
fact that the contents of the specimen database are
almost, but not entirely extracted literally from the
original field book entries. For example, in the field
books, mentions of dates have often been transcribed
with Roman numerals for month numbers; the speci-
men database, however, encodes all months using reg-
ular Arabic numerals. As a consequence of this, a date
model trained naively on the contents of the database,
would most likely fail to recognise many dates in the
field book entries. For this specific case, we randomly
changed some of the month numbers in the training
data to Roman numerals.

Another difference between the field books and the
database that turned out to be rather crucial is the
fact that many segments in the field book entries are
separated by commas. Such commas used as delim-
iters have not been copied to the database. However,
commas do occur in the database, since in many field
types —especially the SPECIAL REMARKS field— com-
mas are used for purposes other than marking the end
of the segment and the start of a new one. To deal
with this difference, we modified the training data for
the segment model by randomly inserting commas at
the end of segments. Experimental results point out
that this modification has a large impact on the per-
formance of the segmentation model.

3.5. Results and Discussion

To evaluate the performance of the two approaches,
we set up a series of experiments in which the con-
tents of the database were the only training data, and
200 annotated field book entries served as test data.
As the only exception to this, 10 annotated field book
entries, not overlapping with those used for testing,
were used for estimating the field ordering probabili-
ties for generating the supervised training data for the
memory-based learner. For the memory-based learn-
ing approach, training meant creating artificial data
from the database cells and subsequently training a
memory-based learner on these data.

For the Hidden Markov Model, training consisted of
(1) estimating a language model to serve as a segmen-
tation model, (2) estimating separate language models
for each database cell to estimate state-emission proba-
bilities, and (3) performing Baum-Welch optimisation

on the (unlabelled) test data. Being an unsupervised
training method, Baum-Welch can easily be applied
to the test data, even though it does not have access
to label information for them. We hypothesised that
applying it to the test data themselves rather than to
an arbitrary unlabelled data set would result in a bet-
ter model for the data at hand. This is in fact rather
similar to transductive learning, which also produces
models specifically optimised for performing well on a
given test set.

Performance of the systems was measured using a
number of different metrics, each reflecting different
qualities of a segmentation. The most basic one, to-
ken accuracy, simply measures the percentage of to-
kens that were assigned the correct field type. It has
the disadvantage that the accuracy does not reflect the
quality of the segments that were found. For a more
segment-oriented evaluation, we used precision, recall
and F-score on correctly identified and labelled seg-
ments. For a segment to be counted as correct the
boundaries had to be exactly the same as in the an-
notation of the test data; no credit was assigned for
partially identified segments. As a last measure for
segmentation quality we used WindowDiff (Pevzner &
Hearst, 2002), which only evaluates segment bound-
aries not the labels assigned to them. In compari-
son with F-score, it is more forgiving with respect to
an occasional incorrectly inserted or omitted segment
boundary.

The top half of Table 1 shows the performance of
each of the baseline methods described in Section 3.2.
While their performance may not be suited for any se-
rious application, they do prove that there is sufficient
overlap between the contents of the database and the
field book entries to actually learn how to label to-
kens. This is illustrated even better by the learning
curves depicted in Figure 1. The curves start at the
point where only 10% of the database records are used
for training. This percentage is gradually increased
up to the point where the complete database consist-
ing of 16,670 records is used. Clearly, all baseline
approaches benefit from having more training data,
though the increase in performance with respect to
the increase of data is only modest. The biggest prob-
lem of all baseline approaches is that their performance
with respect to the segment-oriented measures is dis-
appointing. Even the best baseline method, the tri-
gram lookup with voting, only reaches an F-score of
19.4.

Looking at the performance of the two memory-based
learners in Table 1 (MBL rand. was trained on ran-
domly concatenated training data, MBL bias on data

modelled after 10 training sequences), we see that the
small amount of prior knowledge used for generat-
ing the artificial training data results in a substan-
tial improvement compared with the memory-based
learner that was trained on randomly concatenated
training data with uniform probabilities. Compared
to the best baseline method, there is an improvement
in terms of token accuracy. Surprisingly however, the
F-score of the memory-based learner (17.6) is worse
than the best baseline method’s F-score (19.4). This
is solely caused by a lower precision of the memory-
based learner. Another remarkable observation is the
fact that the amount of training data hardly has any
influence on the performance of the memory-based
learner. As shown by Figure 2, whether only 10% of
the database or the complete database is used for con-
structing training data, the resulting performance is
almost the same.

As can be seen in the second-to-last row of Table 1,
the Hidden Markov Model outperforms all other ap-
proaches in all aspects; it attains both the best token
accuracy (60.0), and by far the best F-score (45.4).
Looking at the learning curve shown in Figure 2, a
small positive effect of increasing the amount of train-
ing data can be observed, though the curve is not as
smooth as is the case with a typical supervised learner.

Being composed of two interdependent processing
stages, the HMM approach may suffer from error prop-
agation, where errors committed in the segmentation
stage may cause further errors in the labelling stage.
To analyse the effect of this error propagation, we also
evaluated the labelling step separately, applying it to
perfectly segmented input data. The results of this
experiment can be found in the last row of Table 1. In
terms of token accuracy, perfectly segment input does
not even improve performance much; compared to the
HMM scores on predicted segments, token accuracy
increases from 60.0 to 61.3; however, the difference in
terms of precision and recall is impressive, both in-
creasing with over 25%.

4. Conclusion

Information extraction is often used to automate the
process of filling a structured database with content
extracted from written texts. Supervised machine
learning approaches have been successfully applied for
creating systems capable of performing this task. How-
ever, the supervised nature of these approaches re-
quires large amounts of annotated training data; the
acquisition of which is often a laborious and time-
consuming process. In this study, we experimented
with two machine learning techniques that do not re-

Table 1. Performance of all baseline and learning ap-
proaches, expressed in token accuracy, precision, recall,
F-score, and WindowDiff. For WindowDiff, lower scores
are better.

Token Segment

Acc. Prec. Rec. Fp=1 WDiff
MajB 24.8 0.0 0.0 0.0 .346
ExactB 16.0 25.7 23.1 24.3 .425
UniB 27.0 8.9 228 12.8 .818
TriB 43.8 12.9 248 16.9 582
TriB+Vote 45.1 14.9 27.8 19.4 .536
MBL rand. 44.6 7.1 19.2 10.4 .568
MBL bias 53.4 12.1 32.0 17.6 .533
HMM 60.0 47.1 43.9 45.4 173

+ perfect seg. 61.3 74.0 69.2 715 .036

50 T T T T T T T T
ExactB

UniB ----
TriB z
45 TriB+Vote
VAN
A A D ° ® ‘e @ Py 'Y
N ®
@

40

35

Token accuracy
W
S

25 oo
20
15 T/././.—.#H—H—.
10 L L L . L L L L

10 20 30 40 50 60 70 80 90 100

% of training data used

Figure 1. Token accuracies for the various baseline ap-
proaches trained on increasingly larger parts of the com-
plete database (16,670 records).

quire such annotated training data, but can be trained
on a database containing information derived from the
type of documents targeted by the application.

The first approach is an attempt to employ a standard
supervised machine learning algorithm, training it on
artificial labelled training data. These data are cre-
ated by concatenating the contents of the cells of the
database records in random order. Experiments with
this approach pointed out that truly random concate-
nation of database fields results in weak performance;
a rather simple baseline approach, which only matches
substrings of a field book entry with the contents of the
database, leads to better results. However, if a small
amount of annotated field book entries is available —in
this study, 10 entries turned out to be sufficient— one
can estimate field ordering probabilities that can be
used to generate more realistic training data from the

65
HVM —l—
MBL bias --&--

55

Token accuracy

50

45 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

% of training data used

Figure 2. Token accuracies for the two machine learning
approaches trained on increasingly larger parts of the com-
plete database (16,670 records).

database. A machine learner trained on these data
labelled 10% more tokens correctly than the system
trained on the randomly generated data.

Our second approach is based on unsupervised hidden
markov modelling. First, an n-gram language model
is used to divide the field book entries into unlabelled
segments. Then, a Hidden Markov Model is trained
on these segmented entries using the Baum-Welch al-
gorithm to estimate state-transition probabilities. The
resulting HMM labels the segments found in the pre-
ceding segmentation step. The HMM state-emission
distributions are estimated by training n-gram lan-
guage models on the contents of the database columns.

The performance of the HMM proved to be superior
to the other approaches, outperforming the supervised
learner by labelling 61% of the tokens correctly, as well
as attaining good results in terms of segment-level F-
score. The weak part of the HMM approach turned out
to be the initial segmentation. If this part is replaced
by a perfect segmentation, F-score increases from 45%
to 72%, which for many information extraction tasks
is considered quite acceptable. Future work should
therefore mainly focus on improving this initial seg-
mentation step; preferably using no labelled training
data but the contents of the specimen database.

Acknowledgments

The research reported in this paper was funded by
NWO, the Netherlands Organisation for Scientific Re-
search, as part of the IMIX and CATCH programmes.
We would like to thank Antal van den Bosch for useful

discussions, and Marieke van Erp for labelling part of
the data.

References

Baum, L., Petrie, T., Soules, G., & Weiss, N. (1970).
A Maximization Technique Occurring in the Statis-
tical Analysis of Probabilistic Functions of Markov
Chains. The Annals of Mathematical Statistics, 41,
164-171.

Borkar, V., Deshmukh, K., & Sarawagi, S. (2001).
Automatic segmentation of text into structured
records. Proc. 2001 ACM SIGMOD (pp. 175-186).

Daelemans, W., Zavrel, J., Van der Sloot, K., & Van
den Bosch, A. (2004). TiMBL: Tilburg memory
based learner, version 5.1, reference guide. ILK Re-
search Group Technical Report Series no. 04-02.

Freitag, D., & Kushmerick, N. (2000). Boosted wrap-
per induction. Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI/TAAI-
2000) (pp. 577-583).

Grenager, T., Klein, D., & Manning, C. D. (2005). Un-
supervised learning of field segmentation models for
information extraction. Proceedings of the 43nd An-

nual Meeting of the Association for Computational
Linguistics (ACL 2005) (pp. 371-378).

Kushmerick, N., Johnston, E., & McGuinness, S.
(2001). Information extraction by text classifica-
tion. Proc. of the IJCAI-01 Workshop on Adaptive
Text Extraction and Mining.

Pevzner, L., & Hearst, M. (2002). A critique and im-
provement of an evaluation metric for text segmen-
tation. Computational Linguistics, 28, 19-36.

Rabiner, L. (1989). A tutorial on hidden Markov mod-
els and selected applications inspeech recognition.
Proceedings of the IEEE, 77, 257-286.

Stolcke, A. (2002). SRILM - an extensible language
modeling toolkit. Proc. ICSLP, 2, 901-904.

Van den Bosch, A., & Daelemans, W. (2005). Im-
proving sequence segmentation learning by predict-
ing trigrams. Proceedings of the Ninth Conference
on Natural Language Learning, CoNLL-2005 (pp.
80-87).

Viola, P., & Narasimhand, M. (2005). Learning to
extract information from semi-structured text using
a discriminative context free grammar. Proc. 28th
ACM SIGIR (pp. 330-337).

